womersley_elements.h
Go to the documentation of this file.
1 // LIC// ====================================================================
2 // LIC// This file forms part of oomph-lib, the object-oriented,
3 // LIC// multi-physics finite-element library, available
4 // LIC// at http://www.oomph-lib.org.
5 // LIC//
6 // LIC// Copyright (C) 2006-2024 Matthias Heil and Andrew Hazel
7 // LIC//
8 // LIC// This library is free software; you can redistribute it and/or
9 // LIC// modify it under the terms of the GNU Lesser General Public
10 // LIC// License as published by the Free Software Foundation; either
11 // LIC// version 2.1 of the License, or (at your option) any later version.
12 // LIC//
13 // LIC// This library is distributed in the hope that it will be useful,
14 // LIC// but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // LIC// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
16 // LIC// Lesser General Public License for more details.
17 // LIC//
18 // LIC// You should have received a copy of the GNU Lesser General Public
19 // LIC// License along with this library; if not, write to the Free Software
20 // LIC// Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
21 // LIC// 02110-1301 USA.
22 // LIC//
23 // LIC// The authors may be contacted at oomph-lib@maths.man.ac.uk.
24 // LIC//
25 // LIC//====================================================================
26 
27 
28 // Header file for Womersley elements
29 #ifndef OOMPH_WOMERSLEY_ELEMENTS_HEADER
30 #define OOMPH_WOMERSLEY_ELEMENTS_HEADER
31 
32 // Config header generated by autoconfig
33 #ifdef HAVE_CONFIG_H
34 #include <oomph-lib-config.h>
35 #endif
36 
37 
38 // OOMPH-LIB headers
39 #include "../generic/nodes.h"
40 #include "../generic/Qelements.h"
41 #include "../generic/mesh.h"
42 #include "../generic/problem.h"
43 #include "../generic/oomph_utilities.h"
44 #include "../navier_stokes/navier_stokes_flux_control_elements.h"
45 
46 
47 namespace oomph
48 {
49  /// //////////////////////////////////////////////////////////////////////
50  /// //////////////////////////////////////////////////////////////////////
51  /// //////////////////////////////////////////////////////////////////////
52 
53 
54  //===============================================================
55  /// Template-free base class for Impedance Tube -- to faciliate
56  /// interactions between the Womersley elements and the
57  /// Navier Stokes impedance traction elements.
58  //===============================================================
60  {
61  public:
62  /// Empty constructor
64 
65  /// Empty virtual destructor
67 
68  /// Empty virtual dummy member function -- every base class
69  /// needs at least one virtual member function if it's
70  /// to be used as a base class for a polymorphic object.
71  // virtual void dummy(){};
72 
73  /// Pure virtual function to compute inlet pressure, p_in,
74  /// required to achieve the currently imposed, instantaneous
75  /// volume flux q prescribed by total_volume_flux_into_impedance_tube(),
76  /// and its derivative, dp_in/dq.
77  virtual void get_response(double& p_in, double& dp_in_dq) = 0;
78 
79  /// Zero!
80  static double Zero;
81  };
82 
83 
84  /// //////////////////////////////////////////////////////////////////////
85  /// //////////////////////////////////////////////////////////////////////
86  /// //////////////////////////////////////////////////////////////////////
87 
88 
89  //======================================================================
90  /// A base class for elements that allow the imposition of an impedance
91  /// type boundary condition to the Navier--Stokes equations. Establishes
92  /// the template-free common functionality, that they must have to be able
93  /// to compute the volume flux that passes through them, etc.
94  //======================================================================
96  {
97  public:
98  // Empty constructor
100 
101  /// Empty vitual destructor
103 
104  /// Pure virtual function that must be implemented to compute
105  /// the volume flux that passes through this element
106  virtual double get_volume_flux() = 0;
107 
108  /// Add the element's contribution to the auxiliary integral
109  /// used in the element's Jacobian. The aux_integral contains
110  /// the derivative of the total volume flux through the
111  /// outflow boundary of the (higher-dimensional) Navier-Stokes mesh w.r.t.
112  /// to the discrete (global) (velocity) degrees of freedom.
114  std::map<unsigned, double>* aux_integral_pt) = 0;
115 
116  /// Pass the pointer to the pre-computed auxiliary integral
117  /// to the element so it can be accessed when computing the
118  /// elemental Jacobian.
119  virtual void set_aux_integral_pt(
120  std::map<unsigned, double>* aux_integral_pt) = 0;
121 
122  /// Pass the pointer to the "impedance tube" that computes
123  /// the flow resistance via the solution of Womersley's equations
124  /// to the element.
125  virtual void set_impedance_tube_pt(
126  TemplateFreeWomersleyImpedanceTubeBase* impedance_tube_pt) = 0;
127 
128 
129  /// Pass the pointer to the mesh containing all
130  /// NavierStokesImpedanceTractionElements that contribute
131  /// to the volume flux into the downstream "impedance tube"
132  /// to the element and classify all nodes in that mesh
133  /// as external Data for this element (unless the nodes
134  /// are also the element's own nodes, of course).
136  Mesh* navier_stokes_outflow_mesh_pt_mesh_pt) = 0;
137 
138  protected:
139  /// Pointer to mesh containing the
140  /// NavierStokesImpedanceTractionElements
141  /// that contribute to the volume flux into the "downstream tube" that
142  /// provides the flow resistance
144  };
145 
146 
147  /// //////////////////////////////////////////////////////////////////////
148  /// //////////////////////////////////////////////////////////////////////
149  /// //////////////////////////////////////////////////////////////////////
150 
151 
152  //=============================================================
153  /// A class for all isoparametric elements that solve the
154  /// Womersley (parallel flow) equations.
155  /// \f[ Re St \frac{\partial u}{\partial t} = - g + \frac{\partial^2 u}{\partial x_i^2} \f]
156  /// which may be derived from the full Navier-Stokes equations
157  /// (with a viscous scaling of the pressure) under the assumption of
158  /// parallel flow in the z direction. u then represents the axial
159  /// velocity and g is the (spatially constant) axial component of
160  /// the pressure gradient.
161  ///
162  /// This class contains the generic maths. Shape functions, geometric
163  /// mapping etc. must get implemented in derived class.
164  /// Note that this class assumes an isoparametric formulation, i.e. that
165  /// the scalar unknown is interpolated using the same shape functions
166  /// as the position.
167  ///
168  /// Generally, the instantaneous value of the pressure gradient, g,
169  /// is prescribed (and specified via a pointer to a single-valued
170  /// Data object whose current (pinned) value contains the pressure.
171  ///
172  /// It is also possible to prescribe the flow rate through
173  /// a mesh of Womersley elements and to determine the pressure
174  /// gradient required to achieve this flow rate as an unknown.
175  /// In that case the external pressure is treated as
176  /// an external Data object that an associated
177  /// ImposeFluxForWomersleyElement is in charge of. Note that only
178  /// the ImposeFluxForWomersleyElement can set the pressure gradient
179  /// Data object as external Data. This is because (counter to
180  /// general practice) the WomersleyEquations make contributions
181  /// to the residuals of the ImposeFluxForWomersleyElements in order
182  /// to keep the elemental Jacobians as small as possible.
183  //=============================================================
184  template<unsigned DIM>
185  class WomersleyEquations : public virtual FiniteElement
186  {
187  public:
188  /// Constructor: Initialises the Pressure_gradient_data_pt to null
190  {
192  }
193 
194 
195  /// Broken copy constructor
196  WomersleyEquations(const WomersleyEquations& dummy) = delete;
197 
198  /// Broken assignment operator
199  void operator=(const WomersleyEquations&) = delete;
200 
201  /// Set pointer to pressure gradient (single-valued Data)
202  void set_pressure_gradient_pt(Data*& pressure_gradient_data_pt)
203  {
204 #ifdef PARANOID
205  if (pressure_gradient_data_pt->nvalue() != 1)
206  {
207  throw OomphLibError(
208  "Pressure gradient Data must only contain a single value!\n",
209  OOMPH_CURRENT_FUNCTION,
210  OOMPH_EXCEPTION_LOCATION);
211  }
212 #endif
213  Pressure_gradient_data_pt = pressure_gradient_data_pt;
214  }
215 
216 
217  /// Read-only access to pointer to pressure gradient
219  {
221  }
222 
223 
224  /// Product of Reynolds and Strouhal number (=Womersley number)
225  const double& re_st() const
226  {
227  return *ReSt_pt;
228  }
229 
230 
231  /// Pointer to product of Reynolds and Strouhal number (=Womersley number)
232  double*& re_st_pt()
233  {
234  return ReSt_pt;
235  }
236 
237 
238  /// Return the index at which the unknown value
239  /// is stored. The default value, 0, is appropriate for single-physics
240  /// problems, when there is only one variable, the value that satisfies the
241  /// Womersley equation.
242  /// In derived multi-physics elements, this function should be overloaded
243  /// to reflect the chosen storage scheme. Note that these equations require
244  /// that the unknown is always stored at the same index at each node.
245  virtual inline unsigned u_index_womersley() const
246  {
247  return 0;
248  }
249 
250 
251  /// du/dt at local node n.
252  /// Uses suitably interpolated value for hanging nodes.
253  double du_dt_womersley(const unsigned& n) const
254  {
255  // Get the data's timestepper
257 
258  // Initialise dudt
259  double dudt = 0.0;
260 
261  // Loop over the timesteps, if there is a non Steady timestepper
262  if (!time_stepper_pt->is_steady())
263  {
264  // Find the index at which the variable is stored
265  const unsigned u_nodal_index = u_index_womersley();
266 
267  // Number of timsteps (past & present)
268  const unsigned n_time = time_stepper_pt->ntstorage();
269 
270  // Add the contributions to the time derivative
271  for (unsigned t = 0; t < n_time; t++)
272  {
273  dudt +=
274  time_stepper_pt->weight(1, t) * nodal_value(t, n, u_nodal_index);
275  }
276  }
277  return dudt;
278  }
279 
280 
281  /// Output with default number of plot points
282  void output(std::ostream& outfile)
283  {
284  unsigned nplot = 5;
285  output(outfile, nplot);
286  }
287 
288  /// Output function: x,y,z_out,0,0,u,0 to allow comparison
289  /// against full Navier Stokes at n_nplot x n_plot points (2D)
290  void output_3d(std::ostream& outfile,
291  const unsigned& n_plot,
292  const double& z_out);
293 
294  /// Output FE representation of soln: x,y,u or x,y,z,u at
295  /// n_plot^DIM plot points
296  void output(std::ostream& outfile, const unsigned& nplot);
297 
298 
299  /// C_style output with default number of plot points
300  void output(FILE* file_pt)
301  {
302  unsigned n_plot = 5;
303  output(file_pt, n_plot);
304  }
305 
306 
307  /// C-style output FE representation of soln: x,y,u or x,y,z,u at
308  /// n_plot^DIM plot points
309  void output(FILE* file_pt, const unsigned& n_plot);
310 
311 
312  /// Output exact soln: x,y,u_exact or x,y,z,u_exact at nplot^DIM plot points
313  void output_fct(std::ostream& outfile,
314  const unsigned& nplot,
316 
317 
318  /// Output exact soln: x,y,u_exact or x,y,z,u_exact at
319  /// nplot^DIM plot points (time-dependent version)
320  virtual void output_fct(
321  std::ostream& outfile,
322  const unsigned& nplot,
323  const double& time,
325 
326 
327  /// Get error against and norm of exact solution
328  void compute_error(std::ostream& outfile,
330  double& error,
331  double& norm);
332 
333 
334  /// Get error against and norm of exact solution
335  void compute_error(std::ostream& outfile,
337  const double& time,
338  double& error,
339  double& norm);
340 
341  /// Get flux: flux[i] = du/dx_i
342  void get_flux(const Vector<double>& s, Vector<double>& flux) const
343  {
344  // Find out how many nodes there are in the element
345  unsigned n_node = nnode();
346 
347  // Find the index at which the variable is stored
348  unsigned u_nodal_index = u_index_womersley();
349 
350  // Set up memory for the shape and test functions
351  Shape psi(n_node);
352  DShape dpsidx(n_node, DIM);
353 
354  // Call the derivatives of the shape and test functions
355  dshape_eulerian(s, psi, dpsidx);
356 
357  // Initialise to zero
358  for (unsigned j = 0; j < DIM; j++)
359  {
360  flux[j] = 0.0;
361  }
362 
363  // Loop over nodes
364  for (unsigned l = 0; l < n_node; l++)
365  {
366  // Loop over derivative directions
367  for (unsigned j = 0; j < DIM; j++)
368  {
369  flux[j] += nodal_value(l, u_nodal_index) * dpsidx(l, j);
370  }
371  }
372  }
373 
374 
375  /// Compute element residual Vector (wrapper)
377  {
378  // Call the generic residuals function with flag set to 0
379  // using a dummy matrix argument
381  residuals, GeneralisedElement::Dummy_matrix, 0);
382  }
383 
384 
385  /// Compute element residual Vector and element Jacobian matrix (wrapper)
387  DenseMatrix<double>& jacobian)
388  {
389  // Call the generic routine with the flag set to 1
390  fill_in_generic_residual_contribution_womersley(residuals, jacobian, 1);
391  }
392 
393 
394  /// Return FE representation of function value u(s) at local coordinate s
395  inline double interpolated_u_womersley(const Vector<double>& s) const
396  {
397  // Find number of nodes
398  unsigned n_node = nnode();
399 
400  // Find the index at which the variable is stored
401  unsigned u_nodal_index = u_index_womersley();
402 
403  // Local shape function
404  Shape psi(n_node);
405 
406  // Find values of shape function
407  shape(s, psi);
408 
409  // Initialise value of u
410  double interpolated_u = 0.0;
411 
412  // Loop over the local nodes and sum
413  for (unsigned l = 0; l < n_node; l++)
414  {
415  interpolated_u += nodal_value(l, u_nodal_index) * psi[l];
416  }
417 
418  return (interpolated_u);
419  }
420 
421  /// Self-test: Return 0 for OK
422  unsigned self_test();
423 
424  /// Compute total volume flux through element
425  double get_volume_flux();
426 
427  protected:
428  /// Shape/test functions and derivs w.r.t. to global coords at
429  /// local coord. s; return Jacobian of mapping
431  const Vector<double>& s,
432  Shape& psi,
433  DShape& dpsidx,
434  Shape& test,
435  DShape& dtestdx) const = 0;
436 
437 
438  /// Shape/test functions and derivs w.r.t. to global coords at
439  /// integration point ipt; return Jacobian of mapping
441  const unsigned& ipt,
442  Shape& psi,
443  DShape& dpsidx,
444  Shape& test,
445  DShape& dtestdx) const = 0;
446 
447  /// Compute element residual Vector only (if flag=and/or element
448  /// Jacobian matrix
450  Vector<double>& residuals, DenseMatrix<double>& jacobian, unsigned flag);
451 
452  /// Pointer to pressure gradient Data (single value Data item)
454 
455  /// Pointer to global Reynolds number x Strouhal number (=Womersley)
456  double* ReSt_pt;
457 
458  /// Static default value for the Womersley number
459  static double Default_ReSt_value;
460 
461  private:
462  template<unsigned DIMM>
464 
465  /// Set pointer to pressure gradient (single-valued Data) and
466  /// treat it as external data -- this can only be called
467  /// by the friend class ImposeFluxForWomersleyElement which
468  /// imposes a volume flux constraint and trades it
469  /// for the now unknown pressure gradient Data that is
470  /// treated as external Data for this element.
471  /// This slightly convoluted (private/friend) construction
472  /// is necessary because, counter to practice, the current
473  /// element adds contributions to the equation that determines
474  /// the external data. This obviously requires that the
475  /// ImposeFluxForWomersleyElement doesn't do the same. We know
476  /// that it doesn't and therefore we make it a friend that's allowed
477  /// to collaborate with this element...
