Public Member Functions | Protected Member Functions | Private Attributes | List of all members
oomph::NavierStokesWomersleyPressureControlElement Class Reference

/////////////////////////////////////////////////////////////////////// /////////////////////////////////////////////////////////////////////// More...

#include <womersley_elements.h>

+ Inheritance diagram for oomph::NavierStokesWomersleyPressureControlElement:

Public Member Functions

 NavierStokesWomersleyPressureControlElement (TemplateFreeWomersleyImpedanceTubeBase *womersley_tube_pt)
 Constructor takes a pointer to a suitable Womersley impedance tube which defines the pressure via get_response(...) More...
 
 ~NavierStokesWomersleyPressureControlElement ()
 Destructor should not delete anything. More...
 
void fill_in_contribution_to_residuals (Vector< double > &residuals)
 This function returns the residuals. More...
 
void fill_in_contribution_to_jacobian (Vector< double > &residuals, DenseMatrix< double > &jacobian)
 This function returns the residuals and the Jacobian, plus the Jacobian contribution for the NetFluxControlElementForWomersleyPressureControl with respect to unknowns in this element. More...
 
Datavolume_flux_data_pt () const
 Function to return a pointer to the Data object whose single value is the flux degree of freedom. More...
 
void add_pressure_data (Data *pressure_data_pt)
 Function to add to external data the Data object whose single value is the pressure applied at the boundary. More...
 
unsigned ndof_types () const
 The number of "DOF types" that degrees of freedom in this element are sub-divided into - set to 1. More...
 
void get_dof_numbers_for_unknowns (std::list< std::pair< unsigned long, unsigned >> &dof_lookup_list) const
 Create a list of pairs for all unknowns in this element, so that the first entry in each pair contains the global equation number of the unknown, while the second one contains the number of the "DOF type" that this unknown is associated with. (Function can obviously only be called if the equation numbering scheme has been set up.) More...
 
- Public Member Functions inherited from oomph::GeneralisedElement
GeneralisedElement() GeneralisedElement (const GeneralisedElement &)=delete
 Constructor: Initialise all pointers and all values to zero. More...
 
void operator= (const GeneralisedElement &)=delete
 Broken assignment operator. More...
 
Data *& internal_data_pt (const unsigned &i)
 Return a pointer to i-th internal data object. More...
 
Data *const & internal_data_pt (const unsigned &i) const
 Return a pointer to i-th internal data object (const version) More...
 
Data *& external_data_pt (const unsigned &i)
 Return a pointer to i-th external data object. More...
 
Data *const & external_data_pt (const unsigned &i) const
 Return a pointer to i-th external data object (const version) More...
 
unsigned long eqn_number (const unsigned &ieqn_local) const
 Return the global equation number corresponding to the ieqn_local-th local equation number. More...
 
int local_eqn_number (const unsigned long &ieqn_global) const
 Return the local equation number corresponding to the ieqn_global-th global equation number. Returns minus one (-1) if there is no local degree of freedom corresponding to the chosen global equation number. More...
 
unsigned add_external_data (Data *const &data_pt, const bool &fd=true)
 Add a (pointer to an) external data object to the element and return its index (i.e. the index required to obtain it from the access function external_data_pt(...). The optional boolean flag indicates whether the data should be included in the general finite-difference loop when calculating the jacobian. The default value is true, i.e. the data will be included in the finite-differencing. More...
 
bool external_data_fd (const unsigned &i) const
 Return the status of the boolean flag indicating whether the external data is included in the finite difference loop. More...
 
void exclude_external_data_fd (const unsigned &i)
 Set the boolean flag to exclude the external datum from the the finite difference loop when computing the jacobian matrix. More...
 
void include_external_data_fd (const unsigned &i)
 Set the boolean flag to include the external datum in the the finite difference loop when computing the jacobian matrix. More...
 
void flush_external_data ()
 Flush all external data. More...
 
void flush_external_data (Data *const &data_pt)
 Flush the object addressed by data_pt from the external data array. More...
 