479  Data* pressure_gradient_data_pt)
480  {
481  Pressure_gradient_data_pt = pressure_gradient_data_pt;
482  add_external_data(pressure_gradient_data_pt);
483  }
484  };
485 
486 
487  /// ////////////////////////////////////////////////////////////////////////
488  /// ////////////////////////////////////////////////////////////////////////
489  /// ////////////////////////////////////////////////////////////////////////
490 
491 
492  //========================================================================
493  /// Element to impose volume flux through collection of Womersley
494  /// elements, in exchange for treating the pressure gradient
495  /// as an unknown. The pressure gradient is created (as a single-valued
496  /// Data item) in the constructor for this element which also
497  /// takes a pointer to the Mesh containing the Womersley elements whose
498  /// total flux is being controlled. While doing this we tell them
499  /// that their pressure gradient is now an unknown and must be
500  /// treated as external Data.
501  //========================================================================
502  template<unsigned DIM>
504  {
505  public:
506  /// Constructor: Pass pointer to mesh that contains the
507  /// Womersley elements whose volume flux is controlled, and pointer to
508  /// double that contains the instantaneous value of the
509  /// prescribed flux
511  double* prescribed_flux_pt)
512  : Prescribed_flux_pt(prescribed_flux_pt)
513  {
514  // Store the mesh of the flux-controlled Womerersley elements
515  Womersley_mesh_pt = womersley_mesh_pt;
516 
517  // Create the pressure gradient Data
520 
521  // Pressure gradient is internal data of this element
523 
524  // Find number of elements in the mesh of Womersley elements
525  // whose total flux is controlled
526  unsigned n_element = womersley_mesh_pt->nelement();
527 
528  // Loop over the elements to tell them that the pressure
529  // gradient is given by the newly created Data object
530  // which is to be treated as external Data.
531  for (unsigned e = 0; e < n_element; e++)
532  {
533  // Upcast from FiniteElement to the present element
534  WomersleyEquations<DIM>* el_pt = dynamic_cast<WomersleyEquations<DIM>*>(
535  womersley_mesh_pt->element_pt(e));
536 
537  // Set the pressure gradient function pointer
540  }
541  }
542 
543  /// Read-only access to the single-valued Data item that
544  /// stores the pressure gradient (to be determined via the
545  /// flux control)
547  {
549  }
550 
551 
552  /// Get volume flux through all Womersley elements
554  {
555  // Initialise
556  double flux = 0.0;
557 
558  // Assemble contributions from elements
559  unsigned nelem = Womersley_mesh_pt->nelement();
560  for (unsigned e = 0; e < nelem; e++)
561  {
562  WomersleyEquations<DIM>* el_pt = dynamic_cast<WomersleyEquations<DIM>*>(
564  if (el_pt != 0) flux += el_pt->get_volume_flux();
565  }
566 
567  // Return total volume flux
568  return flux;
569  }
570 
571 
572  /// Compute residual vector: the volume flux constraint
573  /// determines this element's one-and-only internal Data which represents
574  /// the pressure gradient
575  void get_residuals(Vector<double>& residuals)
576  {
577  // Local equation number of volume flux constraint -- associated
578  // with the internal data (the unknown pressure gradient)
579  int local_eqn = internal_local_eqn(0, 0);
580  if (local_eqn >= 0)
581  {
582  residuals[local_eqn] += total_volume_flux() - (*Prescribed_flux_pt);
583  }
584  }
585 
586 
587  /// Compute element residual Vector and element Jacobian matrix
588  /// Note: Jacobian is zero because the derivatives w.r.t. to
589  /// velocity dofs are added by the Womersley elements; the current
590  /// element's internal Data (the pressure gradient) does not feature
591  /// in the volume constraint.
592  void get_jacobian(Vector<double>& residuals, DenseMatrix<double>& jacobian)
593  {
594  // Initialise Jacobian
595  unsigned n_dof = ndof();
596  for (unsigned i = 0; i < n_dof; i++)
597  {
598  for (unsigned j = 0; j < n_dof; j++)
599  {
600  jacobian(i, j) = 0.0;
601  }
602  }
603  // Get residuals
604  get_residuals(residuals);
605  }
606 
607  private:
608  /// Pointer to mesh that contains the Womersley elements
610 
611  /// Data item whose one and only value contains the pressure
612  /// gradient
614 
615  /// Pointer to current value of prescribed flux
617  };
618 
619 
620  /// ////////////////////////////////////////////////////////////////////////
621  /// ////////////////////////////////////////////////////////////////////////
622  /// ////////////////////////////////////////////////////////////////////////
623 
624 
625  //======================================================================
626  /// QWomersleyElement elements are linear/quadrilateral/brick-shaped
627  /// Womersley elements with isoparametric interpolation for the function.
628  //======================================================================
629  template<unsigned DIM, unsigned NNODE_1D>
630  class QWomersleyElement : public virtual QElement<DIM, NNODE_1D>,
631  public virtual WomersleyEquations<DIM>
632  {
633  private:
634  /// Static array of ints to hold number of variables at
635  /// nodes: Initial_Nvalue[n]
636  static const unsigned Initial_Nvalue;
637 
638  public:
639  /// Constructor: Call constructors for QElement and
640  /// Womersley equations
641  QWomersleyElement() : QElement<DIM, NNODE_1D>(), WomersleyEquations<DIM>()
642  {
643  }
644 
645  /// Broken copy constructor
647 
648  /// Broken assignment operator
650 
651  /// Required # of `values' (pinned or dofs)
652  /// at node n
653  inline unsigned required_nvalue(const unsigned& n) const
654  {
655  return Initial_Nvalue;
656  }
657 
658  /// Output function:
659  /// x,y,u or x,y,z,u
660  void output(std::ostream& outfile)
661  {
663  }
664 
665 
666  /// Output function:
667  /// x,y,u or x,y,z,u at n_plot^DIM plot points
668  void output(std::ostream& outfile, const unsigned& n_plot)
669  {
670  WomersleyEquations<DIM>::output(outfile, n_plot);
671  }
672 
673 
674  /// C-style output function:
675  /// x,y,u or x,y,z,u
676  void output(FILE* file_pt)
677  {
679  }
680 
681 
682  /// C-style output function:
683  /// x,y,u or x,y,z,u at n_plot^DIM plot points
684  void output(FILE* file_pt, const unsigned& n_plot)
685  {
686  WomersleyEquations<DIM>::output(file_pt, n_plot);
687  }
688 
689 
690  /// Output function for an exact solution:
691  /// x,y,u_exact or x,y,z,u_exact at n_plot^DIM plot points
692  void output_fct(std::ostream& outfile,
693  const unsigned& n_plot,
695  {
696  WomersleyEquations<DIM>::output_fct(outfile, n_plot, exact_soln_pt);
697  }
698 
699 
700  /// Output function for a time-dependent exact solution.
701  /// x,y,u_exact or x,y,z,u_exact at n_plot^DIM plot points
702  /// (Calls the steady version)
703  void output_fct(std::ostream& outfile,
704  const unsigned& n_plot,
705  const double& time,
707  {
708  WomersleyEquations<DIM>::output_fct(outfile, n_plot, time, exact_soln_pt);
709  }
710 
711 
712  protected:
713  /// Shape, test functions & derivs. w.r.t. to global coords. Return
714  /// Jacobian.
716  Shape& psi,
717  DShape& dpsidx,
718  Shape& test,
719  DShape& dtestdx) const;
720 
721 
722  /// Shape/test functions and derivs w.r.t. to global coords at
723  /// integration point ipt; return Jacobian of mapping
725  const unsigned& ipt,
726  Shape& psi,
727  DShape& dpsidx,
728  Shape& test,
729  DShape& dtestdx) const;
730  };
731 
732 
733  /// /////////////////////////////////////////////////////////////////////
734  /// /////////////////////////////////////////////////////////////////////
735  /// /////////////////////////////////////////////////////////////////////
736 
737 
738  //=====start_of_problem_class=========================================
739  /// Womersley problem
740  //====================================================================
741  template<class ELEMENT, unsigned DIM>
742  class WomersleyProblem : public Problem
743  {
744  public:
745  /// Function pointer to fct that prescribes pressure gradient
746  /// g=fct(t)
747  typedef double (*PrescribedPressureGradientFctPt)(const double& time);
748 
749 
750  /// Constructor: Pass pointer to Womersley number, pointer to the
751  /// double that stores the currently imposed flow rate, the pointer
752  /// to the mesh of WomersleyElements (of the type specified by the template
753  /// argument) and the TimeStepper used in these
754  /// elements. (Note that the mesh must be created, and boundary
755  /// conditions applied BEFORE creating the Womersley problem.
756  /// This is to facilitate the re-use of this class
757  /// for different geometries.
758  WomersleyProblem(double* re_st_pt,
759  double* prescribed_volume_flux_pt,
761  Mesh* womersley_mesh_pt);
762 
763 
764  /// Constructor: Pass pointer to Womersley number, pointer to the
765  /// function that returns the imposed pressure gradient, the pointer
766  /// to the mesh of WomersleyElements and the TimeStepper used in these
767  /// elements. (Note that the mesh must be created, and boundary
768  /// conditions applied BEFORE creating the Womersley problem.
769  /// This is to allow the facilitate the re-use of this class
770  /// for different geometries.)
771  WomersleyProblem(double* re_st_pt,
772  PrescribedPressureGradientFctPt pressure_gradient_fct_pt,
774  Mesh* womersley_mesh_pt);
775 
776  /// Destructor to clean up memory
778 
779  /// Update the problem specs after solve (empty)
781 
782  /// Update the problem specs before solve (empty)
784 
785 
786  /// Update the problem specs before next timestep:
787  /// Update time-varying pressure gradient (if prescribed)
789  {
790  /// Assign current prescribed pressure gradient to Data
792  {
795  }
796  }
797 
798  /// Doc the solution incl. trace file for various quantities of
799  /// interest (to some...)
800  void doc_solution(DocInfo& doc_info,
801  std::ofstream& trace_file,
802  const double& z_out = 0.0);
803 
804  /// Doc the solution
805  void doc_solution(DocInfo& doc_info, const double& z_out = 0.0)
806  {
807  std::ofstream trace_file;
808  doc_solution(doc_info, trace_file, z_out);
809  }
810 
811  /// Access function to the single-valued Data object that
812  /// contains the unknown pressure gradient (used if flux is prescribed)
814  {
816  }
817 
818 
819  private:
820  /// Pointer to currently prescribed volume flux
822 
823  /// Pointer to element that imposes the flux through the collection
824  /// of Womersley elements
826 
827  /// Fct pointer to fct that prescribes pressure gradient
829 
830  /// Pointer to single-valued Data item that stores pressure gradient
832 
833  }; // end of problem class
834 
835 
836  //========start_of_constructor============================================
837  /// Constructor: Pass pointer to Womersley number, fct pointer to the
838  /// function that returns the prescribed pressure gradient, the pointer
839  /// to the mesh of WomersleyElements (of the type specified by the
840  /// template argument), and the TimeStepper used in these
841  /// elements. (Note that the mesh must be created, and boundary
842  /// conditions applied BEFORE creating the Womersley problem.
843  /// This is to facilitate the re-use of this class
844  /// for different geometries.)
845  //========================================================================
846  template<class ELEMENT, unsigned DIM>
848  double* re_st_pt,
849  PrescribedPressureGradientFctPt pressure_gradient_fct_pt,
850  TimeStepper* time_stepper_pt,
851  Mesh* womersley_mesh_pt)
852  : Prescribed_volume_flux_pt(0),
853  Flux_el_pt(0),
854  Prescribed_pressure_gradient_fct_pt(pressure_gradient_fct_pt)
855  {
856  // Problem is linear: Skip convergence check in Newton solver
857  Problem_is_nonlinear = false;
858 
859  // Set the timestepper
861 
862  // Set the mesh (bcs have already been allocated!)
863  mesh_pt() = womersley_mesh_pt;
864 
865  // Complete the build of all elements so they are fully functional
866  //----------------------------------------------------------------
867 
868  // Find number of elements in mesh
869  unsigned n_element = mesh_pt()->nelement();
870 
871  // Loop over the elements to set up element-specific
872  // things that cannot be handled by constructor
873  for (unsigned i = 0; i < n_element; i++)
874  {
875  // Upcast from FiniteElement to the present element
876  ELEMENT* el_pt = dynamic_cast<ELEMENT*>(mesh_pt()->element_pt(i));
877 
878  // Set pointer to Womersley number
879  el_pt->re_st_pt() = re_st_pt;
880  }
881 
882  // Create pressure gradient as pinned, single-valued Data item
885 
886  // Pass pointer to pressure gradient Data to elements
887  unsigned nelem = mesh_pt()->nelement();
888  for (unsigned e = 0; e < nelem; e++)
889  {
890  ELEMENT* el_pt = dynamic_cast<ELEMENT*>(mesh_pt()->element_pt(e));
891  if (el_pt != 0)
892  {
893  el_pt->set_pressure_gradient_pt(Pressure_gradient_data_pt);
894  }
895  }
896 
897 
898  // Do equation numbering
899  oomph_info << "Number of equations in WomersleyProblem: "
900  << assign_eqn_numbers() << std::endl;
901 
902  } // end of constructor
903 
904 
905  //========start_of_constructor============================================
906  /// Constructor: Pass pointer to Womersley number, pointer to the
907  /// double that stores the currently imposed flow rate, the pointer
908  /// to the mesh of WomersleyElements and the TimeStepper used in these
909  /// elements. (Note that the mesh must be created, and boundary
910  /// conditions applied BEFORE creating the Womersley problem.
911  /// This is to facilitate the re-use of this class
912  /// for different geometries.)
913  //========================================================================
914  template<class ELEMENT, unsigned DIM>
916  double* re_st_pt,
917  double* prescribed_volume_flux_pt,
918  TimeStepper* time_stepper_pt,
919  Mesh* womersley_mesh_pt)
920  : Prescribed_volume_flux_pt(prescribed_volume_flux_pt),
921  Flux_el_pt(0),
922  Prescribed_pressure_gradient_fct_pt(0)
923  {
924  // Problem is linear: Skip convergence check in Newton solver
925  Problem_is_nonlinear = false;
926 
927  // Set the timestepper
929 
930  // Set the mesh (bcs have already been allocated!)
931  mesh_pt() = womersley_mesh_pt;
932 
933 
934  // Complete the build of all elements so they are fully functional
935  //----------------------------------------------------------------
936 
937  // Find number of elements in mesh
938  unsigned n_element = mesh_pt()->nelement();
939 
940  // Loop over the elements to set up element-specific
941  // things that cannot be handled by constructor
942  for (unsigned i = 0; i < n_element; i++)
943  {
944  // Upcast from FiniteElement to the present element
945  ELEMENT* el_pt = dynamic_cast<ELEMENT*>(mesh_pt()->element_pt(i));
946 
947  // Set pointer to Womersley number
948  el_pt->re_st_pt() = re_st_pt;
949  }
950 
951  // Create element that imposes the flux -- this element creates
952  // the single-valued Data object that represents the (unknown)
953  // pressure gradient internally. It also passes the pointer to
954  // this Data object to the Womersley elements contained in the
955  // mesh. The Womersley elements treat this Data as external Data.