unsigned ninternal_data () const
 Return the number of internal data objects. More...
 
unsigned nexternal_data () const
 Return the number of external data objects. More...
 
unsigned ndof () const
 Return the number of equations/dofs in the element. More...
 
void dof_vector (const unsigned &t, Vector< double > &dof)
 Return the vector of dof values at time level t. More...
 
void dof_pt_vector (Vector< double * > &dof_pt)
 Return the vector of pointers to dof values. More...
 
void set_internal_data_time_stepper (const unsigned &i, TimeStepper *const &time_stepper_pt, const bool &preserve_existing_data)
 Set the timestepper associated with the i-th internal data object. More...
 
void assign_internal_eqn_numbers (unsigned long &global_number, Vector< double * > &Dof_pt)
 Assign the global equation numbers to the internal Data. The arguments are the current highest global equation number (which will be incremented) and a Vector of pointers to the global variables (to which any unpinned values in the internal Data are added). More...
 
void describe_dofs (std::ostream &out, const std::string &current_string) const
 Function to describe the dofs of the element. The ostream specifies the output stream to which the description is written; the string stores the currently assembled output that is ultimately written to the output stream by Data::describe_dofs(...); it is typically built up incrementally as we descend through the call hierarchy of this function when called from Problem::describe_dofs(...) More...
 
virtual void describe_local_dofs (std::ostream &out, const std::string &current_string) const
 Function to describe the local dofs of the element. The ostream specifies the output stream to which the description is written; the string stores the currently assembled output that is ultimately written to the output stream by Data::describe_dofs(...); it is typically built up incrementally as we descend through the call hierarchy of this function when called from Problem::describe_dofs(...) More...
 
void add_internal_value_pt_to_map (std::map< unsigned, double * > &map_of_value_pt)
 Add pointers to the internal data values to map indexed by the global equation number. More...
 
void add_internal_data_values_to_vector (Vector< double > &vector_of_values)
 Add all internal data and time history values to the vector in the internal storage order. More...
 
void read_internal_data_values_from_vector (const Vector< double > &vector_of_values, unsigned &index)
 Read all internal data and time history values from the vector starting from index. On return the index will be set to the value at the end of the data that has been read in. More...
 
void add_internal_eqn_numbers_to_vector (Vector< long > &vector_of_eqn_numbers)
 Add all equation numbers associated with internal data to the vector in the internal storage order. More...
 
void read_internal_eqn_numbers_from_vector (const Vector< long > &vector_of_eqn_numbers, unsigned &index)
 Read all equation numbers associated with internal data from the vector starting from index. On return the index will be set to the value at the end of the data that has been read in. More...
 
virtual void assign_local_eqn_numbers (const bool &store_local_dof_pt)
 Setup the arrays of local equation numbers for the element. If the optional boolean argument is true, then pointers to the associated degrees of freedom are stored locally in the array Dof_pt. More...
 
virtual void complete_setup_of_dependencies ()
 Complete the setup of any additional dependencies that the element may have. Empty virtual function that may be overloaded for specific derived elements. Used, e.g., for elements with algebraic node update functions to determine the "geometric Data", i.e. the Data that affects the element's shape. This function is called (for all elements) at the very beginning of the equation numbering procedure to ensure that all dependencies are accounted for. More...
 
virtual void get_residuals (Vector< double > &residuals)
 Calculate the vector of residuals of the equations in the element. By default initialise the vector to zero and then call the fill_in_contribution_to_residuals() function. Note that this entire function can be overloaded if desired. More...
 
virtual void get_jacobian (Vector< double > &residuals, DenseMatrix< double > &jacobian)
 Calculate the elemental Jacobian matrix "d equation / d variable". More...
 
virtual void get_mass_matrix (Vector< double > &residuals, DenseMatrix< double > &mass_matrix)
 Calculate the residuals and the elemental "mass" matrix, the matrix that multiplies the time derivative terms in a problem. More...
 