958 
959  // Add the ImposeFluxForWomersleyElement to the mesh
961 
962  // Store pressure gradient data that was
963  // created in the ImposeFluxForWomersleyElement
964  Pressure_gradient_data_pt = Flux_el_pt->pressure_gradient_data_pt();
965 
966  // Do equation numbering
967  oomph_info << "Number of equations in WomersleyProblem: "
968  << assign_eqn_numbers() << std::endl;
969 
970  } // end of constructor
971 
972 
973  //======start_of_destructor===============================================
974  /// Destructor for Womersley problem
975  //========================================================================
976  template<class ELEMENT, unsigned DIM>
978  {
979  // Timestepper gets killed in general problem destructor
980 
981  // Mesh gets killed in general problem destructor
982 
983  } // end of destructor
984 
985 
986  //=======start_of_doc_solution============================================
987  /// Doc the solution
988  //========================================================================
989  template<class ELEMENT, unsigned DIM>
991  std::ofstream& trace_file,
992  const double& z_out)
993  {
994  std::ofstream some_file;
995  std::ofstream some_file1;
996  std::ostringstream filename;
997 
998  // Number of plot points
999  unsigned npts;
1000  npts = 5;
1001 
1002 
1003  // Compute total volume flux directly
1004  double flux = 0.0;
1005 
1006  // Output solution
1007  //-----------------
1008  filename << doc_info.directory() << "/womersley_soln" << doc_info.number()
1009  << ".dat";
1010  some_file1.open(filename.str().c_str());
1011 
1012  filename.str("");
1013  filename << doc_info.directory() << "/womersley_soln_3d_"
1014  << doc_info.number() << ".dat";
1015  some_file.open(filename.str().c_str());
1016 
1017  // Assemble contributions from elements and output 3D solution
1018  unsigned nelem = mesh_pt()->nelement();
1019  for (unsigned e = 0; e < nelem; e++)
1020  {
1021  ELEMENT* el_pt = dynamic_cast<ELEMENT*>(mesh_pt()->element_pt(e));
1022  if (el_pt != 0)
1023  {
1024  flux += el_pt->get_volume_flux();
1025  el_pt->output_3d(some_file, npts, z_out);
1026  el_pt->output(some_file1, npts);
1027  }
1028  }
1029  some_file.close();
1030  some_file1.close();
1031 
1032  double prescribed_g = 0.0;
1033  if (Prescribed_pressure_gradient_fct_pt != 0)
1034  {
1035  prescribed_g = Prescribed_pressure_gradient_fct_pt(time_pt()->time());
1036  }
1037 
1038 
1039  double prescribed_q = 0.0;
1040  if (Prescribed_volume_flux_pt != 0)
1041  {
1042  prescribed_q = *Prescribed_volume_flux_pt;
1043  }
1044 
1045  if (trace_file.is_open())
1046  {
1047  trace_file << time_pt()->time() << " "
1048  << pressure_gradient_data_pt()->value(0) << " " << flux << " "
1049  << prescribed_g << " " << prescribed_q << " " << std::endl;
1050  }
1051 
1052  } // end of doc_solution
1053 
1054 
1055  /// /////////////////////////////////////////////////////////////////////
1056  /// /////////////////////////////////////////////////////////////////////
1057  /// /////////////////////////////////////////////////////////////////////
1058 
1059 
1060  //====================================================================
1061  /// Base class for Womersley impedance tube. Allows the computation
1062  /// of the inlet pressure p_in into a uniform tube of specified length
1063  /// that is assumed to convey fully-developed, but time-dependent flow with a
1064  /// presribed instantaneous flow rate, q. Also computes the derivative
1065  /// dp_in/dq required when this is used to determine impedance-type
1066  /// outlet boundary conditions in a Navier-Stokes computation.
1067  //====================================================================
1068  template<class ELEMENT, unsigned DIM>
1071  {
1072  public:
1073  /// Function pointer to fct that prescribes volume flux
1074  /// q=fct(t) -- mainly used for validation purposes.
1075  typedef double (*PrescribedVolumeFluxFctPt)(const double& time);
1076 
1077 
1078  /// Constructor: Specify length of tube and pointer to function that
1079  /// specifies the prescribed volume flux. Outlet pressure is set to zero.
1081  const double& length,
1082  PrescribedVolumeFluxFctPt prescribed_volume_flux_fct_pt)
1083  : Length(length),
1084  P_out(0.0),
1085  Prescribed_volume_flux_fct_pt(prescribed_volume_flux_fct_pt),
1087  {
1088  // Initialise currently prescribed flux
1089  Current_volume_flux_pt = new double(0.0);
1090 
1091  // Auxiliary integral isn't used if flux isn't prescribed
1092  // via outflow through NavierStokesImpedanceTractionElements
1093  Aux_integral_pt = 0;
1094  }
1095 
1096 
1097  /// Constructor: Specify length of tube and the pointer to the
1098  /// mesh of either NavierStokesImpedanceTractionElements or
1099  /// NavierStokesFluxControlElements that are attached
1100  /// to the outflow cross-section of a (higher-dimensional)
1101  /// Navier Stokes mesh and provide the inflow into the ImpedanceTube.
1102  /// Outlet pressure is set to zero.
1103  WomersleyImpedanceTubeBase(const double& length,
1104  Mesh* navier_stokes_outflow_mesh_pt)
1105  : Length(length),
1106  P_out(0.0),
1108  Navier_stokes_outflow_mesh_pt(navier_stokes_outflow_mesh_pt)
1109  {
1110  // Initialise currently prescribed flux
1111  Current_volume_flux_pt = new double(0.0);
1112 
1113  // Initialise flag to record if NavierStokesFluxControlElement
1114  // or NavierStokesImpedanceTractionElement elements are being used
1116 
1117  // Attempt to cast 1st element to NavierStokesImpedanceTractionElementBase
1118  if (dynamic_cast<NavierStokesImpedanceTractionElementBase*>(
1119  navier_stokes_outflow_mesh_pt->element_pt(0)))
1120  {
1122 
1123  // Create map used to store the non-zero entries of the
1124  // auxiliary integral, containing the derivative of the total
1125  // volume flux through the outflow boundary of the (higher-dimensional)
1126  // Navier-Stokes mesh w.r.t. to the discrete (global) (velocity)
1127  // degrees of freedom.
1128  Aux_integral_pt = new std::map<unsigned, double>;
1129 
1130  // Pass pointer to Navier_stokes_outflow_mesh_pt to the Navier
1131  // Stokes traction elements
1132  unsigned nelem = navier_stokes_outflow_mesh_pt->nelement();
1133  for (unsigned e = 0; e < nelem; e++)
1134  {
1137  navier_stokes_outflow_mesh_pt->element_pt(e));
1138 
1139  // Pass the mesh of all NavierStokesImpedanceTractionElements to
1140  // each NavierStokesImpedanceTractionElements in that mesh
1141  // and treat nodes in that mesh that are not part of the element
1142  // itself as external data (since they affect the total volume
1143  // flux and therefore the traction onto the element).
1145  navier_stokes_outflow_mesh_pt);
1146  }
1147  }
1148 #ifdef PARANOID
1149  // Test to make sure the elements in the mesh are valid
1150  else
1151  {
1153  navier_stokes_outflow_mesh_pt->element_pt(0)))
1154  {
1155  std::ostringstream error_message;
1156  error_message
1157  << "WomersleyImpedanceTubeBase requires a Navier-Stokes\n"
1158  << "outflow mesh of elements which inherit from either\n"
1159  << "TemplateFreeNavierStokesFluxControlElementBase or\n"
1160  << "NavierStokesImpedanceTractionElementBase.\n";
1161  throw OomphLibError(error_message.str(),
1162  OOMPH_CURRENT_FUNCTION,
1163  OOMPH_EXCEPTION_LOCATION);
1164  }
1165  }
1166 #endif
1167  }
1168 
1169  /// Access fct to outlet pressure
1170  double& p_out()
1171  {
1172  return P_out;
1173  }
1174 
1175  /// Pure virtual function in which the user of a derived class
1176  /// must create the mesh of WomersleyElements (of the type specified
1177  /// by the class's template argument) and apply the boundary conditions.
1178  /// The Womersley elements use the timestepper specified as the
1179  /// input argument.
1181  TimeStepper* time_stepper_pt) = 0;
1182 
1183 
1184  /// Set up the Womersley tubes so that a subsequent call
1185  /// to get_response(...) computes the inlet pressure for the currently
1186  /// prescribed instantaneous flow rate. Steady version!
1187  void setup()
1188  {
1189  // Dummy parameters
1190  double* re_st_pt = &Zero;
1191  double dt = 0.0;
1192  double q_initial = 0;
1193  TimeStepper* time_stepper_pt = &Mesh::Default_TimeStepper;
1194  setup(re_st_pt, dt, q_initial, time_stepper_pt);
1195  }
1196 
1197 
1198  /// Set up the Womersley tubes so that a subsequent call
1199  /// to get_response(...) computes the inlet pressure for the currently
1200  /// prescribed instantaneous flow rate, assuming that at all previous times
1201  /// the tube conveyed steady, fully-developed flow with flowrate q_initial.
1202  /// dt specifies the timestep for the subsequent time integration.
1203  /// Specify: Womersley number, (constant) timestep, the initial volume
1204  /// flux (from which the subsequent impulsive start is performed) and,
1205  /// optionally the pointer to the timestepper to be used in the Womersley
1206  /// elements (defaults to BDF<2>).
1207  void setup(double* re_st_pt,
1208  const double& dt,
1209  const double& q_initial,
1210  TimeStepper* time_stepper_pt = 0)
1211  {
1212  // Create timestepper if none specified so far
1213  if (time_stepper_pt == 0)
1214  {
1215  time_stepper_pt = new BDF<2>;
1216  }
1217 
1218  // Build mesh and apply bcs
1219  Mesh* my_mesh_pt =
1221 
1222  // Build problem
1224  re_st_pt, Current_volume_flux_pt, time_stepper_pt, my_mesh_pt);
1225 
1226  /// By default, we do want to suppress the output from the
1227  /// Newton solver
1228  Womersley_problem_pt->disable_info_in_newton_solve();
1229  oomph_info << "NOTE: We're suppressing timings etc from \n"
1230  << " Newton solver in WomersleyImpedanceTubeBase. "
1231  << std::endl;
1232 
1233  // Precompute the auxiliary integrals for the Navier-Stokes
1234  // impedance traction elements (if they're used to specify the inflow
1235  if ((!Using_flux_control_elements) &&
1237  {
1239  }
1240 
1241  // Initialise timestep -- also sets the weights for all timesteppers
1242  // in the problem.
1243  Womersley_problem_pt->initialise_dt(dt);
1244 
1245  // Set currently imposed flux
1246  *Current_volume_flux_pt = q_initial;
1247 
1248  // Assign steady initial solution for this flux
1249  Womersley_problem_pt->steady_newton_solve();
1250 
1251  // Allow for resolve
1252  Womersley_problem_pt->linear_solver_pt()->enable_resolve();
1253 
1254  // Re-use Jacobian
1255  Womersley_problem_pt->enable_jacobian_reuse();
1256 
1257  // Shut up
1258  Womersley_problem_pt->linear_solver_pt()->disable_doc_time();
1259 
1260  // Do a dummy solve with time-dependent terms switched on
1261  // to generate (and store) the Jacobian. (We're not using
1262  // a Newton solve because the initial residual may be zero
1263  // in which case the Jacobian would never be computed!)
1264  unsigned n_dof = Womersley_problem_pt->ndof();
1265 
1266  // Local scope to make sure dx goes out of scope
1267  {
1268  DoubleVector dx;
1269  Womersley_problem_pt->linear_solver_pt()->solve(Womersley_problem_pt,
1270  dx);
1271  }
1272 
1273 
1274  // Pre-compute derivative of p_in w.r.t. q
1275 
1276  // Setup vector of derivatives of residuals & unknowns w.r.t. Q
1278  Womersley_problem_pt->communicator_pt(), n_dof, false);
1279  DoubleVector drdq(&dist, 0.0);
1280  DoubleVector dxdq(&dist, 0.0);
1281 
1282  // What's the global equation number of the equation that
1283  // determines the pressure gradient
1284  unsigned g_eqn =
1285  Womersley_problem_pt->pressure_gradient_data_pt()->eqn_number(0);
1286 
1287  // Derivative of volume constraint residual w.r.t. prescribed
1288  // instantaenous volume flux (in ImposeFluxForWomersleyElement)
1289  drdq[g_eqn] = -1.0;
1290 
1291  // Solve for derivatives of unknowns in Womersley problem, w.r.t.
1292  // instantaenous volume flux (in ImposeFluxForWomersleyElement)
1293  Womersley_problem_pt->linear_solver_pt()->resolve(drdq, dxdq);
1294 
1295  // Rate of change of inflow pressure w.r.t to instantaneous
1296  // volume flux
1297  Dp_in_dq = dxdq[g_eqn] * Length;
1298  }
1299 
1300 
1301  /// Access to underlying Womersley problem
1303  {
1304  return Womersley_problem_pt;
1305  }
1306 
1307 
1308  /// Shift history values to allow coputation of next timestep.
1309  /// Note: When used with a full Navier-Stokes problem this function
1310  /// must be called in actions_before_implicit_timestep()
1311  void shift_time_values(const double& dt)
1312  {
1313  // Shift the history values in the Womersley problem
1314  Womersley_problem_pt->shift_time_values();
1315 
1316  // Advance global time and set current value of dt
1317  Womersley_problem_pt->time_pt()->time() += dt;
1318  Womersley_problem_pt->time_pt()->dt() = dt;
1319 
1320  // Find out how many timesteppers there are
1321  unsigned n_time_steppers = Womersley_problem_pt->ntime_stepper();
1322 
1323  // Loop over them all and set the weights
1324  for (unsigned i = 0; i < n_time_steppers; i++)
1325  {
1326  Womersley_problem_pt->time_stepper_pt(i)->set_weights();
1327  }
1328  }
1329 
1330 
1331  /// Compute total current volume flux into the "impedance tube" that
1332  /// provides the flow resistance (flux is either obtained from
1333  /// the function that specifies it externally or by by adding up the flux
1334  /// through all NavierStokesImpedanceTractionElements in
1335  /// the mesh pointed to by the Navier_stokes_outflow_mesh_pt.
1337  {
1339  {
1341  Womersley_problem_pt->time_pt()->time());
1342  }
1343  else
1344  {
1345  unsigned nelem = Navier_stokes_outflow_mesh_pt->nelement();
1346  double flux = 0.0;
1348  {
1349  for (unsigned e = 0; e < nelem; e++)
1350  {
1351  flux +=
1354  ->get_volume_flux();
1355  }
1356  }
1357  else
1358  {
1359  for (unsigned e = 0; e < nelem; e++)
1360  {
1361  flux += dynamic_cast<NavierStokesImpedanceTractionElementBase*>(
1363  ->get_volume_flux();
1364  }
1365  }
1366  return flux;
1367  }
1368  }
1369 
1370 
1371  /// Compute inlet pressure, p_in, required to achieve the currently
1372  /// imposed, instantaneous volume flux q prescribed by
1373  /// total_volume_flux_into_impedance_tube(), and its
1374  /// derivative, dp_in/dq.
1375  void get_response(double& p_in, double& dp_in_dq)
1376  {
1377  // Set currently imposed flux
1379 
1380  // Do a Newton solve to compute the pressure gradient
1381  // required to achieve the imposed instantaneous flow rate
1382  Womersley_problem_pt->newton_solve();
1383 
1384  // Compute inflow pressure based on computed pressure gradient,
1385  // the length of tube, and the outlet pressure
1386  p_in =
1387  -Womersley_problem_pt->pressure_gradient_data_pt()->value(0) * Length +
1388  P_out;
1389 
1390  // Return pre-computed value for dp_in/dq
1391  dp_in_dq = Dp_in_dq;
1392  }
1393 
1394 
1395  protected:
1396  /// Precompute auxiliary integrals required for the computation of
1397  /// the Jacobian in the NavierStokesImpedanceTractionElement. Also pass the
1398  /// pointer to the pre-computed integrals to the elements in the
1399  /// Navier_stokes_outflow_mesh_pt so they can refer to it.
1401  {
1402  // Loop over all elements
1403  unsigned nelem = Navier_stokes_outflow_mesh_pt->nelement();
1404  for (unsigned e = 0; e < nelem; e++)
1405  {
1409 
1410  // Add the element's contribution
1412 
1413  // Tell the elements who's setting their flow resistance
1414  el_pt->set_impedance_tube_pt(this);
1415  }
1416 
1417  // Pass pointer to Aux_integral to the elements so they can
1418  // use it in the computation of the Jacobian
1419  for (unsigned e = 0; e < nelem; e++)
1420  {
1424 
1425  // Pass pointer to elements
1427  }
1428  }
1429 
1430  /// Length of the tube
1431  double Length;
1432 
1433  /// Derivative of inflow pressure w.r.t. instantaenous volume flux
1434  /// (Note: Can be pre-computed)
1435  double Dp_in_dq;
1436 
1437  /// Pointer to double that specifies the currently imposed
1438  /// instantaneous volume flux into the impedance tube. This is
1439  /// used to communicate with the Womersley elements which require
1440  /// access to the flux via a pointer to a double.
1442 
1443  /// Pointer to Womersley problem that determines the
1444  /// pressure gradient along the tube
1446 
1447  /// Outlet pressure
1448  double P_out;
1449 
1450  /// Pointer to function that specifies the prescribed volume flux
1452 
1453  /// Pointer to the mesh of NavierStokesImpedanceTractionElements
1454  /// that are attached to the outflow cross-section of the higher-dimensional
1455  /// Navier Stokes mesh and provide the inflow into the Impedance tube.
1457 
1458  /// Pointer to auxiliary integral, containing
1459  /// the derivative of the total volume flux through the
1460  /// outflow boundary of the (higher-dimensional) Navier-Stokes mesh w.r.t.
1461  /// to the discrete (global) (velocity) degrees of freedom.
1462  std::map<unsigned, double>* Aux_integral_pt;
1463 
1464  private:
1465  // Flag to record if NavierStokesFluxControlElement
1466  // or NavierStokesImpedanceTractionElement elements are being used
1468  };
1469 
1470  /// /////////////////////////////////////////////////////////////////////
1471  /// /////////////////////////////////////////////////////////////////////
1472  /// /////////////////////////////////////////////////////////////////////
1473 
1474  // Inline functions:
1475 
1476 
1477  //======================================================================
1478  /// Define the shape functions and test functions and derivatives
1479  /// w.r.t. global coordinates and return Jacobian of mapping.
1480  ///
1481  /// Galerkin: Test functions = shape functions
1482  //======================================================================
1483  template<unsigned DIM, unsigned NNODE_1D>
1485  const Vector<double>& s,
1486  Shape& psi,
1487  DShape& dpsidx,
1488  Shape& test,
1489  DShape& dtestdx) const
1490  {
1491  // Call the geometrical shape functions and derivatives
1492  double J = this->dshape_eulerian(s, psi, dpsidx);
1493 
1494  // Loop over the test functions and derivatives and set them equal to the
1495  // shape functions
1496  for (unsigned i = 0; i < NNODE_1D; i++)
1497  {
1498  test[i] = psi[i];
1499  for (unsigned j = 0; j < DIM; j++)
1500  {
1501  dtestdx(i, j) = dpsidx(i, j);
1502  }
1503  }
1504 
1505  // Return the jacobian
1506  return J;
1507  }
1508 
1509 
1510  //======================================================================
1511  /// Define the shape functions and test functions and derivatives
1512  /// w.r.t. global coordinates and return Jacobian of mapping.
1513  ///
1514  /// Galerkin: Test functions = shape functions
1515  //======================================================================
1516  template<unsigned DIM, unsigned NNODE_1D>
1519  Shape& psi,
1520  DShape& dpsidx,
1521  Shape& test,
1522  DShape& dtestdx) const
1523  {
1524  // Call the geometrical shape functions and derivatives
1525  double J = this->dshape_eulerian_at_knot(ipt, psi, dpsidx);
1526 
1527  // Set the test functions equal to the shape functions
1528  //(sets internal pointers)
1529  test = psi;
1530  dtestdx = dpsidx;
1531 
1532  // Return the jacobian
1533  return J;
1534  }
1535 
1536 
1537  /// /////////////////////////////////////////////////////////////////////
1538  /// /////////////////////////////////////////////////////////////////////
1539 
1540 
1541  //=======================================================================
1542  /// Face geometry for the QWomersleyElement elements: The spatial
1543  /// dimension of the face elements is one lower than that of the
1544  /// bulk element but they have the same number of points
1545  /// along their 1D edges.
1546  //=======================================================================
1547  template<unsigned DIM, unsigned NNODE_1D>
1548  class FaceGeometry<QWomersleyElement<DIM, NNODE_1D>>
1549  : public virtual QElement<DIM - 1, NNODE_1D>
1550  {
1551  public:
1552  /// Constructor: Call the constructor for the
1553  /// appropriate lower-dimensional QElement
1554  FaceGeometry() : QElement<DIM - 1, NNODE_1D>() {}
1555  };
1556 
1557 
1558  /// /////////////////////////////////////////////////////////////////////
1559  /// /////////////////////////////////////////////////////////////////////
1560  /// /////////////////////////////////////////////////////////////////////
1561 
1562 
1563  //=======================================================================
1564  /// Face geometry for the 1D QWomersleyElement elements: Point elements
1565  //=======================================================================
1566  template<unsigned NNODE_1D>
1567  class FaceGeometry<QWomersleyElement<1, NNODE_1D>>
1568  : public virtual PointElement
1569  {
1570  public:
1571  /// Constructor: Call the constructor for the
1572  /// appropriate lower-dimensional QElement
1574  };
1575 
1576 
1577  /// /////////////////////////////////////////////////////////////////////
1578  /// /////////////////////////////////////////////////////////////////////
1579  /// /////////////////////////////////////////////////////////////////////
1580 
1581 
1582  //====================================================================
1583  /// Template-free base class
1584  //====================================================================
1586  {
1587  public:
1588  /// Static bool to suppress warning
1590  };
1591 
1592 
1593  /// /////////////////////////////////////////////////////////////////////
1594  /// /////////////////////////////////////////////////////////////////////
1595  /// /////////////////////////////////////////////////////////////////////
1596 
1597 
1598  //====================================================================
1599  /// Mesh of Womersley elements whose topology, nodal position etc.
1600  /// matches that of a given mesh of face elements in the outflow
1601  /// cross-section of a full Navier-Stokes mesh.
1602  //====================================================================
1603  template<class WOMERSLEY_ELEMENT>
1604  class WomersleyMesh : public virtual Mesh,
1605  public virtual TemplateFreeWomersleyMeshBase
1606  {
1607  public:
1608  /// Constructor: Pass pointer to mesh of face elements in the
1609  /// outflow cross-section of a full Navier-Stokes mesh, the timestepper to
1610  /// be used for the Womersley elements, the coordinate (in the
1611  /// higher-dimensional Navier-Stokes mesh) that is constant
1612  /// in the outflow cross-section and the velocity component
1613  /// (in terms of the nodal index) that represents the outflow
1614  /// component -- the latter is used to automatically apply
1615  /// the boundary conditions for the Womersley problem.
1616  WomersleyMesh(Mesh* n_st_outflow_mesh_pt,
1617  TimeStepper* time_stepper_pt,
1618  const unsigned& fixed_coordinate,
1619  const unsigned& w_index)
1620  {
1621  /// How many elements and nodes are there in the original mesh?
1622  unsigned nelem = n_st_outflow_mesh_pt->nelement();
1623 
1624  // Navier-Stokes outflow mesh may not have any nodes stored (it usually
1625  // just acts as a container for traction elements) -->
1626  // Count number of distinct Navier-Stokes nodes by adding
1627  // the elements' nodes to a set
1628  std::set<Node*> n_st_nodes;
1629  for (unsigned e = 0; e < nelem; e++)
1630  {
1631  FiniteElement* el_pt = n_st_outflow_mesh_pt->finite_element_pt(e);
1632  unsigned nnod_el = el_pt->nnode();
1633  for (unsigned j = 0; j < nnod_el; j++)
1634  {
1635  n_st_nodes.insert(el_pt->node_pt(j));
1636 
1637  // Careful: It there are hanging nodes this won't work!
1638  if (el_pt->node_pt(j)->is_hanging())
1639  {
1640  throw OomphLibError(
1641  "Cannot build WomersleyMesh from mesh with hanging nodes!",
1642  OOMPH_CURRENT_FUNCTION,
1643  OOMPH_EXCEPTION_LOCATION);
1644  }
1645  }
1646  }
1647 
1648  // Extract size then wipe
1649  unsigned nnode_n_st = n_st_nodes.size();
1650  n_st_nodes.clear();
1651 
1652  // Create enough storage
1653  Node_pt.resize(nnode_n_st);
1654 
1655  /// Create new elements
1656  for (unsigned e = 0; e < nelem; e++)
1657  {
1658  add_element_pt(new WOMERSLEY_ELEMENT);
1659 #ifdef PARANOID
1660  if (finite_element_pt(e)->nnode() !=
1661  n_st_outflow_mesh_pt->finite_element_pt(e)->nnode())
1662  {
1663  throw OomphLibError(
1664  "Number of nodes in existing and new elements don't match",
1665  OOMPH_CURRENT_FUNCTION,
1666  OOMPH_EXCEPTION_LOCATION);
1667  }
1668 #endif
1669  }
1670 
1671  // Map to record which Navier-Stokes nodes have been visited (default
1672  // return is false)
1673  std::map<Node*, bool> n_st_node_done;
1674 
1675  // Map to store the Womersley node that corresponds to a
1676  // Navier Stokes node
1677  std::map<Node*, Node*> equivalent_womersley_node_pt;
1678 
1679  // Initialise count of newly created nodes
1680  unsigned node_count = 0;
1681 
1682 
1683  // This is awkward do diagnose: We're assuming that
1684  // the boundary conditions have been applied for the
1685  // underlying Navier-Stokes problem before calling
1686  // this function (otherwise it's really tricky to
1687  // apply the right boundary conditions here), but it's
1688  // hard to police. Issue definite (but suppressable)
1689  // warning if nothing has been pinned at all.
1690  unsigned n_pinned_nodes = 0;
1691 
1692  // Loop over nst and womersley elements in tandem to sort out
1693  // which new nodes are required
1694  for (unsigned e = 0; e < nelem; e++)
1695  {
1696  FiniteElement* n_st_el_pt = n_st_outflow_mesh_pt->finite_element_pt(e);
1697  unsigned nnod_el = n_st_el_pt->nnode();
1698  for (unsigned j = 0; j < nnod_el; j++)
1699  {
1700  // Has the Navier Stokes node been done yet?
1701  Node* n_st_node_pt = n_st_el_pt->node_pt(j);
1702 
1703  // Hasn't been done: Create new node in Womersley element
1704  if (!n_st_node_done[n_st_node_pt])
1705  {
1706  // Create a new node in the Womersley element
1707  Node* new_node_pt =
1708  finite_element_pt(e)->construct_node(j, time_stepper_pt);
1709 
1710  // Add newly created node
1711  Node_pt[node_count] = new_node_pt;
1712  node_count++;
1713 
1714 
1715  // Set coordinates
1716  unsigned dim = n_st_node_pt->ndim();
1717  unsigned icount = 0;
1718  for (unsigned i = 0; i < dim; i++)
1719  {
1720  if (i != fixed_coordinate)
1721  {
1722  new_node_pt->x(icount) = n_st_node_pt->x(i);
1723  icount++;
1724  }
1725  }
1726 
1727  // Set pin status
1728  if (n_st_node_pt->is_pinned(w_index))
1729  {
1730  new_node_pt->pin(0);
1731  n_pinned_nodes++;
1732  }
1733  else
1734  {
1735  // shouldn't need this, but...
1736  new_node_pt->unpin(0);
1737  }
1738 
1739  // Record which Womersley node the
1740  // Navier Stokes node is associated with
1741  equivalent_womersley_node_pt[n_st_node_pt] = new_node_pt;
1742 
1743  // Now the Navier-Stokes node has been done
1744  n_st_node_done[n_st_node_pt] = true;
1745  }
1746  // The node has already been done -- set pointer to existing
1747  // Womersley node
1748  else
1749  {
1750  finite_element_pt(e)->node_pt(j) =
1751  equivalent_womersley_node_pt[n_st_node_pt];
1752  }
1753  }
1754 
1755  bool passed = true;
1757  if (!passed)
1758  {
1759  // Reverse the nodes
1760  unsigned nnod = finite_element_pt(e)->nnode();
1761  Vector<Node*> orig_nod_pt(nnod);
1762  for (unsigned j = 0; j < nnod; j++)
1763  {
1764  orig_nod_pt[j] = finite_element_pt(e)->node_pt(j);
1765  }
1766  for (unsigned j = 0; j < nnod; j++)
1767  {
1768  finite_element_pt(e)->node_pt(j) = orig_nod_pt[nnod - j - 1];
1769  }
1770  bool passed = true;
1772  if (!passed)
1773  {
1774  throw OomphLibError("Element remains inverted even after reversing "
1775  "the local node numbers",
1776  OOMPH_CURRENT_FUNCTION,
1777  OOMPH_EXCEPTION_LOCATION);
1778  }
1779  }
1780  }
1781 
1782 
1783 #ifdef PARANOID
1785  {
1786  if (n_pinned_nodes == 0)
1787  {
1788  std::stringstream bla;
1789  bla << "Boundary conditions must be applied in Navier-Stokes\n"
1790  << "problem before attaching impedance elements.\n"
1791  << "Note: This warning can be suppressed by setting the\n"
1792  << "global static boolean\n\n"
1793  << " "
1794  "TemplateFreeWomersleyMeshBase::Suppress_warning_about_"
1795  "unpinned_nst_dofs\n\n"
1796  << "to true\n";
1798  bla.str(), OOMPH_CURRENT_FUNCTION, OOMPH_EXCEPTION_LOCATION);
1799  }
1800  }
1801 #endif
1802 
1803 #ifdef PARANOID
1804  if (nnode() != nnode_n_st)
1805  {
1806  throw OomphLibError(
1807  "Number of nodes in the new mesh don't match that in the old one",
1808  OOMPH_CURRENT_FUNCTION,
1809  OOMPH_EXCEPTION_LOCATION);
1810  }
1811 #endif
1812  }
1813  };
1814 
1815 
1816  /// /////////////////////////////////////////////////////////////////////
1817  /// //////////////////////////////////////////////////////////////////////
1818  /// //////////////////////////////////////////////////////////////////////
1819 
1820 
1821  //====================================================================
1822  /// WomersleyImpedanceTube that attaches itself to the outflow
1823  /// of a Navier-Stokes mesh.
1824  //====================================================================
1825  template<class ELEMENT, unsigned DIM>
1827  : public WomersleyImpedanceTubeBase<ELEMENT, DIM>
1828  {
1829  public:
1830  /// Constructor: Pass length and mesh of face elements that
1831  /// are attached to the outflow cross-section of the Navier Stokes mesh
1832  /// to constructor of underlying base class. Also specify
1833  /// the coordinate (in the higher-dimensional
1834  /// Navier-Stokes mesh) that is constant
1835  /// in the outflow cross-section and the velocity component
1836  /// (in terms of the nodal index) that represents the outflow
1837  /// component -- the latter is used to automatically apply
1838  /// the boundary conditions for the Womersley problem.
1839  WomersleyOutflowImpedanceTube(const double& length,
1840  Mesh* navier_stokes_outflow_mesh_pt,
1841  const unsigned& fixed_coordinate,
1842  const unsigned& w_index)
1843  : WomersleyImpedanceTubeBase<ELEMENT, DIM>(length,
1844  navier_stokes_outflow_mesh_pt),
1845  Fixed_coordinate(fixed_coordinate),
1846  W_index(w_index)
1847  {
1848  }
1849 
1850  /// Implement pure virtual fct (defined in the base class
1851  /// WomersleyImpedanceTubeBase) that builds the mesh of Womersley elements
1852  /// (of the type specified by the template argument), using the
1853  /// specified timestepper. Also applies the boundary condition.
1855  {
1856  // Build mesh and automatically apply the same boundary
1857  // conditions as those that are applied to the W_index-th
1858  // value of the nodes in the Navier-Stokes mesh.
1859  WomersleyMesh<ELEMENT>* womersley_mesh_pt =
1861  time_stepper_pt,
1863  W_index);
1864 
1865  return womersley_mesh_pt;
1866  }
1867 
1868  private:
1869  /// The coordinate (in the higher-dimensional Navier-Stokes
1870  /// mesh) that is constant in the outflow cross-section
1872 
1873  /// The velocity component
1874  /// (in terms of the nodal index) that represents the outflow
1875  /// component -- the latter is used to automatically apply
1876  /// the boundary conditions for the Womersley problem.