virtual void get_jacobian_and_mass_matrix (Vector< double > &residuals, DenseMatrix< double > &jacobian, DenseMatrix< double > &mass_matrix)
 Calculate the residuals and jacobian and elemental "mass" matrix, the matrix that multiplies the time derivative terms. More...
 
virtual void get_dresiduals_dparameter (double *const &parameter_pt, Vector< double > &dres_dparam)
 Calculate the derivatives of the residuals with respect to a parameter. More...
 
virtual void get_djacobian_dparameter (double *const &parameter_pt, Vector< double > &dres_dparam, DenseMatrix< double > &djac_dparam)
 Calculate the derivatives of the elemental Jacobian matrix and residuals with respect to a parameter. More...
 
virtual void get_djacobian_and_dmass_matrix_dparameter (double *const &parameter_pt, Vector< double > &dres_dparam, DenseMatrix< double > &djac_dparam, DenseMatrix< double > &dmass_matrix_dparam)
 Calculate the derivatives of the elemental Jacobian matrix mass matrix and residuals with respect to a parameter. More...
 
virtual void get_hessian_vector_products (Vector< double > const &Y, DenseMatrix< double > const &C, DenseMatrix< double > &product)
 Calculate the product of the Hessian (derivative of Jacobian with respect to all variables) an eigenvector, Y, and other specified vectors, C (d(J_{ij})/d u_{k}) Y_{j} C_{k}. More...
 
virtual void get_inner_products (Vector< std::pair< unsigned, unsigned >> const &history_index, Vector< double > &inner_product)
 Return the vector of inner product of the given pairs of history values. More...
 
virtual void get_inner_product_vectors (Vector< unsigned > const &history_index, Vector< Vector< double >> &inner_product_vector)
 Compute the vectors that when taken as a dot product with other history values give the inner product over the element. More...
 
virtual unsigned self_test ()
 Self-test: Have all internal values been classified as pinned/unpinned? Return 0 if OK. More...
 
virtual void compute_norm (Vector< double > &norm)
 Compute norm of solution – broken virtual can be overloaded by element writer to implement whatever norm is desired for the specific element. More...
 
virtual void compute_norm (double &norm)
 Compute norm of solution – broken virtual can be overloaded by element writer to implement whatever norm is desired for the specific element. More...
 
void set_halo (const unsigned &non_halo_proc_ID)
 Label the element as halo and specify processor that holds non-halo counterpart. More...
 
void set_nonhalo ()
 Label the element as not being a halo. More...
 
bool is_halo () const
 Is this element a halo? More...
 
int non_halo_proc_ID ()
 ID of processor ID that holds non-halo counterpart of halo element; negative if not a halo. More...
 
void set_must_be_kept_as_halo ()
 Insist that this element be kept as a halo element during a distribute? More...
 
void unset_must_be_kept_as_halo ()
 Do not insist that this element be kept as a halo element during distribution. More...
 
bool must_be_kept_as_halo () const
 Test whether the element must be kept as a halo element. More...
 

Protected Member Functions

void fill_in_generic_residual_contribution_pressure_control (Vector< double > &residuals, DenseMatrix< double > &jacobian, const unsigned &flag)
 This function returns the residuals. flag=1(or 0): do (or don't) compute the Jacobian as well. Note that this function also calculates the Jacobian contribution for the NetFluxControlElementForWomersleyPressureControl. More...
 
- Protected Member Functions inherited from oomph::GeneralisedElement
unsigned add_internal_data (Data *const &data_pt, const bool &fd=true)
 Add a (pointer to an) internal data object to the element and return the index required to obtain it from the access function internal_data_pt(). The boolean indicates whether the datum should be included in the general finite-difference loop when calculating the jacobian. The default value is true, i.e. the data will be included in the finite differencing. More...
 
bool internal_data_fd (const unsigned &i) const
 Return the status of the boolean flag indicating whether the internal data is included in the finite difference loop. More...
 
void exclude_internal_data_fd (const unsigned &i)
 Set the boolean flag to exclude the internal datum from the finite difference loop when computing the jacobian matrix. More...
 
void include_internal_data_fd (const unsigned &i)
 Set the boolean flag to include the internal datum in the finite difference loop when computing the jacobian matrix. More...
 
void clear_global_eqn_numbers ()
 Clear the storage for the global equation numbers and pointers to dofs (if stored) More...
 
void add_global_eqn_numbers (std::deque< unsigned long > const &global_eqn_numbers, std::deque< double * > const &global_dof_pt)
 Add the contents of the queue global_eqn_numbers to the local storage for the local-to-global translation scheme. It is essential that the entries in the queue are added IN ORDER i.e. from the front. More...
 
virtual void assign_internal_and_external_local_eqn_numbers (const bool &store_local_dof_pt)
 Assign the local equation numbers for the internal and external Data This must be called after the global equation numbers have all been assigned. It is virtual so that it can be overloaded by ElementWithExternalElements so that any external data from the external elements in included in the numbering scheme. If the boolean argument is true then pointers to the dofs will be stored in Dof_pt. More...
 
virtual void assign_all_generic_local_eqn_numbers (const bool &store_local_dof_pt)
 Assign all the local equation numbering schemes that can be applied generically for the element. In most cases, this is the function that will be overloaded by inherited classes. It is required to ensure that assign_additional_local_eqn_numbers() can always be called after ALL other local equation numbering has been performed. The default for the GeneralisedElement is simply to call internal and external local equation numbering. If the boolean argument is true then pointers to the dofs will be stored in Dof_pt. More...
 
virtual void assign_additional_local_eqn_numbers ()
 Setup any additional look-up schemes for local equation numbers. Examples of use include using local storage to refer to explicit degrees of freedom. The additional memory cost of such storage may or may not be offset by fast local access. More...
 
int internal_local_eqn (const unsigned &i, const unsigned &j) const
 Return the local equation number corresponding to the j-th value stored at the i-th internal data. More...
 
int external_local_eqn (const unsigned &i, const unsigned &j)
 Return the local equation number corresponding to the j-th value stored at the i-th external data. More...
 
void fill_in_jacobian_from_internal_by_fd (Vector< double > &residuals, DenseMatrix< double > &jacobian, const bool &fd_all_data=false)
 Calculate the contributions to the jacobian from the internal degrees of freedom using finite differences. This version of the function assumes that the residuals vector has already been calculated. If the boolean argument is true, the finite differencing will be performed for all internal data, irrespective of the information in Data_fd. The default value (false) uses the information in Data_fd to selectively difference only certain data. More...
 
void fill_in_jacobian_from_internal_by_fd (DenseMatrix< double > &jacobian, const bool &fd_all_data=false)
 Calculate the contributions to the jacobian from the internal degrees of freedom using finite differences. This version computes the residuals vector before calculating the jacobian terms. If the boolean argument is true, the finite differencing will be performed for all internal data, irrespective of the information in Data_fd. The default value (false) uses the information in Data_fd to selectively difference only certain data. More...
 
void fill_in_jacobian_from_external_by_fd (Vector< double > &residuals, DenseMatrix< double > &jacobian, const bool &fd_all_data=false)
 Calculate the contributions to the jacobian from the external degrees of freedom using finite differences. This version of the function assumes that the residuals vector has already been calculated. If the boolean argument is true, the finite differencing will be performed for all external data, irrespective of the information in Data_fd. The default value (false) uses the information in Data_fd to selectively difference only certain data. More...
 
void fill_in_jacobian_from_external_by_fd (DenseMatrix< double > &jacobian, const bool &fd_all_data=false)
 Calculate the contributions to the jacobian from the external degrees of freedom using finite differences. This version computes the residuals vector before calculating the jacobian terms. If the boolean argument is true, the finite differencing will be performed for all internal data, irrespective of the information in Data_fd. The default value (false) uses the information in Data_fd to selectively difference only certain data. More...
 
virtual void update_before_internal_fd ()
 Function that is called before the finite differencing of any internal data. This may be overloaded to update any dependent data before finite differencing takes place. More...
 