1877  unsigned W_index;
1878  };
1879 
1880  /// /////////////////////////////////////////////////////////////////////
1881  /// //////////////////////////////////////////////////////////////////////
1882  /// //////////////////////////////////////////////////////////////////////
1883 
1884 
1885  /* //==================================================================== */
1886  /* /// WomersleyImpedanceTube that attaches itself to the outflow */
1887  /* /// of a Navier-Stokes mesh for use with . */
1888  /* //==================================================================== */
1889  /* template<class ELEMENT, unsigned DIM> */
1890  /* class WomersleyOutflowImpedanceTubeForNavierStokesBlockPreconditioner : */
1891  /* public WomersleyImpedanceTubeBaseForNavierStokesBlockPreconditioner */
1892  /* <ELEMENT,DIM> */
1893  /* { */
1894 
1895  /* public: */
1896 
1897  /* /// Constructor: Pass length and mesh of face elements that */
1898  /* /// are attached to the outflow cross-section of the Navier Stokes mesh */
1899  /* /// to constructor of underlying base class. Also specify */
1900  /* /// the coordinate (in the higher-dimensional */
1901  /* /// Navier-Stokes mesh) that is constant */
1902  /* /// in the outflow cross-section and the velocity component */
1903  /* /// (in terms of the nodal index) that represents the outflow */
1904  /* /// component -- the latter is used to automatically apply */
1905  /* /// the boundary conditions for the Womersley problem. */
1906  /* WomersleyOutflowImpedanceTubeForNavierStokesBlockPreconditioner( */
1907  /* const double& length, */
1908  /* Mesh* navier_stokes_outflow_mesh_pt, */
1909  /* const unsigned& fixed_coordinate, */
1910  /* const unsigned& w_index) : */
1911  /* WomersleyImpedanceTubeBaseForNavierStokesBlockPreconditioner<ELEMENT,DIM>
1912  */
1913  /* (length, */
1914  /* navier_stokes_outflow_mesh_pt), */
1915  /* Fixed_coordinate(fixed_coordinate), W_index(w_index) */
1916  /* {} */
1917 
1918  /* /// Implement pure virtual fct (defined in the base class */
1919  /* /// WomersleyImpedanceTubeBase) that builds the mesh of Womersley elements
1920  */
1921  /* /// (of the type specified by the template argument), using the */
1922  /* /// specified timestepper. Also applies the boundary condition. */
1923  /* Mesh* build_mesh_and_apply_boundary_conditions(TimeStepper*
1924  * time_stepper_pt) */
1925  /* { */
1926  /* // Build mesh and automatically apply the same boundary */
1927  /* // conditions as those that are applied to the W_index-th */
1928  /* // value of the nodes in the Navier-Stokes mesh. */
1929  /* WomersleyMesh<ELEMENT>* womersley_mesh_pt= // CHANGED TO USE
1930  * ELEMENT */
1931  /* new WomersleyMesh<ELEMENT>( */
1932  /* this->Navier_stokes_outflow_mesh_pt, */
1933  /* time_stepper_pt, */
1934  /* Fixed_coordinate, */
1935  /* W_index); */
1936 
1937  /* return womersley_mesh_pt; */
1938 
1939  /* } */
1940 
1941  /* private: */
1942 
1943  /* /// The coordinate (in the higher-dimensional Navier-Stokes */
1944  /* /// mesh) that is constant in the outflow cross-section */
1945  /* unsigned Fixed_coordinate; */
1946 
1947  /* /// The velocity component */
1948  /* /// (in terms of the nodal index) that represents the outflow */
1949  /* /// component -- the latter is used to automatically apply */
1950  /* /// the boundary conditions for the Womersley problem. */
1951  /* unsigned W_index; */
1952 
1953 
1954  /* }; */
1955 
1956 
1957  /// //////////////////////////////////////////////////////////////////////
1958  /// //////////////////////////////////////////////////////////////////////
1959  /// //////////////////////////////////////////////////////////////////////
1960 
1961 
1962  //======================================================================
1963  /// A class for elements that allow the imposition of an impedance type
1964  /// traction boundary condition to the Navier--Stokes equations
1965  /// The geometrical information can be read from the FaceGeometery<ELEMENT>
1966  /// class and and thus, we can be generic enough without the need to have
1967  /// a separate equations class. Template arguments specify the
1968  /// type of the bulk Navier Stokes elements that the elements are
1969  /// attached to, and the type of the Womersley element used
1970  /// to compute the flow resistance in the downstream "impedance tube".
1971  //======================================================================
1972  template<class BULK_NAVIER_STOKES_ELEMENT,
1973  class WOMERSLEY_ELEMENT,
1974  unsigned DIM>
1976  : public virtual FaceGeometry<BULK_NAVIER_STOKES_ELEMENT>,
1977  public virtual FaceElement,
1979  {
1980  private:
1981  /// Pointer to auxiliary integral, containing
1982  /// the derivative of the total volume flux through the
1983  /// outflow boundary of the (higher-dimensional) Navier-Stokes mesh w.r.t.
1984  /// to the discrete (global) (velocity) degrees of freedom.
1985  std::map<unsigned, double>* Aux_integral_pt;
1986 
1987  /// Pointer to ImpedanceTubeProblem that computes the flow resistance
1989 
1990 
1991  protected:
1992  /// Access function that returns the local equation numbers
1993  /// for velocity components.
1994  /// u_local_eqn(n,i) = local equation number or < 0 if pinned.
1995  /// The default is to asssume that n is the local node number
1996  /// and the i-th velocity component is the i-th unknown stored at the node.
1997  virtual inline int u_local_eqn(const unsigned& n, const unsigned& i)
1998  {
1999  return nodal_local_eqn(n, i);
2000  }
2001 
2002  /// Function to compute the shape and test functions and to return
2003  /// the Jacobian of mapping
2004  inline double shape_and_test_at_knot(const unsigned& ipt,
2005  Shape& psi,
2006  Shape& test) const
2007  {
2008  // Find number of nodes
2009  unsigned n_node = nnode();
2010 
2011  // Calculate the shape functions
2012  shape_at_knot(ipt, psi);
2013 
2014  // Set the test functions to be the same as the shape functions
2015  for (unsigned i = 0; i < n_node; i++)
2016  {
2017  test[i] = psi[i];
2018  }
2019 
2020  // Return the value of the jacobian
2021  return J_eulerian_at_knot(ipt);
2022  }
2023 
2024 
2025  /// This function returns the residuals for the
2026  /// traction function.
2027  /// flag=1(or 0): do (or don't) compute the Jacobian as well.
2029  Vector<double>& residuals, DenseMatrix<double>& jacobian, unsigned flag);
2030 
2031 
2032  public:
2033  /// Constructor, which takes a "bulk" element and the value of the index
2034  /// and its limit
2036  const int& face_index)
2037  : FaceGeometry<BULK_NAVIER_STOKES_ELEMENT>(), FaceElement()
2038  {
2039  // Attach the geometrical information to the element. N.B. This function
2040  // also assigns nbulk_value from the required_nvalue of the bulk element
2041  element_pt->build_face_element(face_index, this);
2042 
2043  // Initialise pointer to mesh containing the
2044  // NavierStokesImpedanceTractionElements
2045  // that contribute to the volume flux into the "downstream tube" that
2046  // provides the impedance
2048 
2049  // Initialise pointer to impedance tube
2050  Impedance_tube_pt = 0;
2051 
2052  // Initialise pointer to auxiliary integral
2053  Aux_integral_pt = 0;
2054 
2055  // Set the dimension from the dimension of the first node
2056  // Dim = this->node_pt(0)->ndim();
2057 
2058 #ifdef PARANOID
2059  {
2060  // Check that the element is not a refineable 3d element
2061  BULK_NAVIER_STOKES_ELEMENT* elem_pt =
2062  dynamic_cast<BULK_NAVIER_STOKES_ELEMENT*>(element_pt);
2063  // If it's three-d
2064  if (elem_pt->dim() == 3)
2065  {
2066  // Is it refineable
2067  RefineableElement* ref_el_pt =
2068  dynamic_cast<RefineableElement*>(elem_pt);
2069  if (ref_el_pt != 0)
2070  {
2071  if (this->has_hanging_nodes())
2072  {
2073  throw OomphLibError("This flux element will not work correctly "
2074  "if nodes are hanging\n",
2075  OOMPH_CURRENT_FUNCTION,
2076  OOMPH_EXCEPTION_LOCATION);
2077  }
2078  }
2079  }
2080  }
2081 #endif
2082  }
2083 
2084 
2085  /// Destructor should not delete anything
2087 
2088  /// Access to mesh containing all
2089  /// NavierStokesImpedanceTractionElements that contribute to the volume flux
2090  /// into the "downstream tube" that provides the impedance
2092  {
2094  }
2095 
2096  /// Get integral of volume flux through element
2098  {
2099  // Initialise
2100  double volume_flux_integral = 0.0;
2101 
2102  // Vector of local coordinates in face element
2103  Vector<double> s(DIM);
2104 
2105  // Vector for global Eulerian coordinates
2106  Vector<double> x(DIM + 1);
2107 
2108  // Vector for local coordinates in bulk element
2109  Vector<double> s_bulk(DIM + 1);
2110 
2111  // Set the value of n_intpt
2112  unsigned n_intpt = integral_pt()->nweight();
2113 
2114  // Get pointer to assocated bulk element
2115  BULK_NAVIER_STOKES_ELEMENT* bulk_el_pt =
2116  dynamic_cast<BULK_NAVIER_STOKES_ELEMENT*>(bulk_element_pt());
2117 
2118  // Loop over the integration points
2119  for (unsigned ipt = 0; ipt < n_intpt; ipt++)
2120  {
2121  // Assign values of s in FaceElement and local coordinates in bulk
2122  // element
2123  for (unsigned i = 0; i < DIM; i++)
2124  {
2125  s[i] = integral_pt()->knot(ipt, i);
2126  }
2127 
2128  // Get the bulk coordinates
2129  this->get_local_coordinate_in_bulk(s, s_bulk);
2130 
2131  // Get the integral weight
2132  double w = integral_pt()->weight(ipt);
2133 
2134  // Get jacobian of mapping
2135  double J = J_eulerian(s);
2136 
2137  // Premultiply the weights and the Jacobian
2138  double W = w * J;
2139 
2140 
2141 #ifdef PARANOID
2142 
2143  // Get x position as Vector
2144  interpolated_x(s, x);
2145 
2146  // Get x position as Vector from bulk element
2147  Vector<double> x_bulk(DIM + 1);
2148  bulk_el_pt->interpolated_x(s_bulk, x_bulk);
2149 
2150  double max_legal_error = 1.0e-12;
2151  double error = 0.0;
2152  for (unsigned i = 0; i < DIM + 1; i++)
2153  {
2154  error += std::fabs(x[i] - x_bulk[i]);
2155  }
2156  if (error > max_legal_error)
2157  {
2158  std::ostringstream error_stream;
2159  error_stream << "difference in Eulerian posn from bulk and face: "
2160  << error << " exceeds threshold " << max_legal_error
2161  << std::endl;
2162  throw OomphLibError(error_stream.str(),
2163  OOMPH_CURRENT_FUNCTION,
2164  OOMPH_EXCEPTION_LOCATION);
2165  }
2166 #endif
2167 
2168  // Outer unit normal
2169  Vector<double> normal(DIM + 1);
2170  outer_unit_normal(s, normal);
2171 
2172  // Get velocity from bulk element
2173  Vector<double> veloc(DIM + 1);
2174  bulk_el_pt->interpolated_u_nst(s_bulk, veloc);
2175 
2176  // Volume flux
2177  double volume_flux = 0.0;
2178  for (unsigned i = 0; i < DIM + 1; i++)
2179  {
2180  volume_flux += normal[i] * veloc[i];
2181  }
2182 
2183  // Add to integral
2184  volume_flux_integral += volume_flux * W;
2185  }
2186 
2187  return volume_flux_integral;
2188  }
2189 
2190 
2191  /// NavierStokesImpedanceTractionElements that contribute
2192  /// to the volume flux into the downstream "impedance tube"
2193  /// to the element and classify all nodes in that mesh
2194  /// as external Data for this element (unless the nodes
2195  /// are also the element's own nodes, of course).
2198  {
2199  // Store pointer to mesh of NavierStokesImpedanceTractionElement
2200  // that contribute to the volume flux into the "impedance tube" that
2201  // provides the flow resistance
2203 
2204  // Create a set the contains all nodal Data in the flux mesh
2205  std::set<Data*> external_data_set;
2206  unsigned nelem = Navier_stokes_outflow_mesh_pt->nelement();
2207  for (unsigned e = 0; e < nelem; e++)
2208  {
2209  FiniteElement* el_pt =
2211  unsigned nnod = el_pt->nnode();
2212  for (unsigned j = 0; j < nnod; j++)
2213  {
2214  external_data_set.insert(el_pt->node_pt(j));
2215  }
2216  }
2217 
2218  // Remove the element's own nodes
2219  unsigned nnod = nnode();
2220  for (unsigned j = 0; j < nnod; j++)
2221  {
2222  external_data_set.erase(node_pt(j));
2223  }
2224 
2225  // Copy across
2226  for (std::set<Data*>::iterator it = external_data_set.begin();
2227  it != external_data_set.end();
2228  it++)
2229  {
2230  add_external_data(*it);
2231  }
2232  }
2233 
2234 
2235  /// Set pointer to the precomputed auxiliary integral that contains
2236  /// the derivative of the total volume flux through the
2237  /// outflow boundary of the (higher-dimensional) Navier-Stokes mesh w.r.t.
2238  /// to the discrete (global) (velocity) degrees of freedom.
2239  void set_aux_integral_pt(std::map<unsigned, double>* aux_integral_pt)
2240  {
2241  Aux_integral_pt = aux_integral_pt;
2242  }
2243 
2244 
2245  /// Compute total volume flux into the "downstream tube" that
2246  /// provides the impedance (computed by adding up the flux
2247  /// through all NavierStokesImpedanceTractionElements in
2248  /// the mesh specified by volume_flux_mesh_pt().
2250  {
2251 #ifdef PARANOID
2253  {
2254  throw OomphLibError(
2255  "Navier_stokes_outflow_mesh_pt==0 -- set it with \n "
2256  "set_external_data_from_navier_stokes_outflow_mesh() before calling "
2257  "this function!\n",
2258  OOMPH_CURRENT_FUNCTION,
2259  OOMPH_EXCEPTION_LOCATION);
2260  }
2261 #endif
2262 
2263 
2264  double total_flux = 0.0;
2265  unsigned nelem = Navier_stokes_outflow_mesh_pt->nelement();
2266  for (unsigned e = 0; e < nelem; e++)
2267  {
2268  NavierStokesImpedanceTractionElement<BULK_NAVIER_STOKES_ELEMENT,
2269  WOMERSLEY_ELEMENT,
2270  DIM>* el_pt =
2271  dynamic_cast<
2272  NavierStokesImpedanceTractionElement<BULK_NAVIER_STOKES_ELEMENT,
2273  WOMERSLEY_ELEMENT,
2274  DIM>*>(
2276  total_flux += el_pt->get_volume_flux();
2277  }
2278  return total_flux;
2279  }
2280 
2281 
2282  /// Set pointer to "impedance tube" that provides the flow
2283  /// resistance
2285  TemplateFreeWomersleyImpedanceTubeBase* impedance_tube_pt)
2286  {
2289  impedance_tube_pt);
2290  }
2291 
2292 
2293  /// Add the element's contribution to the auxiliary integral
2294  /// that contains the derivative of the total volume flux through the
2295  /// outflow boundary of the (higher-dimensional) Navier-Stokes mesh w.r.t.
2296  /// to the discrete (global) (velocity) degrees of freedom.
2298  std::map<unsigned, double>* aux_integral_pt)
2299  {
2300  // Spatial dimension of element
2301  // unsigned ndim=dim();
2302 
2303  // Vector of local coordinates in face element
2304  Vector<double> s(DIM);
2305 
2306  // Create storage for shape functions
2307  unsigned nnod = nnode();
2308  Shape psi(nnod);
2309 
2310  // Set the value of n_intpt
2311  unsigned n_intpt = integral_pt()->nweight();
2312 
2313  // Loop over the integration points
2314  for (unsigned ipt = 0; ipt < n_intpt; ipt++)
2315  {
2316  // Assign values of s in FaceElement and local coordinates in bulk
2317  // element
2318  for (unsigned i = 0; i < DIM; i++)
2319  {
2320  s[i] = integral_pt()->knot(ipt, i);
2321  }
2322 
2323  // Get the integral weight
2324  double w = integral_pt()->weight(ipt);
2325 
2326  // Get jacobian of mapping
2327  double J = J_eulerian(s);
2328 
2329  // Get shape functions
2330  shape(s, psi);
2331 
2332  // Premultiply the weights and the Jacobian
2333  double W = w * J;
2334 
2335  // Outer unit normal
2336  Vector<double> normal(DIM + 1);
2337  outer_unit_normal(s, normal);
2338 
2339  // Loop over nodes
2340  for (unsigned j = 0; j < nnod; j++)
2341  {
2342  // Get pointer to Node
2343  Node* nod_pt = node_pt(j);
2344 
2345  // Loop over directions
2346  for (unsigned i = 0; i < (DIM + 1); i++)
2347  {
2348  // Get global equation number
2349  int i_global = nod_pt->eqn_number(i);
2350 
2351  // Real dof or bc?
2352  if (i_global >= 0)
2353  {
2354  (*aux_integral_pt)[i_global] += psi[j] * normal[i] * W;
2355  }
2356  }
2357  }
2358  }
2359  }
2360 
2361 
2362  /// Fill in the element's contribution to the element's residual vector
2364  {
2365  // Call the generic residuals function with flag set to 0
2366  // using a dummy matrix argument
2368  residuals, GeneralisedElement::Dummy_matrix, 0);
2369  }
2370 
2371 
2372  /// Fill in the element's contribution to the element's residual
2373  /// vector and Jacobian matrix
2375  DenseMatrix<double>& jacobian)
2376  {
2377  // Call the generic routine with the flag set to 1
2379  residuals, jacobian, 1);
2380  }
2381 
2382 
2383  /// Specify the value of nodal zeta from the face geometry
2384  /// The "global" intrinsic coordinate of the element when
2385  /// viewed as part of a geometric object should be given by
2386  /// the FaceElement representation, by default (needed to break
2387  /// indeterminacy if bulk element is SolidElement)
2388  double zeta_nodal(const unsigned& n,
2389  const unsigned& k,
2390  const unsigned& i) const
2391  {
2392  return FaceElement::zeta_nodal(n, k, i);
2393  }
2394 
2395 
2396  /// Overload the output function
2397  void output(std::ostream& outfile)
2398  {
2399  FiniteElement::output(outfile);
2400  }
2401 
2402  /// Output function: x,y,[z],u,v,[w],p in tecplot format
2403  void output(std::ostream& outfile, const unsigned& nplot)
2404  {
2405  FiniteElement::output(outfile, nplot);
2406  }
2407  };
2408 
2409 
2410  /// ////////////////////////////////////////////////////////////////////
2411  /// ////////////////////////////////////////////////////////////////////
2412  /// ////////////////////////////////////////////////////////////////////
2413 
2414 
2415  //============================================================================
2416  /// Function that returns the residuals for the imposed traction Navier_Stokes
2417  /// equations
2418  //============================================================================
2419  template<class BULK_NAVIER_STOKES_ELEMENT,
2420  class WOMERSLEY_ELEMENT,
2421  unsigned DIM>
2422  void NavierStokesImpedanceTractionElement<BULK_NAVIER_STOKES_ELEMENT,
2423  WOMERSLEY_ELEMENT,
2424  DIM>::
2425  fill_in_generic_residual_contribution_fluid_traction(
2426  Vector<double>& residuals, DenseMatrix<double>& jacobian, unsigned flag)
2427  {
2428  // Find out how many nodes there are
2429  unsigned n_node = nnode();
2430 
2431  // Set up memory for the shape and test functions
2432  Shape psif(n_node), testf(n_node);
2433 
2434  // Set the value of n_intpt
2435  unsigned n_intpt = integral_pt()->nweight();
2436 
2437  // Integers to store local equation numbers
2438  int local_eqn = 0;
2439  int local_unknown = 0;
2440 
2441  // Loop over the integration points
2442  for (unsigned ipt = 0; ipt < n_intpt; ipt++)
2443  {
2444  // Get the integral weight
2445  double w = integral_pt()->weight(ipt);
2446 
2447  // Find the shape and test functions and return the Jacobian
2448  // of the mapping
2449  double J = shape_and_test_at_knot(ipt, psif, testf);
2450 
2451  // Premultiply the weights and the Jacobian
2452  double W = w * J;
2453 
2454  // Traction vector
2455  Vector<double> traction(DIM + 1);
2456 
2457  // Initialise response
2458  double p_in = 0.0;
2459  double dp_in_dq = 0.0;
2460 
2461  // Traction= outer unit normal x pressure at upstream end of
2462  // impedance tube
2463  if (Navier_stokes_outflow_mesh_pt != 0)
2464  {
2465  // Get response of the impedance tube:
2466  Impedance_tube_pt->get_response(p_in, dp_in_dq);
2467  }
2468 
2469  // Get outer unit normal at current integration point
2470  Vector<double> unit_normal(DIM + 1);
2471  outer_unit_normal(ipt, unit_normal);
2472 
2473  // Loop over the directions
2474  for (unsigned i = 0; i < DIM + 1; i++)
2475  {
2476  traction[i] = -unit_normal[i] * p_in;
2477  }
2478 
2479 
2480  // Loop over the test functions
2481  for (unsigned l = 0; l < n_node; l++)
2482  {
2483  // Loop over the velocity components
2484  for (unsigned i = 0; i < DIM + 1; i++)
2485  {
2486  local_eqn = u_local_eqn(l, i);
2487  /*IF it's not a boundary condition*/
2488  if (local_eqn >= 0)
2489  {
2490  // Add the user-defined traction terms
2491  residuals[local_eqn] += traction[i] * testf[l] * W;
2492 
2493  // Compute the Jacobian too?
2494  if (flag && (Navier_stokes_outflow_mesh_pt != 0))
2495  {
2496  // Loop over the nodes
2497  for (unsigned j = 0; j < n_node; j++)
2498  {
2499  // Get pointer to Node
2500  Node* nod_pt = node_pt(j);
2501 
2502  // Loop over the velocity components
2503  for (unsigned ii = 0; ii < DIM + 1; ii++)
2504  {
2505  local_unknown = u_local_eqn(j, ii);
2506 
2507  /*IF it's not a boundary condition*/
2508  if (local_unknown >= 0)
2509  {
2510  // Get corresponding global unknown number
2511  unsigned global_unknown = nod_pt->eqn_number(ii);
2512 
2513  // Add contribution
2514  jacobian(local_eqn, local_unknown) -=
2515  (*Aux_integral_pt)[global_unknown] * psif[l] *
2516  unit_normal[i] * dp_in_dq * W;
2517  }
2518  }
2519  }
2520 
2521 
2522  // Loop over external dofs for unknowns
2523  unsigned n_ext = nexternal_data();
2524  for (unsigned j = 0; j < n_ext; j++)
2525  {
2526  // Get pointer to external Data (=other nodes)
2527  Data* ext_data_pt = external_data_pt(j);
2528 
2529  // Loop over directions for equation
2530  for (unsigned ii = 0; ii < DIM + 1; ii++)
2531  {
2532  // Get local unknown number
2533  int local_unknown = external_local_eqn(j, ii);
2534 
2535  // Real dof or bc?
2536  if (local_unknown >= 0)
2537  {
2538  // Get corresponding global unknown number
2539  unsigned global_unknown = ext_data_pt->eqn_number(ii);
2540 
2541  // Add contribution
2542  jacobian(local_eqn, local_unknown) -=
2543  (*Aux_integral_pt)[global_unknown] * psif[l] *
2544  unit_normal[i] * dp_in_dq * W;
2545  }
2546  }
2547  }
2548  } // end of computation of Jacobian terms
2549  }
2550  } // End of loop over dimension
2551  } // End of loop over shape functions
2552  }
2553  }
2554 
2555  /// ///////////////////////////////////////////////////////////////////////
2556  /// ///////////////////////////////////////////////////////////////////////
2557  /// ///////////////////////////////////////////////////////////////////////
2558 
2559 
2560  //======================================================================
2561  /// An element to impose a fluid pressure obtained from a Womersley
2562  /// impedance tube at a boundary. This element is used in conjunction with a
2563  /// NetFluxControlElementForWomersleyPressureControl element, and is
2564  /// passed to the NetFluxControlElementForWomersleyPressureControl element's
2565  /// constructor. The volume flux across the boundary is then an
2566  /// unknown of the problem. The constructor argument for this element
2567  /// is a suitable Womersley impedance tube to give the pressure via
2568  /// its get_response(...) function.
2569  ///
2570  /// Note: the NavierStokesWomersleyPressureControlElement element calculates
2571  /// Jacobian entries BOTH for itself AND for the
2572  /// NetFluxControlElementForWomersleyPressureControl with respect to
2573  /// the unknowns in this (NavierStokesWomersleyPressureControlElement)
2574  /// element.
2575  //======================================================================
2577  : public virtual GeneralisedElement
2578  {
2579  public:
2580  /// Constructor takes a pointer to a suitable Womersley
2581  /// impedance tube which defines the pressure via get_response(...)
2583  TemplateFreeWomersleyImpedanceTubeBase* womersley_tube_pt)
2584  : Womersley_tube_pt(womersley_tube_pt)
2585  {
2586  // Create the new Data which contains the volume flux.
2587  Volume_flux_data_pt = new Data(1);
2588 
2589  // Add new Data to internal data
2591  }
2592 
2593  /// Destructor should not delete anything
2595 
2596  /// This function returns the residuals
2598  {
2599  // Call the generic residuals function using a dummy matrix argument
2601  residuals, GeneralisedElement::Dummy_matrix, 0);
2602  }
2603 
2604  /// This function returns the residuals and the Jacobian,
2605  /// plus the Jacobian contribution for the
2606  /// NetFluxControlElementForWomersleyPressureControl
2607  /// with respect to unknowns in this element
2609  DenseMatrix<double>& jacobian)
2610  {
2611  // Call the generic routine
2613  residuals, jacobian, 1);
2614  }
2615 
2616  /// Function to return a pointer to the Data object whose
2617  /// single value is the flux degree of freedom
2619  {
2620  return Volume_flux_data_pt;
2621  }
2622 
2623  /// Function to add to external data the Data object whose
2624  /// single value is the pressure applied at the boundary
2625  void add_pressure_data(Data* pressure_data_pt)
2626  {
2627  Pressure_data_id = add_external_data(pressure_data_pt);
2628  }
2629 
2630  /// The number of "DOF types" that degrees of freedom in this element
2631  /// are sub-divided into - set to 1
2632  unsigned ndof_types() const
2633  {
2634  return 1;
2635  }
2636 
2637  /// Create a list of pairs for all unknowns in this element,
2638  /// so that the first entry in each pair contains the global equation
2639  /// number of the unknown, while the second one contains the number
2640  /// of the "DOF type" that this unknown is associated with.
2641  /// (Function can obviously only be called if the equation numbering
2642  /// scheme has been set up.)
2644  std::list<std::pair<unsigned long, unsigned>>& dof_lookup_list) const
2645  {
2646  // pair to store dof lookup prior to being added to list
2647  std::pair<unsigned, unsigned> dof_lookup;
2648 
2649  dof_lookup.first = this->eqn_number(0);
2650  dof_lookup.second = 0;
2651 
2652  // add to list
2653  dof_lookup_list.push_front(dof_lookup);
2654  }
2655 
2656  protected:
2657  /// This function returns the residuals.
2658  /// flag=1(or 0): do (or don't) compute the Jacobian as well.
2659  /// Note that this function also calculates the Jacobian contribution
2660  /// for the NetFluxControlElementForWomersleyPressureControl
2662  Vector<double>& residuals,
2663  DenseMatrix<double>& jacobian,
2664  const unsigned& flag)
2665  {
2666  // Get Womersley pressure and derivative with respect to the flux
2667  double womersley_pressure = 0.0;
2668  double d_womersley_pressure_d_q = 0.0;
2669 
2670  // Get response of impedance tube
2671  Womersley_tube_pt->get_response(womersley_pressure,
2672  d_womersley_pressure_d_q);
2673 
2674  // Get the current pressure
2675  double pressure = external_data_pt(Pressure_data_id)->value(0);
2676 
2677  // Get equation number of the volume flux unknown
2678  int local_eq = internal_local_eqn(Volume_flux_data_id, 0);
2679 
2680  // Calculate residuals
2681  residuals[local_eq] += pressure - womersley_pressure;
2682 
2683  // Calculate Jacobian contributions if required
2684  if (flag)
2685  {
2686  // Get equation number of the pressure data unknown
2687  int local_unknown = external_local_eqn(Pressure_data_id, 0);
2688 
2689  // Add the Jacobian contriburions
2690  jacobian(local_eq, local_eq) -= d_womersley_pressure_d_q;
2691  jacobian(local_eq, local_unknown) += 1.0;
2692  jacobian(local_unknown, local_eq) += 1.0;
2693  }
2694  }
2695 
2696  private:
2697  /// Data object whose single value is the volume flux
2698  /// applied by the elements in the Flux_control_mesh_pt
2700 
2701  /// Pointer to the Womersley impedance tube
2703 
2704  /// Id of external Data object whose single value is the pressure
2706 
2707  /// Id of internal Data object whose single value is the volume
2708  /// flux
2710  };
2711 
2712 
2713  /// ///////////////////////////////////////////////////////////////////////
2714  /// ///////////////////////////////////////////////////////////////////////
2715  /// ///////////////////////////////////////////////////////////////////////
2716 
2717 
2718  //======================================================================
2719  /// A class for an element to control net fluid flux across a boundary
2720  /// by imposing an applied pressure to the Navier-Stokes equations.
2721  /// This element is used with a mesh of NavierStokesFluxControlElements
2722  /// attached to the boundary. The flux imposed by this element is given
2723  /// by a NavierStokesWomersleyPressureControlElement.
2724  /// Note: fill_in_contribution_to_jacobian() does not calculate any
2725  /// Jacobian contributions for this element as they are calculated by
2726  /// NavierStokesFluxControlElement::fill_in_contribution_to_jacobian(...)
2727  /// and
2728  /// NavierStokesWomersleyPressureControlElement::
2729  /// fill_in_contribution_to_jacobian(...)
2730  //======================================================================
2732  : public virtual NetFluxControlElement
2733  {
2734  public:
2735  /// Constructor takes the mesh of
2736  /// TemplateFreeNavierStokesFluxControlElementBase which impose
2737  /// the pressure to controls the flux, plus a pointer to
2738  /// the PressureControlElement whoes internal data is the prescribed
2739  /// flux.
2741  Mesh* flux_control_mesh_pt,
2742  NavierStokesWomersleyPressureControlElement* pressure_control_element_pt)
2744  flux_control_mesh_pt,
2745  pressure_control_element_pt->volume_flux_data_pt()->value_pt(0))
2746  {
2747  // There's no need to add external data to this element since
2748  // this element's Jacobian contributions are calculated by the
2749  // NavierStokesFluxControlElements and the P
2750  // NavierStokesWomersleyPressureControlElement
2751 
2752  // Add this elements Data to the external data of the
2753  // PressureControlElement
2754  pressure_control_element_pt->add_pressure_data(pressure_data_pt());
2755  }
2756 
2757  /// Empty Destructor - Data gets deleted automatically
2759 
2760  /// Broken copy constructor
2762  const NetFluxControlElementForWomersleyPressureControl& dummy) = delete;
2763 
2764 
2765  /// Broken assignment operator
2767  delete;
2768 
2769 
2770  /// The number of "DOF types" that degrees of freedom in this element
2771  /// are sub-divided into - set to 1
2772  unsigned ndof_types() const
2773  {
2774  return 1;
2775  }
2776 
2777  /// Create a list of pairs for all unknowns in this element,
2778  /// so that the first entry in each pair contains the global equation
2779  /// number of the unknown, while the second one contains the number
2780  /// of the "DOF type" that this unknown is associated with.
2781  /// (Function can obviously only be called if the equation numbering
2782  /// scheme has been set up.)
2784  std::list<std::pair<unsigned long, unsigned>>& dof_lookup_list) const
2785  {
2786  // pair to store dof lookup prior to being added to list
2787  std::pair<unsigned, unsigned> dof_lookup;
2788 
2789  dof_lookup.first = this->eqn_number(0);
2790  dof_lookup.second = 0;
2791 
2792  // add to list
2793  dof_lookup_list.push_front(dof_lookup);
2794  }
2795  };
2796 
2797  /// //////////////////////////////////////////////////////////////////
2798  /// //////////////////////////////////////////////////////////////////
2799  /// //////////////////////////////////////////////////////////////////
2800 
2801 } // namespace oomph
2802 
2803 #endif
e
Definition: cfortran.h:571
static char t char * s
Definition: cfortran.h:568
cstr elem_len * i
Definition: cfortran.h:603
char t
Definition: cfortran.h:568
////////////////////////////////////////////////////////////////////// //////////////////////////////...
A Class for the derivatives of shape functions The class design is essentially the same as Shape,...
Definition: shape.h:278
A class that represents a collection of data; each Data object may contain many different individual ...
Definition: nodes.h:86
long & eqn_number(const unsigned &i)
Return the equation number of the i-th stored variable.
Definition: nodes.h:367
void pin(const unsigned &i)
Pin the i-th stored variable.
Definition: nodes.h:385
void unpin(const unsigned &i)
Unpin the i-th stored variable.
Definition: nodes.h:391
TimeStepper *& time_stepper_pt()
Return the pointer to the timestepper.
Definition: nodes.h:238
void set_value(const unsigned &i, const double &value_)
Set the i-th stored data value to specified value. The only reason that we require an explicit set fu...
Definition: nodes.h:271
unsigned nvalue() const
Return number of values stored in data object (incl pinned ones).
Definition: nodes.h:483
double value(const unsigned &i) const
Return i-th stored value. This function is not virtual so that it can be inlined. This means that if ...
Definition: nodes.h:293
bool is_pinned(const unsigned &i) const
Test whether the i-th variable is pinned (1: true; 0: false).
Definition: nodes.h:417
Information for documentation of results: Directory and file number to enable output in the form RESL...
std::string directory() const
Output directory.
unsigned & number()
Number used (e.g.) for labeling output files.
A vector in the mathematical sense, initially developed for linear algebra type applications....
Definition: double_vector.h:58
FaceElements are elements that coincide with the faces of higher-dimensional "bulk" elements....
Definition: elements.h:4342
int & face_index()
Index of the face (a number that uniquely identifies the face in the element)
Definition: elements.h:4630
void outer_unit_normal(const Vector< double > &s, Vector< double > &unit_normal) const
Compute outer unit normal at the specified local coordinate.
Definition: elements.cc:6036
double zeta_nodal(const unsigned &n, const unsigned &k, const unsigned &i) const
In a FaceElement, the "global" intrinsic coordinate of the element along the boundary,...
Definition: elements.h:4501
FiniteElement *& bulk_element_pt()
Pointer to higher-dimensional "bulk" element.
Definition: elements.h:4739
double interpolated_x(const Vector< double > &s, const unsigned &i) const
Return FE interpolated coordinate x[i] at local coordinate s. Overloaded to get information from bulk...
Definition: elements.h:4532
double J_eulerian(const Vector< double > &s) const
Return the Jacobian of mapping from local to global coordinates at local position s....
Definition: elements.cc:5272
double J_eulerian_at_knot(const unsigned &ipt) const
Return the Jacobian of the mapping from local to global coordinates at the ipt-th integration point O...
Definition: elements.cc:5358
void get_local_coordinate_in_bulk(const Vector< double > &s, Vector< double > &s_bulk) const
Calculate the vector of local coordinate in the bulk element given the local coordinates in this Face...
Definition: elements.cc:6414
FaceGeometry()
Constructor: Call the constructor for the appropriate lower-dimensional QElement.
FaceGeometry()
Constructor: Call the constructor for the appropriate lower-dimensional QElement.
//////////////////////////////////////////////////////////////////// ////////////////////////////////...
Definition: elements.h:5002
A general Finite Element class.
Definition: elements.h:1317
virtual Node * construct_node(const unsigned &n)
Construct the local node n and return a pointer to the newly created node object.
Definition: elements.h:2513
Node *& node_pt(const unsigned &n)
Return a pointer to the local node n.
Definition: elements.h:2179
double nodal_value(const unsigned &n, const unsigned &i) const
Return the i-th value stored at local node n. Produces suitably interpolated values for hanging nodes...
Definition: elements.h:2597
virtual void output(std::ostream &outfile)
Output the element data — typically the values at the nodes in a format suitable for post-processing.
Definition: elements.h:3054
virtual void shape(const Vector< double > &s, Shape &psi) const =0
Calculate the geometric shape functions at local coordinate s. This function must be overloaded for e...
int nodal_local_eqn(const unsigned &n, const unsigned &i) const
Return the local equation number corresponding to the i-th value at the n-th local node.
Definition: elements.h:1436
unsigned nnode() const
Return the number of nodes.
Definition: elements.h:2214
void(* SteadyExactSolutionFctPt)(const Vector< double > &, Vector< double > &)
Function pointer for function that computes vector-valued steady "exact solution" as .
Definition: elements.h:1763
Integral *const & integral_pt() const
Return the pointer to the integration scheme (const version)
Definition: elements.h:1967
double dshape_eulerian(const Vector< double > &s, Shape &psi, DShape &dpsidx) const
Compute the geometric shape functions and also first derivatives w.r.t. global coordinates at local c...
Definition: elements.cc:3328
void check_J_eulerian_at_knots(bool &passed) const
Check that Jacobian of mapping between local and Eulerian coordinates at all integration points is po...
Definition: elements.cc:4267
virtual void build_face_element(const int &face_index, FaceElement *face_element_pt)
Function for building a lower dimensional FaceElement on the specified face of the FiniteElement....
Definition: elements.cc:5162
void(* UnsteadyExactSolutionFctPt)(const double &, const Vector< double > &, Vector< double > &)
Function pointer for function that computes Vector-valued time-dependent function as .
Definition: elements.h:1769
virtual void shape_at_knot(const unsigned &ipt, Shape &psi) const
Return the geometric shape function at the ipt-th integration point.
Definition: elements.cc:3250
bool has_hanging_nodes() const
Return boolean to indicate if any of the element's nodes are geometrically hanging.
Definition: elements.h:2474
A Generalised Element class.
Definition: elements.h:73
unsigned add_internal_data(Data *const &data_pt, const bool &fd=true)
Add a (pointer to an) internal data object to the element and return the index required to obtain it ...
Definition: elements.cc:67
unsigned ndof() const
Return the number of equations/dofs in the element.
Definition: elements.h:839
unsigned long eqn_number(const unsigned &ieqn_local) const
Return the global equation number corresponding to the ieqn_local-th local equation number.
Definition: elements.h:708
Data *& external_data_pt(const unsigned &i)
Return a pointer to i-th external data object.
Definition: elements.h:659
static DenseMatrix< double > Dummy_matrix
Empty dense matrix used as a dummy argument to combined residual and jacobian functions in the case w...
Definition: elements.h:227
int internal_local_eqn(const unsigned &i, const unsigned &j) const
Return the local equation number corresponding to the j-th value stored at the i-th internal data.
Definition: elements.h:267
int external_local_eqn(const unsigned &i, const unsigned &j)
Return the local equation number corresponding to the j-th value stored at the i-th external data.
Definition: elements.h:311
unsigned add_external_data(Data *const &data_pt, const bool &fd=true)
Add a (pointer to an) external data object to the element and return its index (i....
Definition: elements.cc:312
TimeStepper *& time_stepper_pt()
Access function for pointer to time stepper: Null if object is not time-dependent.
Definition: geom_objects.h:192
//////////////////////////////////////////////////////////////////////// ////////////////////////////...
double * Prescribed_flux_pt
Pointer to current value of prescribed flux.
Data * Pressure_gradient_data_pt
Data item whose one and only value contains the pressure gradient.
void get_residuals(Vector< double > &residuals)
Compute residual vector: the volume flux constraint determines this element's one-and-only internal D...
Data * pressure_gradient_data_pt()
Read-only access to the single-valued Data item that stores the pressure gradient (to be determined v...
void get_jacobian(Vector< double > &residuals, DenseMatrix< double > &jacobian)
Compute element residual Vector and element Jacobian matrix Note: Jacobian is zero because the deriva...
double total_volume_flux()
Get volume flux through all Womersley elements.
Mesh * Womersley_mesh_pt
Pointer to mesh that contains the Womersley elements.
ImposeFluxForWomersleyElement(Mesh *womersley_mesh_pt, double *prescribed_flux_pt)
Constructor: Pass pointer to mesh that contains the Womersley elements whose volume flux is controlle...
virtual double knot(const unsigned &i, const unsigned &j) const =0
Return local coordinate s[j] of i-th integration point.
virtual unsigned nweight() const =0
Return the number of integration points of the scheme.
virtual double weight(const unsigned &i) const =0
Return weight of i-th integration point.
Describes the distribution of a distributable linear algebra type object. Typically this is a contain...
A general mesh class.
Definition: mesh.h:67
Vector< Node * > Node_pt
Vector of pointers to nodes.
Definition: mesh.h:183
static Steady< 0 > Default_TimeStepper
Default Steady Timestepper, to be used in default arguments to Mesh constructors.
Definition: mesh.h:75
FiniteElement * finite_element_pt(const unsigned &e) const
Upcast (downcast?) to FiniteElement (needed to access FiniteElement member functions).
Definition: mesh.h:473
GeneralisedElement *& element_pt(const unsigned long &e)
Return pointer to element e.
Definition: mesh.h:448
unsigned long nnode() const
Return number of nodes in the mesh.
Definition: mesh.h:596
void add_element_pt(GeneralisedElement *const &element_pt)
Add a (pointer to) an element to the mesh.
Definition: mesh.h:617
unsigned long nelement() const
Return number of elements in the mesh.
Definition: mesh.h:590
////////////////////////////////////////////////////////////////////// //////////////////////////////...
virtual ~NavierStokesImpedanceTractionElementBase()
Empty vitual destructor.
Mesh * Navier_stokes_outflow_mesh_pt
Pointer to mesh containing the NavierStokesImpedanceTractionElements that contribute to the volume fl...
virtual void add_element_contribution_to_aux_integral(std::map< unsigned, double > *aux_integral_pt)=0
Add the element's contribution to the auxiliary integral used in the element's Jacobian....
virtual void set_external_data_from_navier_stokes_outflow_mesh(Mesh *navier_stokes_outflow_mesh_pt_mesh_pt)=0
Pass the pointer to the mesh containing all NavierStokesImpedanceTractionElements that contribute to ...
virtual double get_volume_flux()=0
Pure virtual function that must be implemented to compute the volume flux that passes through this el...
virtual void set_aux_integral_pt(std::map< unsigned, double > *aux_integral_pt)=0
Pass the pointer to the pre-computed auxiliary integral to the element so it can be accessed when com...
virtual void set_impedance_tube_pt(TemplateFreeWomersleyImpedanceTubeBase *impedance_tube_pt)=0
Pass the pointer to the "impedance tube" that computes the flow resistance via the solution of Womers...
///////////////////////////////////////////////////////////////////// ///////////////////////////////...
void fill_in_generic_residual_contribution_fluid_traction(Vector< double > &residuals, DenseMatrix< double > &jacobian, unsigned flag)
This function returns the residuals for the traction function. flag=1(or 0): do (or don't) compute th...
void output(std::ostream &outfile, const unsigned &nplot)
Output function: x,y,[z],u,v,[w],p in tecplot format.
~NavierStokesImpedanceTractionElement()
Destructor should not delete anything.
double zeta_nodal(const unsigned &n, const unsigned &k, const unsigned &i) const
Specify the value of nodal zeta from the face geometry The "global" intrinsic coordinate of the eleme...
void output(std::ostream &outfile)
Overload the output function.
void fill_in_contribution_to_residuals(Vector< double > &residuals)
Fill in the element's contribution to the element's residual vector.
WomersleyImpedanceTubeBase< WOMERSLEY_ELEMENT, DIM > * Impedance_tube_pt
Pointer to ImpedanceTubeProblem that computes the flow resistance.
NavierStokesImpedanceTractionElement(FiniteElement *const &element_pt, const int &face_index)
Constructor, which takes a "bulk" element and the value of the index and its limit.
Mesh *& navier_stokes_outflow_mesh_pt()
Access to mesh containing all NavierStokesImpedanceTractionElements that contribute to the volume flu...
void fill_in_contribution_to_jacobian(Vector< double > &residuals, DenseMatrix< double > &jacobian)
Fill in the element's contribution to the element's residual vector and Jacobian matrix.
std::map< unsigned, double > * Aux_integral_pt
Pointer to auxiliary integral, containing the derivative of the total volume flux through the outflow...
double get_volume_flux()
Get integral of volume flux through element.
double shape_and_test_at_knot(const unsigned &ipt, Shape &psi, Shape &test) const
Function to compute the shape and test functions and to return the Jacobian of mapping.
void set_impedance_tube_pt(TemplateFreeWomersleyImpedanceTubeBase *impedance_tube_pt)
Set pointer to "impedance tube" that provides the flow resistance.
void set_aux_integral_pt(std::map< unsigned, double > *aux_integral_pt)
Set pointer to the precomputed auxiliary integral that contains the derivative of the total volume fl...
virtual int u_local_eqn(const unsigned &n, const unsigned &i)
Access function that returns the local equation numbers for velocity components. u_local_eqn(n,...
void add_element_contribution_to_aux_integral(std::map< unsigned, double > *aux_integral_pt)
Add the element's contribution to the auxiliary integral that contains the derivative of the total vo...
double total_volume_flux_into_downstream_tube()
Compute total volume flux into the "downstream tube" that provides the impedance (computed by adding ...
void set_external_data_from_navier_stokes_outflow_mesh(Mesh *navier_stokes_outflow_mesh_pt)
NavierStokesImpedanceTractionElements that contribute to the volume flux into the downstream "impedan...
/////////////////////////////////////////////////////////////////////// /////////////////////////////...
Data * volume_flux_data_pt() const
Function to return a pointer to the Data object whose single value is the flux degree of freedom.
void fill_in_contribution_to_residuals(Vector< double > &residuals)
This function returns the residuals.
void fill_in_generic_residual_contribution_pressure_control(Vector< double > &residuals, DenseMatrix< double > &jacobian, const unsigned &flag)
This function returns the residuals. flag=1(or 0): do (or don't) compute the Jacobian as well....
unsigned ndof_types() const
The number of "DOF types" that degrees of freedom in this element are sub-divided into - set to 1.
void add_pressure_data(Data *pressure_data_pt)
Function to add to external data the Data object whose single value is the pressure applied at the bo...
TemplateFreeWomersleyImpedanceTubeBase * Womersley_tube_pt
Pointer to the Womersley impedance tube.
unsigned Volume_flux_data_id
Id of internal Data object whose single value is the volume flux.
void fill_in_contribution_to_jacobian(Vector< double > &residuals, DenseMatrix< double > &jacobian)
This function returns the residuals and the Jacobian, plus the Jacobian contribution for the NetFluxC...
~NavierStokesWomersleyPressureControlElement()
Destructor should not delete anything.
Data * Volume_flux_data_pt
Data object whose single value is the volume flux applied by the elements in the Flux_control_mesh_pt...
void get_dof_numbers_for_unknowns(std::list< std::pair< unsigned long, unsigned >> &dof_lookup_list) const
Create a list of pairs for all unknowns in this element, so that the first entry in each pair contain...
unsigned Pressure_data_id
Id of external Data object whose single value is the pressure.
NavierStokesWomersleyPressureControlElement(TemplateFreeWomersleyImpedanceTubeBase *womersley_tube_pt)
Constructor takes a pointer to a suitable Womersley impedance tube which defines the pressure via get...
/////////////////////////////////////////////////////////////////////// /////////////////////////////...
void operator=(const NetFluxControlElementForWomersleyPressureControl &)=delete
Broken assignment operator.
NetFluxControlElementForWomersleyPressureControl(const NetFluxControlElementForWomersleyPressureControl &dummy)=delete
Broken copy constructor.
NetFluxControlElementForWomersleyPressureControl(Mesh *flux_control_mesh_pt, NavierStokesWomersleyPressureControlElement *pressure_control_element_pt)
Constructor takes the mesh of TemplateFreeNavierStokesFluxControlElementBase which impose the pressur...
unsigned ndof_types() const
The number of "DOF types" that degrees of freedom in this element are sub-divided into - set to 1.
~NetFluxControlElementForWomersleyPressureControl()
Empty Destructor - Data gets deleted automatically.
void get_dof_numbers_for_unknowns(std::list< std::pair< unsigned long, unsigned >> &dof_lookup_list) const
Create a list of pairs for all unknowns in this element, so that the first entry in each pair contain...
/////////////////////////////////////////////////////////////////////// /////////////////////////////...
Data * pressure_data_pt() const
Function to return a pointer to the Data object whose single value is the pressure applied by the Nav...
Nodes are derived from Data, but, in addition, have a definite (Eulerian) position in a space of a gi...
Definition: nodes.h:906
double & x(const unsigned &i)
Return the i-th nodal coordinate.
Definition: nodes.h:1060
unsigned ndim() const
Return (Eulerian) spatial dimension of the node.
Definition: nodes.h:1054
bool is_hanging() const
Test whether the node is geometrically hanging.
Definition: nodes.h:1285
An OomphLibError object which should be thrown when an run-time error is encountered....
An OomphLibWarning object which should be created as a temporary object to issue a warning....
/////////////////////////////////////////////////////////////////////// /////////////////////////////...
Definition: elements.h:3443
////////////////////////////////////////////////////////////////// //////////////////////////////////...
Definition: problem.h:154
unsigned long assign_eqn_numbers(const bool &assign_local_eqn_numbers=true)
Assign all equation numbers for problem: Deals with global data (= data that isn't attached to any el...
Definition: problem.cc:2076
Time *& time_pt()
Return a pointer to the global time object.
Definition: problem.h:1524
void add_time_stepper_pt(TimeStepper *const &time_stepper_pt)
Add a timestepper to the problem. The function will automatically create or resize the Time object so...
Definition: problem.cc:1632
Mesh *& mesh_pt()
Return a pointer to the global mesh.
Definition: problem.h:1300
double & time()
Return the current value of continuous time.
Definition: problem.cc:11594
TimeStepper *& time_stepper_pt()
Access function for the pointer to the first (presumably only) timestepper.
Definition: problem.h:1544
bool Problem_is_nonlinear
Boolean flag indicating if we're dealing with a linear or nonlinear Problem – if set to false the New...
Definition: problem.h:631
/////////////////////////////////////////////////////////////////////// /////////////////////////////...
Definition: Qelements.h:459
//////////////////////////////////////////////////////////////////////// ////////////////////////////...
void operator=(const QWomersleyElement< DIM, NNODE_1D > &)=delete
Broken assignment operator.
void output_fct(std::ostream &outfile, const unsigned &n_plot, const double &time, FiniteElement::UnsteadyExactSolutionFctPt exact_soln_pt)
Output function for a time-dependent exact solution. x,y,u_exact or x,y,z,u_exact at n_plot^DIM plot ...
void output(FILE *file_pt)
C-style output function: x,y,u or x,y,z,u.
unsigned required_nvalue(const unsigned &n) const
Required # of ‘values’ (pinned or dofs) at node n.
QWomersleyElement()
Constructor: Call constructors for QElement and Womersley equations.
void output(std::ostream &outfile)
Output function: x,y,u or x,y,z,u.
double dshape_and_dtest_eulerian_at_knot_womersley(const unsigned &ipt, Shape &psi, DShape &dpsidx, Shape &test, DShape &dtestdx) const
Shape/test functions and derivs w.r.t. to global coords at integration point ipt; return Jacobian of ...
void output(std::ostream &outfile, const unsigned &n_plot)
Output function: x,y,u or x,y,z,u at n_plot^DIM plot points.
QWomersleyElement(const QWomersleyElement< DIM, NNODE_1D > &dummy)=delete
Broken copy constructor.
void output_fct(std::ostream &outfile, const unsigned &n_plot, FiniteElement::SteadyExactSolutionFctPt exact_soln_pt)
Output function for an exact solution: x,y,u_exact or x,y,z,u_exact at n_plot^DIM plot points.
static const unsigned Initial_Nvalue
Static array of ints to hold number of variables at nodes: Initial_Nvalue[n].
void output(FILE *file_pt, const unsigned &n_plot)
C-style output function: x,y,u or x,y,z,u at n_plot^DIM plot points.
double dshape_and_dtest_eulerian_womersley(const Vector< double > &s, Shape &psi, DShape &dpsidx, Shape &test, DShape &dtestdx) const
Shape, test functions & derivs. w.r.t. to global coords. Return Jacobian.
RefineableElements are FiniteElements that may be subdivided into children to provide a better local ...
A Class for shape functions. In simple cases, the shape functions have only one index that can be tho...
Definition: shape.h:76
/////////////////////////////////////////////////////////////////////// /////////////////////////////...
////////////////////////////////////////////////////////////////////// //////////////////////////////...
virtual ~TemplateFreeWomersleyImpedanceTubeBase()
Empty virtual destructor.
virtual void get_response(double &p_in, double &dp_in_dq)=0
Empty virtual dummy member function – every base class needs at least one virtual member function if ...
///////////////////////////////////////////////////////////////////// ///////////////////////////////...
static bool Suppress_warning_about_unpinned_nst_dofs
Static bool to suppress warning.
////////////////////////////////////////////////////////////////////// //////////////////////////////...
Definition: timesteppers.h:231
unsigned ntstorage() const
Return the number of doubles required to represent history (one for steady)
Definition: timesteppers.h:601
virtual double weight(const unsigned &i, const unsigned &j) const
Access function for j-th weight for the i-th derivative.
Definition: timesteppers.h:594
bool is_steady() const
Flag to indicate if a timestepper has been made steady (possibly temporarily to switch off time-depen...
Definition: timesteppers.h:389
////////////////////////////////////////////////////////////////////// //////////////////////////////...
void operator=(const WomersleyEquations &)=delete
Broken assignment operator.
WomersleyEquations()
Constructor: Initialises the Pressure_gradient_data_pt to null.
virtual double dshape_and_dtest_eulerian_womersley(const Vector< double > &s, Shape &psi, DShape &dpsidx, Shape &test, DShape &dtestdx) const =0
Shape/test functions and derivs w.r.t. to global coords at local coord. s; return Jacobian of mapping...
void compute_error(std::ostream &outfile, FiniteElement::SteadyExactSolutionFctPt exact_soln_pt, double &error, double &norm)
Get error against and norm of exact solution.
void fill_in_contribution_to_jacobian(Vector< double > &residuals, DenseMatrix< double > &jacobian)
Compute element residual Vector and element Jacobian matrix (wrapper)
const double & re_st() const
Product of Reynolds and Strouhal number (=Womersley number)
virtual void fill_in_generic_residual_contribution_womersley(Vector< double > &residuals, DenseMatrix< double > &jacobian, unsigned flag)
Compute element residual Vector only (if flag=and/or element Jacobian matrix.
void get_flux(const Vector< double > &s, Vector< double > &flux) const
Get flux: flux[i] = du/dx_i.
virtual double dshape_and_dtest_eulerian_at_knot_womersley(const unsigned &ipt, Shape &psi, DShape &dpsidx, Shape &test, DShape &dtestdx) const =0
Shape/test functions and derivs w.r.t. to global coords at integration point ipt; return Jacobian of ...
double du_dt_womersley(const unsigned &n) const
du/dt at local node n. Uses suitably interpolated value for hanging nodes.
double interpolated_u_womersley(const Vector< double > &s) const
Return FE representation of function value u(s) at local coordinate s.
Data * set_pressure_gradient_pt() const
Read-only access to pointer to pressure gradient.
void output(std::ostream &outfile)
Output with default number of plot points.
static double Default_ReSt_value
Static default value for the Womersley number.
double get_volume_flux()
Compute total volume flux through element.
void output(FILE *file_pt)
C_style output with default number of plot points.
unsigned self_test()
Self-test: Return 0 for OK.
Data * Pressure_gradient_data_pt
Pointer to pressure gradient Data (single value Data item)
void fill_in_contribution_to_residuals(Vector< double > &residuals)
Compute element residual Vector (wrapper)
void set_pressure_gradient_pt(Data *&pressure_gradient_data_pt)
Set pointer to pressure gradient (single-valued Data)
void set_pressure_gradient_and_add_as_external_data(Data *pressure_gradient_data_pt)
Set pointer to pressure gradient (single-valued Data) and treat it as external data – this can only b...
void output_fct(std::ostream &outfile, const unsigned &nplot, FiniteElement::SteadyExactSolutionFctPt exact_soln_pt)
Output exact soln: x,y,u_exact or x,y,z,u_exact at nplot^DIM plot points.
double *& re_st_pt()
Pointer to product of Reynolds and Strouhal number (=Womersley number)
double * ReSt_pt
Pointer to global Reynolds number x Strouhal number (=Womersley)
WomersleyEquations(const WomersleyEquations &dummy)=delete
Broken copy constructor.
void output_3d(std::ostream &outfile, const unsigned &n_plot, const double &z_out)
Output function: x,y,z_out,0,0,u,0 to allow comparison against full Navier Stokes at n_nplot x n_plot...
virtual unsigned u_index_womersley() const
Return the index at which the unknown value is stored. The default value, 0, is appropriate for singl...
///////////////////////////////////////////////////////////////////// ///////////////////////////////...
WomersleyProblem< ELEMENT, DIM > * womersley_problem_pt()
Access to underlying Womersley problem.
double(* PrescribedVolumeFluxFctPt)(const double &time)
Function pointer to fct that prescribes volume flux q=fct(t) – mainly used for validation purposes.
double Length
Length of the tube.
double Dp_in_dq
Derivative of inflow pressure w.r.t. instantaenous volume flux (Note: Can be pre-computed)
WomersleyImpedanceTubeBase(const double &length, PrescribedVolumeFluxFctPt prescribed_volume_flux_fct_pt)
Constructor: Specify length of tube and pointer to function that specifies the prescribed volume flux...
Mesh * Navier_stokes_outflow_mesh_pt
Pointer to the mesh of NavierStokesImpedanceTractionElements that are attached to the outflow cross-s...
void get_response(double &p_in, double &dp_in_dq)
Compute inlet pressure, p_in, required to achieve the currently imposed, instantaneous volume flux q ...
void precompute_aux_integrals()
Precompute auxiliary integrals required for the computation of the Jacobian in the NavierStokesImpeda...
double * Current_volume_flux_pt
Pointer to double that specifies the currently imposed instantaneous volume flux into the impedance t...
WomersleyImpedanceTubeBase(const double &length, Mesh *navier_stokes_outflow_mesh_pt)
Constructor: Specify length of tube and the pointer to the mesh of either NavierStokesImpedanceTracti...
void setup()
Set up the Womersley tubes so that a subsequent call to get_response(...) computes the inlet pressure...
void setup(double *re_st_pt, const double &dt, const double &q_initial, TimeStepper *time_stepper_pt=0)
Set up the Womersley tubes so that a subsequent call to get_response(...) computes the inlet pressure...
double total_volume_flux_into_impedance_tube()
Compute total current volume flux into the "impedance tube" that provides the flow resistance (flux i...
WomersleyProblem< ELEMENT, DIM > * Womersley_problem_pt
Pointer to Womersley problem that determines the pressure gradient along the tube.
double & p_out()
Access fct to outlet pressure.
std::map< unsigned, double > * Aux_integral_pt
Pointer to auxiliary integral, containing the derivative of the total volume flux through the outflow...
void shift_time_values(const double &dt)
Shift history values to allow coputation of next timestep. Note: When used with a full Navier-Stokes ...
PrescribedVolumeFluxFctPt Prescribed_volume_flux_fct_pt
Pointer to function that specifies the prescribed volume flux.
virtual Mesh * build_mesh_and_apply_boundary_conditions(TimeStepper *time_stepper_pt)=0
Pure virtual function in which the user of a derived class must create the mesh of WomersleyElements ...
///////////////////////////////////////////////////////////////////// ///////////////////////////////...
WomersleyMesh(Mesh *n_st_outflow_mesh_pt, TimeStepper *time_stepper_pt, const unsigned &fixed_coordinate, const unsigned &w_index)
Constructor: Pass pointer to mesh of face elements in the outflow cross-section of a full Navier-Stok...
///////////////////////////////////////////////////////////////////// ///////////////////////////////...
Mesh * build_mesh_and_apply_boundary_conditions(TimeStepper *time_stepper_pt)
Implement pure virtual fct (defined in the base class WomersleyImpedanceTubeBase) that builds the mes...
WomersleyOutflowImpedanceTube(const double &length, Mesh *navier_stokes_outflow_mesh_pt, const unsigned &fixed_coordinate, const unsigned &w_index)
Constructor: Pass length and mesh of face elements that are attached to the outflow cross-section of ...
unsigned Fixed_coordinate
The coordinate (in the higher-dimensional Navier-Stokes mesh) that is constant in the outflow cross-s...
unsigned W_index
The velocity component (in terms of the nodal index) that represents the outflow component – the latt...
///////////////////////////////////////////////////////////////////// ///////////////////////////////...
void actions_after_newton_solve()
Update the problem specs after solve (empty)
void doc_solution(DocInfo &doc_info, const double &z_out=0.0)
Doc the solution.
ImposeFluxForWomersleyElement< DIM > * Flux_el_pt
Pointer to element that imposes the flux through the collection of Womersley elements.
PrescribedPressureGradientFctPt Prescribed_pressure_gradient_fct_pt
Fct pointer to fct that prescribes pressure gradient.
Data * pressure_gradient_data_pt()
Access function to the single-valued Data object that contains the unknown pressure gradient (used if...
void doc_solution(DocInfo &doc_info, std::ofstream &trace_file, const double &z_out=0.0)
Doc the solution incl. trace file for various quantities of interest (to some...)
void actions_before_newton_solve()
Update the problem specs before solve (empty)
double * Prescribed_volume_flux_pt
Pointer to currently prescribed volume flux.
~WomersleyProblem()
Destructor to clean up memory.
WomersleyProblem(double *re_st_pt, double *prescribed_volume_flux_pt, TimeStepper *time_stepper_pt, Mesh *womersley_mesh_pt)
Constructor: Pass pointer to Womersley number, pointer to the double that stores the currently impose...
double(* PrescribedPressureGradientFctPt)(const double &time)
Function pointer to fct that prescribes pressure gradient g=fct(t)
Data * Pressure_gradient_data_pt
Pointer to single-valued Data item that stores pressure gradient.
void actions_before_implicit_timestep()
Update the problem specs before next timestep: Update time-varying pressure gradient (if prescribed)
//////////////////////////////////////////////////////////////////// ////////////////////////////////...
OomphInfo oomph_info
Single (global) instantiation of the OomphInfo object – this is used throughout the library as a "rep...