virtual void reset_after_internal_fd ()
 Function that is call after the finite differencing of the internal data. This may be overloaded to reset any dependent variables that may have changed during the finite differencing. More...
 
virtual void update_in_internal_fd (const unsigned &i)
 Function called within the finite difference loop for internal data after a change in any values in the i-th internal data object. More...
 
virtual void reset_in_internal_fd (const unsigned &i)
 Function called within the finite difference loop for internal data after the values in the i-th external data object are reset. The default behaviour is to call the update function. More...
 
virtual void update_before_external_fd ()
 Function that is called before the finite differencing of any external data. This may be overloaded to update any dependent data before finite differencing takes place. More...
 
virtual void reset_after_external_fd ()
 Function that is call after the finite differencing of the external data. This may be overloaded to reset any dependent variables that may have changed during the finite differencing. More...
 
virtual void update_in_external_fd (const unsigned &i)
 Function called within the finite difference loop for external data after a change in any values in the i-th external data object. More...
 
virtual void reset_in_external_fd (const unsigned &i)
 Function called within the finite difference loop for external data after the values in the i-th external data object are reset. The default behaviour is to call the update function. More...
 
virtual void fill_in_contribution_to_mass_matrix (Vector< double > &residuals, DenseMatrix< double > &mass_matrix)
 Add the elemental contribution to the mass matrix matrix. and the residuals vector. Note that this function should NOT initialise the residuals vector or the mass matrix. It must be called after the residuals vector and jacobian matrix have been initialised to zero. The default is deliberately broken. More...
 
virtual void fill_in_contribution_to_jacobian_and_mass_matrix (Vector< double > &residuals, DenseMatrix< double > &jacobian, DenseMatrix< double > &mass_matrix)
 Add the elemental contribution to the jacobian matrix, mass matrix and the residuals vector. Note that this function should NOT initialise any entries. It must be called after the residuals vector and matrices have been initialised to zero. More...
 
virtual void fill_in_contribution_to_dresiduals_dparameter (double *const &parameter_pt, Vector< double > &dres_dparam)
 Add the elemental contribution to the derivatives of the residuals with respect to a parameter. This function should NOT initialise any entries and must be called after the entries have been initialised to zero The default implementation is to use finite differences to calculate the derivatives. More...
 
virtual void fill_in_contribution_to_djacobian_dparameter (double *const &parameter_pt, Vector< double > &dres_dparam, DenseMatrix< double > &djac_dparam)
 Add the elemental contribution to the derivatives of the elemental Jacobian matrix and residuals with respect to a parameter. This function should NOT initialise any entries and must be called after the entries have been initialised to zero The default implementation is to use finite differences to calculate the derivatives. More...
 
virtual void fill_in_contribution_to_djacobian_and_dmass_matrix_dparameter (double *const &parameter_pt, Vector< double > &dres_dparam, DenseMatrix< double > &djac_dparam, DenseMatrix< double > &dmass_matrix_dparam)
 Add the elemental contribution to the derivative of the jacobian matrix, mass matrix and the residuals vector with respect to the passed parameter. Note that this function should NOT initialise any entries. It must be called after the residuals vector and matrices have been initialised to zero. More...
 
virtual void fill_in_contribution_to_hessian_vector_products (Vector< double > const &Y, DenseMatrix< double > const &C, DenseMatrix< double > &product)
 Fill in contribution to the product of the Hessian (derivative of Jacobian with respect to all variables) an eigenvector, Y, and other specified vectors, C (d(J_{ij})/d u_{k}) Y_{j} C_{k}. More...
 
virtual void fill_in_contribution_to_inner_products (Vector< std::pair< unsigned, unsigned >> const &history_index, Vector< double > &inner_product)
 Fill in the contribution to the inner products between given pairs of history values. More...
 
virtual void fill_in_contribution_to_inner_product_vectors (Vector< unsigned > const &history_index, Vector< Vector< double >> &inner_product_vector)
 Fill in the contributions to the vectors that when taken as dot product with other history values give the inner product over the element. More...
 

Private Attributes

DataVolume_flux_data_pt
 Data object whose single value is the volume flux applied by the elements in the Flux_control_mesh_pt. More...
 
TemplateFreeWomersleyImpedanceTubeBaseWomersley_tube_pt
 Pointer to the Womersley impedance tube. More...
 
unsigned Pressure_data_id
 Id of external Data object whose single value is the pressure. More...
 
unsigned Volume_flux_data_id
 Id of internal Data object whose single value is the volume flux. More...
 

Additional Inherited Members

- Static Public Attributes inherited from oomph::GeneralisedElement
static bool Suppress_warning_about_repeated_internal_data
 Static boolean to suppress warnings about repeated internal data. Defaults to false. More...
 
static bool Suppress_warning_about_repeated_external_data = true
 Static boolean to suppress warnings about repeated external data. Defaults to true. More...
 
static double Default_fd_jacobian_step = 1.0e-8
 Double used for the default finite difference step in elemental jacobian calculations. More...
 
- Protected Attributes inherited from oomph::GeneralisedElement
int Non_halo_proc_ID
 Non-halo processor ID for Data; -1 if it's not a halo. More...
 
bool Must_be_kept_as_halo
 Does this element need to be kept as a halo element during a distribute? More...
 
- Static Protected Attributes inherited from oomph::GeneralisedElement
static DenseMatrix< double > Dummy_matrix
 Empty dense matrix used as a dummy argument to combined residual and jacobian functions in the case when only the residuals are being assembled. More...
 
static std::deque< double * > Dof_pt_deque
 Static storage for deque used to add_global_equation_numbers when pointers to the dofs in each element are not required. More...
 

Detailed Description

/////////////////////////////////////////////////////////////////////// ///////////////////////////////////////////////////////////////////////

An element to impose a fluid pressure obtained from a Womersley impedance tube at a boundary. This element is used in conjunction with a NetFluxControlElementForWomersleyPressureControl element, and is passed to the NetFluxControlElementForWomersleyPressureControl element's constructor. The volume flux across the boundary is then an unknown of the problem. The constructor argument for this element is a suitable Womersley impedance tube to give the pressure via its get_response(...) function.

Note: the NavierStokesWomersleyPressureControlElement element calculates Jacobian entries BOTH for itself AND for the NetFluxControlElementForWomersleyPressureControl with respect to the unknowns in this (NavierStokesWomersleyPressureControlElement) element.

Definition at line 2576 of file womersley_elements.h.

Constructor & Destructor Documentation

◆ NavierStokesWomersleyPressureControlElement()

oomph::NavierStokesWomersleyPressureControlElement::NavierStokesWomersleyPressureControlElement ( TemplateFreeWomersleyImpedanceTubeBase womersley_tube_pt)
inline

Constructor takes a pointer to a suitable Womersley impedance tube which defines the pressure via get_response(...)

Definition at line 2582 of file womersley_elements.h.

References oomph::GeneralisedElement::add_internal_data(), Volume_flux_data_id, and Volume_flux_data_pt.

◆ ~NavierStokesWomersleyPressureControlElement()

oomph::NavierStokesWomersleyPressureControlElement::~NavierStokesWomersleyPressureControlElement ( )
inline

Destructor should not delete anything.

Definition at line 2594 of file womersley_elements.h.

Member Function Documentation

◆ add_pressure_data()

void oomph::NavierStokesWomersleyPressureControlElement::add_pressure_data ( Data pressure_data_pt)
inline

Function to add to external data the Data object whose single value is the pressure applied at the boundary.

Definition at line 2625 of file womersley_elements.h.

References oomph::GeneralisedElement::add_external_data(), and Pressure_data_id.

Referenced by oomph::NetFluxControlElementForWomersleyPressureControl::NetFluxControlElementForWomersleyPressureControl().

◆ fill_in_contribution_to_jacobian()

void oomph::NavierStokesWomersleyPressureControlElement::fill_in_contribution_to_jacobian ( Vector< double > &  residuals,
DenseMatrix< double > &  jacobian 
)
inlinevirtual

This function returns the residuals and the Jacobian, plus the Jacobian contribution for the NetFluxControlElementForWomersleyPressureControl with respect to unknowns in this element.

Reimplemented from oomph::GeneralisedElement.

Definition at line 2608 of file womersley_elements.h.

References fill_in_generic_residual_contribution_pressure_control().

◆ fill_in_contribution_to_residuals()

void oomph::NavierStokesWomersleyPressureControlElement::fill_in_contribution_to_residuals ( Vector< double > &  residuals)
inlinevirtual

This function returns the residuals.

Reimplemented from oomph::GeneralisedElement.

Definition at line 2597 of file womersley_elements.h.

References oomph::GeneralisedElement::Dummy_matrix, and fill_in_generic_residual_contribution_pressure_control().

◆ fill_in_generic_residual_contribution_pressure_control()

void oomph::NavierStokesWomersleyPressureControlElement::fill_in_generic_residual_contribution_pressure_control ( Vector< double > &  residuals,
DenseMatrix< double > &  jacobian,
const unsigned &  flag 
)
inlineprotected

◆ get_dof_numbers_for_unknowns()

void oomph::NavierStokesWomersleyPressureControlElement::get_dof_numbers_for_unknowns ( std::list< std::pair< unsigned long, unsigned >> &  dof_lookup_list) const
inlinevirtual

Create a list of pairs for all unknowns in this element, so that the first entry in each pair contains the global equation number of the unknown, while the second one contains the number of the "DOF type" that this unknown is associated with. (Function can obviously only be called if the equation numbering scheme has been set up.)

Reimplemented from oomph::GeneralisedElement.

Definition at line 2643 of file womersley_elements.h.

References oomph::GeneralisedElement::eqn_number().

◆ ndof_types()

unsigned oomph::NavierStokesWomersleyPressureControlElement::ndof_types ( ) const
inlinevirtual

The number of "DOF types" that degrees of freedom in this element are sub-divided into - set to 1.

Reimplemented from oomph::GeneralisedElement.

Definition at line 2632 of file womersley_elements.h.

◆ volume_flux_data_pt()

Data* oomph::NavierStokesWomersleyPressureControlElement::volume_flux_data_pt ( ) const
inline

Function to return a pointer to the Data object whose single value is the flux degree of freedom.

Definition at line 2618 of file womersley_elements.h.

References Volume_flux_data_pt.

Member Data Documentation

◆ Pressure_data_id

unsigned oomph::NavierStokesWomersleyPressureControlElement::Pressure_data_id
private

Id of external Data object whose single value is the pressure.

Definition at line 2705 of file womersley_elements.h.

Referenced by add_pressure_data(), and fill_in_generic_residual_contribution_pressure_control().

◆ Volume_flux_data_id

unsigned oomph::NavierStokesWomersleyPressureControlElement::Volume_flux_data_id
private

Id of internal Data object whose single value is the volume flux.

Definition at line 2709 of file womersley_elements.h.

Referenced by fill_in_generic_residual_contribution_pressure_control(), and NavierStokesWomersleyPressureControlElement().

◆ Volume_flux_data_pt

Data* oomph::NavierStokesWomersleyPressureControlElement::Volume_flux_data_pt
private

Data object whose single value is the volume flux applied by the elements in the Flux_control_mesh_pt.

Definition at line 2699 of file womersley_elements.h.

Referenced by NavierStokesWomersleyPressureControlElement(), and volume_flux_data_pt().

◆ Womersley_tube_pt

TemplateFreeWomersleyImpedanceTubeBase* oomph::NavierStokesWomersleyPressureControlElement::Womersley_tube_pt
private

Pointer to the Womersley impedance tube.

Definition at line 2702 of file womersley_elements.h.

Referenced by fill_in_generic_residual_contribution_pressure_control().


The documentation for this class was generated from the following file: