refineable_elements.h
Go to the documentation of this file.
1 // LIC// ====================================================================
2 // LIC// This file forms part of oomph-lib, the object-oriented,
3 // LIC// multi-physics finite-element library, available
4 // LIC// at http://www.oomph-lib.org.
5 // LIC//
6 // LIC// Copyright (C) 2006-2023 Matthias Heil and Andrew Hazel
7 // LIC//
8 // LIC// This library is free software; you can redistribute it and/or
9 // LIC// modify it under the terms of the GNU Lesser General Public
10 // LIC// License as published by the Free Software Foundation; either
11 // LIC// version 2.1 of the License, or (at your option) any later version.
12 // LIC//
13 // LIC// This library is distributed in the hope that it will be useful,
14 // LIC// but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // LIC// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
16 // LIC// Lesser General Public License for more details.
17 // LIC//
18 // LIC// You should have received a copy of the GNU Lesser General Public
19 // LIC// License along with this library; if not, write to the Free Software
20 // LIC// Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
21 // LIC// 02110-1301 USA.
22 // LIC//
23 // LIC// The authors may be contacted at oomph-lib@maths.man.ac.uk.
24 // LIC//
25 // LIC//====================================================================
26 // Header file for classes that define refineable element objects
27 
28 // Include guard to prevent multiple inclusions of the header
29 #ifndef OOMPH_REFINEABLE_ELEMENTS_HEADER
30 #define OOMPH_REFINEABLE_ELEMENTS_HEADER
31 
32 // Config header generated by autoconfig
33 #ifdef HAVE_CONFIG_H
34 #include <oomph-lib-config.h>
35 #endif
36 
37 #include "elements.h"
38 #include "tree.h"
39 
40 namespace oomph
41 {
42  class Mesh;
43 
44  //=======================================================================
45  /// RefineableElements are FiniteElements that may be subdivided into
46  /// children to provide a better local approximation to the solution.
47  /// After non-uniform refinement adjacent elements need not necessarily have
48  /// nodes in common. A node that does not have a counterpart in its
49  /// neighbouring element is known as a hanging node and its position and
50  /// any data that it stores must be constrained to ensure inter-element
51  /// continuity.
52  ///
53  /// Generic data and function interfaces associated with refinement
54  /// are defined in this class.
55  ///
56  /// Additional data includes:
57  /// - a pointer to a general Tree object that is used to track the
58  /// refinement history,
59  /// - a refinement level (not necessarily the same as the level in the tree!),
60  /// - a flag indicating whether the element should be refined,
61  /// - a flag indicating whether the element should be de-refined,
62  /// - a global element number for plotting/validation purposes,
63  /// - storage for local equation numbers associated with hanging nodes.
64  ///
65  /// Additional functions perform the following generic tasks:
66  /// - provide access to additional data,
67  /// - setup local equation numbering for data associated with hanging nodes,
68  /// - generic finite-difference calculation of contributions to the
69  /// elemental jacobian from nodal data to include hanging nodes,
70  /// - split of the element into its sons,
71  /// - select and deselect the element for refinement,
72  /// - select and deselect the sons of the element for de-refinement (merging),
73  ///
74  /// In addition, there are a number of interfaces that specify
75  /// element-specific tasks. These should be overloaded in RefineableElements
76  /// of particular geometric types and perform the following tasks:
77  /// - return a pointer to the root and father elements in the tree structure,
78  /// - define the number of sons into which the element is divided,
79  /// - build the element: construct nodes, assign their positions,
80  /// values and any boundary conditions,
81  /// - recreate the element from its sons if they are merged,
82  /// - deactivate the element, perform any operations that are
83  /// required when the element is still in the tree, but no longer active
84  /// - set the number and provide access to the values interpolated
85  /// by the nodes,
86  /// - setup the hanging nodes
87  ///
88  /// In mixed element different sets of nodes are used to interpolate different
89  /// unknowns. Interfaces are provided for functions that can be used to find
90  /// the position of the nodes that interpolate the different unknowns. These
91  /// functions are used to setup hanging node information automatically in
92  /// particular elements, e.g. Taylor Hood Navier--Stokes.
93  /// The default implementation assumes that the elements are isoparameteric.
94  ///
95  //======================================================================
96  class RefineableElement : public virtual FiniteElement
97  {
98  protected:
99  /// A pointer to a general tree object
101 
102  /// Refinement level
103  unsigned Refine_level;
104 
105  /// Flag for refinement
107 
108  /// Flag to indicate suppression of any refinement
110 
111  /// Flag for unrefinement
113 
114  /// Global element number -- for plotting/validation purposes
115  long Number;
116 
117  /// Max. allowed discrepancy in element integrity check
118  static double Max_integrity_tolerance;
119 
120  /// Static helper function that is used to check that the value_id
121  /// is in range
122  static void check_value_id(const int& n_continuously_interpolated_values,
123  const int& value_id);
124 
125 
126  /// Assemble the jacobian matrix for the mapping from local
127  /// to Eulerian coordinates, given the derivatives of the shape function
128  /// w.r.t the local coordinates.
129  /// Overload the standard version to use the hanging information for
130  /// the Eulerian coordinates.
132  const DShape& dpsids, DenseMatrix<double>& jacobian) const;
133 
134  /// Assemble the the "jacobian" matrix of second derivatives of the
135  /// mapping from local to Eulerian coordinates, given
136  /// the second derivatives of the shape functions w.r.t. local coordinates.
137  /// Overload the standard version to use the hanging information for
138  /// the Eulerian coordinates.
140  const DShape& d2psids, DenseMatrix<double>& jacobian2) const;
141 
142  /// Assemble the covariant Eulerian base vectors, assuming that
143  /// the derivatives of the shape functions with respect to the local
144  /// coordinates have already been constructed.
145  /// Overload the standard version to account for hanging nodes.
147  const DShape& dpsids, DenseMatrix<double>& interpolated_G) const;
148 
149  /// Calculate the mapping from local to Eulerian coordinates given
150  /// the derivatives of the shape functions w.r.t the local coordinates.
151  /// assuming that the coordinates are aligned in the direction of the local
152  /// coordinates, i.e. there are no cross terms and the jacobian is diagonal.
153  /// This funciton returns the determinant of the jacobian, the jacobian
154  /// and the inverse jacobian. Overload the standard version to take
155  /// hanging info into account.
157  const DShape& dpsids,
158  DenseMatrix<double>& jacobian,
159  DenseMatrix<double>& inverse_jacobian) const;
160 
161  private:
162  /// Storage for local equation numbers of hanging node variables
163  /// (values stored at master nodes). It is
164  /// essential that these are indexed by a Node pointer because the Node
165  /// may be internal or external to the element.
166  /// local equation number = Local_hang_eqn(master_node_pt,ival)
167  std::map<Node*, int>* Local_hang_eqn;
168 
169  /// Lookup scheme for unique number associated with any of the nodes
170  /// that actively control the shape of the element (i.e. they are either
171  /// non-hanging nodes of this element or master nodes of hanging nodes.
172  std::map<Node*, unsigned> Shape_controlling_node_lookup;
173 
174  protected:
175  /// Assign the local equation numbers for hanging node variables
176  void assign_hanging_local_eqn_numbers(const bool& store_local_dof_pt);
177 
178  /// Calculate the contributions to the jacobian from the nodal
179  /// degrees of freedom using finite differences.
180  /// This version is overloaded to take hanging node information into
181  /// account
183  Vector<double>& residuals, DenseMatrix<double>& jacobian);
184 
185  public:
186  /// Constructor, calls the FiniteElement constructor and initialises
187  /// the member data
189  : FiniteElement(),
190  Tree_pt(0),
191  Refine_level(0),
192  To_be_refined(false),
193  Refinement_is_enabled(true),
194  Sons_to_be_unrefined(false),
195  Number(-1),
196  Local_hang_eqn(0)
197  {
198  }
199 
200  /// Destructor, delete the allocated storage for the hanging equations
201  // (The body is now in the cc file to keep the xlC compiler happy under AIX)
202  virtual ~RefineableElement();
203 
204  /// Broken copy constructor
206 
207  /// Broken assignment operator
208  void operator=(const RefineableElement&) = delete;
209 
210  /// Access function: Pointer to quadtree representation of this element
212  {
213  return Tree_pt;
214  }
215 
216  /// Set pointer to quadtree representation of this element
217  void set_tree_pt(Tree* my_tree_pt)
218  {
219  Tree_pt = my_tree_pt;
220  }
221 
222  /// Set the number of sons that can be constructed by the element
223  /// The default is none
224  virtual unsigned required_nsons() const
225  {
226  return 0;
227  }
228 
229 
230  /// Flag to indicate suppression of any refinement
232  {
233  return Refinement_is_enabled;
234  }
235 
236  /// Suppress of any refinement for this element
238  {
239  Refinement_is_enabled = false;
240  }
241 
242  /// Emnable refinement for this element
244  {
245  Refinement_is_enabled = true;
246  }
247 
248  /// Split the element into the number of sons to be
249  /// constructed and return a
250  /// vector of pointers to the sons. Elements are allocated, but they are
251  /// not given any properties. The refinement level of the sons is one
252  /// higher than that of the father elemern.
253  template<class ELEMENT>
254  void split(Vector<ELEMENT*>& son_pt) const
255  {
256  // Increase refinement level
257  int son_refine_level = Refine_level + 1;
258 
259  // How many sons are to be constructed
260  unsigned n_sons = required_nsons();
261  // Resize the son pointer
262  son_pt.resize(n_sons);
263 
264  // Loop over the sons and construct
265  for (unsigned i = 0; i < n_sons; i++)
266  {
267  son_pt[i] = new ELEMENT;
268  // Set the refinement level of the newly constructed son.
269  son_pt[i]->set_refinement_level(son_refine_level);
270  }
271  }
272 
273 
274  /// Access function that returns the local equation number for the
275  /// hanging node variables (values stored at master nodes). The local
276  /// equation number corresponds to the i-th unknown stored at the node
277  /// addressed by node_pt
278  inline int local_hang_eqn(Node* const& node_pt, const unsigned& i)
279  {
280 #ifdef RANGE_CHECKING
282  {
283  std::ostringstream error_message;
284  error_message << "Range Error: Value " << i
285  << " is not in the range (0,"
286  << ncont_interpolated_values() - 1 << ")";
287  throw OomphLibError(error_message.str(),
288  OOMPH_CURRENT_FUNCTION,
289  OOMPH_EXCEPTION_LOCATION);
290  }
291 #endif
292 
293  return Local_hang_eqn[i][node_pt];
294  }
295 
296  /// Interface to function that builds the element: i.e. construct
297  /// the nodes, assign their positions, apply boundary conditions, etc. The
298  /// required procedures depend on the geometrical type of the element and
299  /// must be implemented in specific refineable elements. Any new nodes
300  /// created during the build process are returned in the vector
301  /// new_node_pt.
302  virtual void build(Mesh*& mesh_pt,
303  Vector<Node*>& new_node_pt,
304  bool& was_already_built,
305  std::ofstream& new_nodes_file) = 0;
306 
307  /// Set the refinement level
308  void set_refinement_level(const int& refine_level)
309  {
310  Refine_level = refine_level;
311  }
312 
313  /// Return the Refinement level
314  unsigned refinement_level() const
315  {
316  return Refine_level;
317  }
318 
319  /// Select the element for refinement
321  {
322  To_be_refined = true;
323  }
324 
325  /// Deselect the element for refinement
327  {
328  To_be_refined = false;
329  }
330 
331  /// Unrefinement will be performed by merging the four sons of this element
333  {
334  Sons_to_be_unrefined = true;
335  }
336 
337  /// No unrefinement will be performed by merging the four sons of this
338  /// element
340  {
341  Sons_to_be_unrefined = false;
342  }
343 
344  /// Has the element been selected for refinement?
346  {
347  return To_be_refined;
348  }
349 
350  /// Has the element been selected for unrefinement?
352  {
353  return Sons_to_be_unrefined;
354  }
355 
356  /// Rebuild the element, e.g. set internal values in line with
357  /// those of the sons that have now merged
358  virtual void rebuild_from_sons(Mesh*& mesh_pt) = 0;
359 
360  /// Unbuild the element, i.e. mark the nodes that were created
361  /// during its creation for possible deletion
362  virtual void unbuild()
363  {
364  // Get pointer to father element
365  RefineableElement* father_pt = father_element_pt();
366  // If there is no father, nothing to do
367  if (father_pt == 0)
368  {
369  return;
370  }
371 
372  // Loop over all the nodes
373  unsigned n_node = this->nnode();
374  for (unsigned n = 0; n < n_node; n++)
375  {
376  // If any node in this element is in the father, it can't be deleted
377  if (father_pt->get_node_number(this->node_pt(n)) >= 0)
378  {
380  }
381  }
382  }
383 
384  /// Final operations that must be performed when the element is no
385  /// longer active in the mesh, but still resident in the QuadTree.
386  virtual void deactivate_element();
387 
388  /// Return true if all the nodes have been built, false if not
389  virtual bool nodes_built()
390  {
391  return node_pt(0) != 0;
392  }
393 
394  /// Element number (for debugging/plotting)
395  long number() const
396  {
397  return Number;
398  }
399 
400  /// Set element number (for debugging/plotting)
401  void set_number(const long& mynumber)
402  {
403  Number = mynumber;
404  }
405 
406  /// Number of continuously interpolated values. Note: We assume
407  /// that they are located at the beginning of the value_pt Vector!
408  /// (Used for interpolation to son elements, for integrity check
409  /// and post-processing -- we can only expect
410  /// the continously interpolated values to be continous across
411  /// element boundaries).
412  virtual unsigned ncont_interpolated_values() const = 0;
413 
414  /// Get all continously interpolated function values in this
415  /// element as a Vector. Note: Vector sets is own size to ensure that
416  /// that this function can be used in black-box fashion.
418  Vector<double>& values)
419  {
420  get_interpolated_values(0, s, values);
421  }
422 
423  /// Get all continously interpolated function values at previous
424  /// timestep in this element as a Vector. (t=0: present; t>0:
425  /// prev. timestep) Note: Vector sets is own size to ensure that that this
426  /// function can be used in black-box fashion.
427  virtual void get_interpolated_values(const unsigned& t,
428  const Vector<double>& s,
429  Vector<double>& values) = 0;
430 
431  /// In mixed elements, different sets of nodes are used to
432  /// interpolate different unknowns. This function returns the n-th node that
433  /// interpolates the value_id-th unknown. Default implementation is that all
434  /// variables use the positional nodes, i.e. isoparametric elements. Note
435  /// that any overloaded versions of this function MUST provide a set
436  /// of nodes for the position, which always has the value_id -1.
437  virtual Node* interpolating_node_pt(const unsigned& n, const int& value_id)
438 
439  {
440  return node_pt(n);
441  }
442 
443  /// Return the local one dimensional fraction of the n1d-th node
444  /// in the direction of the local coordinate s[i] that is used to
445  /// interpolate the value_id-th continuously interpolated unknown. Default
446  /// assumes isoparametric interpolation for all unknowns
448  const unsigned& n1d, const unsigned& i, const int& value_id)
449  {
450  return local_one_d_fraction_of_node(n1d, i);
451  }
452 
453  /// Return a pointer to the node that interpolates the value-id-th
454  /// unknown at local coordinate s. If there is not a node at that position,
455  /// then return 0.
457  const Vector<double>& s, const int& value_id)
458 
459  {
461  }
462 
463 
464  /// Return the number of nodes that are used to interpolate the
465  /// value_id-th unknown. Default is to assume isoparametric elements.
466  virtual unsigned ninterpolating_node(const int& value_id)
467  {
468  return nnode();
469  }
470 
471  /// Return the number of nodes in a one_d direction that are
472  /// used to interpolate the value_id-th unknown. Default is to assume
473  /// an isoparametric mapping.
474  virtual unsigned ninterpolating_node_1d(const int& value_id)
475  {
476  return nnode_1d();
477  }
478 
479  /// Return the basis functions that are used to interpolate
480  /// the value_id-th unknown. By default assume isoparameteric interpolation
481  virtual void interpolating_basis(const Vector<double>& s,
482  Shape& psi,
483  const int& value_id) const
484  {
485  shape(s, psi);
486  }
487 
488  /// Check the integrity of the element: Continuity of positions
489  /// values, etc. Essentially, check that the approximation of the functions
490  /// is consistent when viewed from both sides of the element boundaries
491  /// Must be overloaded for each different geometric element
492  virtual void check_integrity(double& max_error) = 0;
493 
494  /// Max. allowed discrepancy in element integrity check
495  static double& max_integrity_tolerance()
496  {
498  }
499 
500  /// The purpose of this function is to identify all possible
501  /// Data that can affect the fields interpolated by the FiniteElement.
502  /// This must be overloaded to include data from any hanging nodes
503  /// correctly
505  std::set<std::pair<Data*, unsigned>>& paired_field_data);
506 
507 
508  /// Overload the function that assigns local equation numbers
509  /// for the Data stored at the nodes so that hanging data is taken
510  /// into account
511  inline void assign_nodal_local_eqn_numbers(const bool& store_local_dof_pt)
512  {
514  assign_hanging_local_eqn_numbers(store_local_dof_pt);
515  }
516 
517  /// Pointer to the root element in refinement hierarchy (must be
518  /// implemented in specific elements that do refinement via
519  /// tree-like refinement structure. Here we provide a default
520  /// implementation that is appropriate for cases where tree-like
521  /// refinement doesn't exist or if the element doesn't have
522  /// root in that tree (i.e. if it's a root itself): We return
523  /// "this".
525  {
526  // If there is no tree -- the element is its own root
527  if (Tree_pt == 0)
528  {
529  return this;
530  }
531  // Otherwise it's the tree's root object
532  else
533  {
534  return Tree_pt->root_pt()->object_pt();
535  }
536  }
537 
538  /// Return a pointer to the father element.
540  {
541  // If we have no tree, we have no father
542  if (Tree_pt == 0)
543  {
544  return 0;
545  }
546  else
547  {
548  // Otherwise get the father of the tree
549  Tree* father_pt = Tree_pt->father_pt();
550  // If the tree has no father then return null, no father
551  if (father_pt == 0)
552  {
553  return 0;
554  }
555  else
556  {
557  return father_pt->object_pt();
558  }
559  }
560  }
561 
562  /// Return a pointer to the "father" element at the specified refinement
563  /// level
565  unsigned& refinement_level, RefineableElement*& father_at_reflevel_pt)
566  {
567  // Get the father in the tree (it shouldn't try to get a null Tree...)
568  Tree* father_pt = Tree_pt->father_pt();
569  // Get the refineable element associated with this father
570  RefineableElement* father_el_pt =
571  dynamic_cast<RefineableElement*>(father_pt->object_pt());
572  // Get the refinement level
573  unsigned level = father_el_pt->refinement_level();
574  // If the level matches the required one then return, if not call again
575  if (level == refinement_level)
576  {
577  father_at_reflevel_pt = father_el_pt;
578  }
579  else
580  {
581  // Recursive call
583  father_at_reflevel_pt);
584  }
585  }
586 
587  /// Initial setup of the element: e.g. set the appropriate internal
588  /// p-order. If an adopted father is specified, information from this is
589  /// used instead of using the father found from the tree.
590  virtual void initial_setup(Tree* const& adopted_father_pt = 0,
591  const unsigned& initial_p_order = 0)
592  {
593  }
594 
595  /// Pre-build the element
596  virtual void pre_build(Mesh*& mesh_pt, Vector<Node*>& new_node_pt) {}
597 
598  /// Further build: e.g. deal with interpolation of internal values
599  virtual void further_build() {}
600 
601  /// Mark up any hanging nodes that arise as a result of non-uniform
602  /// refinement. Any hanging nodes will be documented in files addressed by
603  /// the streams in the vector output_stream, if the streams are open.
604  virtual void setup_hanging_nodes(Vector<std::ofstream*>& output_stream) {}
605 
606  /// Perform additional hanging node procedures for variables
607  /// that are not interpolated by all nodes (e.g. lower order interpolations
608  /// for the pressure in Taylor Hood).
609  virtual void further_setup_hanging_nodes() {}
610 
611  /// Compute derivatives of elemental residual vector with respect
612  /// to nodal coordinates. Default implementation by FD can be overwritten
613  /// for specific elements.
614  /// dresidual_dnodal_coordinates(l,i,j) = d res(l) / dX_{ij}
615  /// This version is overloaded from the version in FiniteElement
616  /// and takes hanging nodes into account -- j in the above loop
617  /// loops over all the nodes that actively control the
618  /// shape of the element (i.e. they are non-hanging or master nodes of
619  /// hanging nodes in this element).
621  RankThreeTensor<double>& dresidual_dnodal_coordinates);
622 
623 
624  /// Number of shape-controlling nodes = the number
625  /// of non-hanging nodes plus the number of master nodes associated
626  /// with hanging nodes.
628  {
629  return Shape_controlling_node_lookup.size();
630  }
631 
632  /// Return lookup scheme for unique number associated
633  /// with any of the nodes that actively control the shape of the
634  /// element (i.e. they are either non-hanging nodes of this element
635  /// or master nodes of hanging nodes.
636  std::map<Node*, unsigned> shape_controlling_node_lookup()
637  {
639  }
640  };
641 
642 
643  /// ///////////////////////////////////////////////////////////////////
644  /// ///////////////////////////////////////////////////////////////////
645  /// ///////////////////////////////////////////////////////////////////
646 
647 
648  //======================================================================
649  /// p-refineable version of RefineableElement
650  //======================================================================
651  class PRefineableElement : public virtual RefineableElement
652  {
653  protected:
654  /// The polynomial expansion order of the elemental basis functions
655  unsigned P_order;
656 
657  /// Flag for p-refinement
659 
660  /// Flag to indicate suppression of any refinement
662 
663  /// Flag for unrefinement
665 
666  public:
667  /// Constructor, calls the RefineableElement constructor
669  : RefineableElement(),
670  P_order(2),
671  To_be_p_refined(false),
673  To_be_p_unrefined(false)
674  {
675  }
676 
677  /// Destructor, empty
678  virtual ~PRefineableElement() {}
679 
680  /// Broken copy constructor
682 
683  /// Broken assignment operator
684  void operator=(const PRefineableElement&) = delete;
685 
686  /// Flag to indicate suppression of any refinement
688  {
690  }
691 
692  /// Suppress of any refinement for this element
694  {
695  P_refinement_is_enabled = false;
696  }
697 
698  /// Emnable refinement for this element
700  {
702  }
703 
704  /// Access function to P_order
705  unsigned& p_order()
706  {
707  return P_order;
708  }
709 
710  /// Access function to P_order (const version)
711  unsigned p_order() const
712  {
713  return P_order;
714  }
715 
716  /// Get the initial P_order
717  /// This is required so that elements which are constructed with a
718  /// higher p-order initially are not un-refined past this level (e.g.
719  /// in fluid problems where elements initially use quadratic velocity
720  /// and linear pressure)
721  /// Virtual because this needs to be set in templated derived classes
722  virtual unsigned initial_p_order() const = 0;
723 
724  /// Select the element for p-refinement
726  {
727  To_be_p_refined = true;
728  }
729 
730  /// Deselect the element for p-refinement
732  {
733  To_be_p_refined = false;
734  }
735 
736  /// Select the element for p-unrefinement
738  {
739  To_be_p_unrefined = true;
740  }
741 
742  /// Deselect the element for p-unrefinement
744  {
745  To_be_p_unrefined = false;
746  }
747 
748  /// Has the element been selected for refinement?
750  {
751  return To_be_p_refined;
752  }
753 
754  /// Has the element been selected for p-unrefinement?
756  {
757  return To_be_p_unrefined;
758  }
759 
760  /// p-refine the element
761  virtual void p_refine(const int& inc,
762  Mesh* const& mesh_pt,
763  GeneralisedElement* const& clone_pt) = 0;
764 
765  // Overload the nodes_built function to check every node
766  bool nodes_built()
767  {
768  // Must check that EVERY node exists
769  unsigned n_node = this->nnode();
770  for (unsigned n = 0; n < n_node; n++)
771  {
772  if (this->node_pt(n) == 0)
773  {
774  return false;
775  }
776  }
777  // If we get here then all the nodes are built
778  return true;
779  }
780  };
781 
782 
783  /// ///////////////////////////////////////////////////////////////////
784  /// ///////////////////////////////////////////////////////////////////
785  /// ///////////////////////////////////////////////////////////////////
786 
787 
788  //=======================================================================
789  /// A base class for elements that can have hanging nodes
790  /// but are not refineable as such. This class is usually used as a
791  /// base class for FaceElements that are attached to refineable
792  /// bulk elements (and stripped out before adapting the bulk
793  /// mesh, so they don't participate in the refimenent process
794  /// itself). We therefore simply break the pure virtual functions
795  /// that don't make any sense for such elements
796  //======================================================================
798  {
799  public:
800  /// Broken build function -- shouldn't really be needed
801  void build(Mesh*& mesh_pt,
802  Vector<Node*>& new_node_pt,
803  bool& was_already_built,
804  std::ofstream& new_nodes_file)
805  {
806  std::ostringstream error_message;
807  error_message << "This function is broken as it's only needed/used \n"
808  << "during \"proper\" refinement\n";
809  throw OomphLibError(
810  error_message.str(), OOMPH_CURRENT_FUNCTION, OOMPH_EXCEPTION_LOCATION);
811  }
812 
813 
814  /// Broken function -- this shouldn't really be needed.
816  Vector<double>& values)
817  {
818  std::ostringstream error_message;
819  error_message << "This function is broken as it's only needed/used \n"
820  << "during \"proper\" refinement\n";
821  throw OomphLibError(
822  error_message.str(), OOMPH_CURRENT_FUNCTION, OOMPH_EXCEPTION_LOCATION);
823  }
824 
825  /// Broken function -- this shouldn't really be needed.
826  virtual void get_interpolated_values(const unsigned& t,
827  const Vector<double>& s,
828  Vector<double>& values)
829  {
830  std::ostringstream error_message;
831  error_message << "This function is broken as it's only needed/used \n"
832  << "during \"proper\" refinement\n";
833  throw OomphLibError(
834  error_message.str(), OOMPH_CURRENT_FUNCTION, OOMPH_EXCEPTION_LOCATION);
835  }
836 
837 
838  /// Broken function -- this shouldn't really be needed.
839  void check_integrity(double& max_error)
840  {
841  std::ostringstream error_message;
842  error_message << "This function is broken as it's only needed/used \n"
843  << "during \"proper\" refinement\n";
844  throw OomphLibError(
845  error_message.str(), OOMPH_CURRENT_FUNCTION, OOMPH_EXCEPTION_LOCATION);
846  }
847 
848  /// Broken function -- this shouldn't really be needed.
849  void rebuild_from_sons(Mesh*& mesh_pt)
850  {
851  std::ostringstream error_message;
852  error_message << "This function is broken as it's only needed/used \n"
853  << "during \"proper\" refinement\n";
854  throw OomphLibError(
855  error_message.str(), OOMPH_CURRENT_FUNCTION, OOMPH_EXCEPTION_LOCATION);
856  }
857  };
858 
859 
860  /// ///////////////////////////////////////////////////////////////////
861  /// ///////////////////////////////////////////////////////////////////
862  /// ///////////////////////////////////////////////////////////////////
863 
864 
865  //=======================================================================
866  /// RefineableSolidElements are SolidFiniteElements that may
867  /// be subdivided into children to provide a better local approximation
868  /// to the solution. The distinction is required to keep a clean
869  /// separation between problems that alter nodal positions and others.
870  /// A number of procedures are generic and are included in this class.
871  //======================================================================
873  public virtual SolidFiniteElement
874  {
875  private:
876  /// Storage for local equation numbers of
877  /// hanging node variables associated with nodal positions.
878  /// local position equation number =
879  /// Local_position_hang_eqn(master_node_pt,ival)
880  std::map<Node*, DenseMatrix<int>> Local_position_hang_eqn;
881 
882 
883  /// Assign local equation numbers to the hanging values associated
884  /// with positions or additional solid values.
885  void assign_solid_hanging_local_eqn_numbers(const bool& store_local_dof_pt);
886 
887 
888  protected:
889  /// Flag deciding if the Lagrangian coordinates of newly-created
890  /// interior SolidNodes are to be determined by the father element's
891  /// undeformed MacroElement representation (if it has one). Default: False
892  /// as it means that, following a refinement an element is no longer in
893  /// equilbrium (as the Lagrangian coordinate is determined differently from
894  /// the Eulerian one). However, basing the Lagrangian coordinates on the
895  /// undeformed MacroElement can be more stable numerically and for steady
896  /// problems it's not a big deal either way as the difference between the
897  /// two formulations only matters at finite resolution so we have no right
898  /// to say that one is "more correct" than the other...
900 
901  /// Assemble the jacobian matrix for the mapping from local
902  /// to lagrangian coordinates, given the derivatives of the shape function
903  /// Overload the standard version to use the hanging information for
904  /// the lagrangian coordinates.
906  const DShape& dpsids, DenseMatrix<double>& jacobian) const;
907 
908  /// Assemble the the "jacobian" matrix of second derivatives, given
909  /// the second derivatives of the shape functions w.r.t. local coordinates
910  /// Overload the standard version to use the hanging information for
911  /// the lagrangian coordinates.
913  const DShape& d2psids, DenseMatrix<double>& jacobian2) const;
914 
915  /// Calculate the mapping from local to Lagrangian coordinates given
916  /// the derivatives of the shape functions w.r.t the local coorindates.
917  /// assuming that the coordinates are aligned in the direction of the local
918  /// coordinates, i.e. there are no cross terms and the jacobian is diagonal.
919  /// This function returns the determinant of the jacobian, the jacobian
920  /// and the inverse jacobian.
922  const DShape& dpsids,
923  DenseMatrix<double>& jacobian,
924  DenseMatrix<double>& inverse_jacobian) const;
925 
926  public:
927  /// Constructor
929  : RefineableElement(),
932  {
933  }
934 
935  /// Virtual Destructor, delete any allocated storage
937 
938  /// Overload the local equation numbers for Data stored as part
939  /// of solid nodes to include hanging node data
940  void assign_solid_local_eqn_numbers(const bool& store_local_dof_pt)
941  {
943  assign_solid_hanging_local_eqn_numbers(store_local_dof_pt);
944  }
945 
946  /// The number of geometric data affecting a
947  /// RefineableSolidFiniteElement is the positional Data of all
948  /// non-hanging nodes plus the geometric Data of all distinct
949  /// master nodes. Recomputed on the fly.
950  unsigned ngeom_data() const;
951 
952  /// Return pointer to the j-th Data item that the object's
953  /// shape depends on: Positional data of non-hanging nodes and
954  /// positional data of master nodes. Recomputed on the fly.
955  Data* geom_data_pt(const unsigned& j);
956 
957  /// Specify Data that affects the geometry of the element
958  /// by adding the position Data to the set that's passed in.
959  /// (This functionality is required in FSI problems; set is used to
960  /// avoid double counting). Refineable version includes hanging nodes
961  void identify_geometric_data(std::set<Data*>& geometric_data_pt);
962 
963  /// Compute element residual Vector and element Jacobian matrix
964  /// corresponding to the solid positions. Overloaded version to take
965  /// the hanging nodes into account
967  Vector<double>& residuals, DenseMatrix<double>& jacobian);
968 
969  /// Return the flag deciding if the Lagrangian coordinates of
970  /// newly-created interior SolidNodes are to be determined by the father
971  /// element's undeformed MacroElement representation (if it has one).
972  /// Default: False as it means that, following a refinement an element
973  /// is no longer in equilbrium (as the Lagrangian coordinate is
974  /// determined differently from the Eulerian one). However, basing
975  /// the Lagrangian coordinates on the undeformed MacroElement can be
976  /// more stable numerically and for steady problems it's not a big deal
977  /// either way as the difference between the two formulations only matters
978  /// at finite resolution so we have no right to say that one is "more
979  /// correct" than the other...
981  {
983  }
984 
985  /// Set the flag deciding if the Lagrangian coordinates of
986  /// newly-created interior SolidNodes are to be determined by the father
987  /// element's undeformed MacroElement representation (if it has one).
989  {
991  }
992 
993  /// Unset the flag deciding if the Lagrangian coordinates of
994  /// newly-created interior SolidNodes are to be determined by the father
995  /// element's undeformed MacroElement representation (if it has one).
997  {
999  }
1000 
1001  /// Access the local equation number of of hanging node variables
1002  /// associated with nodal positions. The function returns a dense
1003  /// matrix that contains all the local equation numbers corresponding to
1004  /// the positional degrees of freedom.
1006  {
1008  }
1009 
1010  /// Further build: Pass the father's
1011  /// Use_undeformed_macro_element_for_new_lagrangian_coords
1012  /// flag down, then call the underlying RefineableElement's
1013  /// version.
1014  virtual void further_build()
1015  {
1017  dynamic_cast<RefineableSolidElement*>(father_element_pt())
1019 
1021  }
1022  };
1023 
1024 
1025  /// ///////////////////////////////////////////////////////////////////
1026  /// ///////////////////////////////////////////////////////////////////
1027  /// ///////////////////////////////////////////////////////////////////
1028 
1029 
1030  //=======================================================================
1031  /// A base class for SolidElements that can have hanging nodes
1032  /// but are not refineable as such. This class is usually used as a
1033  /// base class for FaceElements that are attached to refineable
1034  /// bulk elements (and stripped out before adapting the bulk
1035  /// mesh, so they don't participate in the refimenent process
1036  /// itself). We therefore simply break the pure virtual functions
1037  /// that don't make any sense for such elements
1038  //======================================================================
1040  : public virtual NonRefineableElementWithHangingNodes,
1041  public virtual RefineableSolidElement
1042  {
1043  };
1044 
1045 
1046  /// ///////////////////////////////////////////////////////////////////
1047  /// ///////////////////////////////////////////////////////////////////
1048  /// ///////////////////////////////////////////////////////////////////
1049 
1050 
1051 } // namespace oomph
1052 
1053 #endif
static char t char * s
Definition: cfortran.h:568
cstr elem_len * i
Definition: cfortran.h:603
char t
Definition: cfortran.h:568
A Class for the derivatives of shape functions The class design is essentially the same as Shape,...
Definition: shape.h:278
A class that represents a collection of data; each Data object may contain many different individual ...
Definition: nodes.h:86
A general Finite Element class.
Definition: elements.h:1313
Node *& node_pt(const unsigned &n)
Return a pointer to the local node n.
Definition: elements.h:2175
virtual Node * get_node_at_local_coordinate(const Vector< double > &s) const
If there is a node at this local coordinate, return the pointer to the node.
Definition: elements.cc:3882
virtual void assign_nodal_local_eqn_numbers(const bool &store_local_dof_pt)
Assign the local equation numbers for Data stored at the nodes Virtual so that it can be overloaded b...
Definition: elements.cc:3544
virtual void shape(const Vector< double > &s, Shape &psi) const =0
Calculate the geometric shape functions at local coordinate s. This function must be overloaded for e...
unsigned nnode() const
Return the number of nodes.
Definition: elements.h:2210
virtual unsigned nnode_1d() const
Return the number of nodes along one edge of the element Default is to return zero — must be overload...
Definition: elements.h:2218
virtual double local_one_d_fraction_of_node(const unsigned &n1d, const unsigned &i)
Get the local fraction of any node in the n-th position in a one dimensional expansion along the i-th...
Definition: elements.h:1858
int get_node_number(Node *const &node_pt) const
Return the number of the node *node_pt if this node is in the element, else return -1;.
Definition: elements.cc:3814
A Generalised Element class.
Definition: elements.h:73
A general mesh class.
Definition: mesh.h:67
Nodes are derived from Data, but, in addition, have a definite (Eulerian) position in a space of a gi...
Definition: nodes.h:906
void set_non_obsolete()
Mark node as non-obsolete.
Definition: nodes.h:1442
/////////////////////////////////////////////////////////////////// /////////////////////////////////...
void get_interpolated_values(const Vector< double > &s, Vector< double > &values)
Broken function – this shouldn't really be needed.
void check_integrity(double &max_error)
Broken function – this shouldn't really be needed.
void rebuild_from_sons(Mesh *&mesh_pt)
Broken function – this shouldn't really be needed.
virtual void get_interpolated_values(const unsigned &t, const Vector< double > &s, Vector< double > &values)
Broken function – this shouldn't really be needed.
void build(Mesh *&mesh_pt, Vector< Node * > &new_node_pt, bool &was_already_built, std::ofstream &new_nodes_file)
Broken build function – shouldn't really be needed.
/////////////////////////////////////////////////////////////////// /////////////////////////////////...
An OomphLibError object which should be thrown when an run-time error is encountered....
/////////////////////////////////////////////////////////////////// /////////////////////////////////...
bool to_be_p_unrefined()
Has the element been selected for p-unrefinement?
bool p_refinement_is_enabled()
Flag to indicate suppression of any refinement.
void enable_p_refinement()
Emnable refinement for this element.
bool nodes_built()
Return true if all the nodes have been built, false if not.
unsigned & p_order()
Access function to P_order.
void operator=(const PRefineableElement &)=delete
Broken assignment operator.
PRefineableElement(const PRefineableElement &)=delete
Broken copy constructor.
virtual ~PRefineableElement()
Destructor, empty.
virtual unsigned initial_p_order() const =0
Get the initial P_order This is required so that elements which are constructed with a higher p-order...
virtual void p_refine(const int &inc, Mesh *const &mesh_pt, GeneralisedElement *const &clone_pt)=0
p-refine the element
void disable_p_refinement()
Suppress of any refinement for this element.
bool To_be_p_refined
Flag for p-refinement.
unsigned P_order
The polynomial expansion order of the elemental basis functions.
void select_for_p_refinement()
Select the element for p-refinement.
bool To_be_p_unrefined
Flag for unrefinement.
void deselect_for_p_unrefinement()
Deselect the element for p-unrefinement.
bool to_be_p_refined()
Has the element been selected for refinement?
void select_for_p_unrefinement()
Select the element for p-unrefinement.
bool P_refinement_is_enabled
Flag to indicate suppression of any refinement.
unsigned p_order() const
Access function to P_order (const version)
void deselect_for_p_refinement()
Deselect the element for p-refinement.
PRefineableElement()
Constructor, calls the RefineableElement constructor.
////////////////////////////////////////////////////////////////// //////////////////////////////////...
Definition: matrices.h:1370
RefineableElements are FiniteElements that may be subdivided into children to provide a better local ...
void set_number(const long &mynumber)
Set element number (for debugging/plotting)
void select_sons_for_unrefinement()
Unrefinement will be performed by merging the four sons of this element.
void assemble_local_to_eulerian_jacobian2(const DShape &d2psids, DenseMatrix< double > &jacobian2) const
Assemble the the "jacobian" matrix of second derivatives of the mapping from local to Eulerian coordi...
Tree * tree_pt()
Access function: Pointer to quadtree representation of this element.
virtual void build(Mesh *&mesh_pt, Vector< Node * > &new_node_pt, bool &was_already_built, std::ofstream &new_nodes_file)=0
Interface to function that builds the element: i.e. construct the nodes, assign their positions,...
static double Max_integrity_tolerance
Max. allowed discrepancy in element integrity check.
virtual RefineableElement * root_element_pt()
Pointer to the root element in refinement hierarchy (must be implemented in specific elements that do...
static double & max_integrity_tolerance()
Max. allowed discrepancy in element integrity check.
virtual void further_build()
Further build: e.g. deal with interpolation of internal values.
void select_for_refinement()
Select the element for refinement.
virtual void rebuild_from_sons(Mesh *&mesh_pt)=0
Rebuild the element, e.g. set internal values in line with those of the sons that have now merged.
void assign_hanging_local_eqn_numbers(const bool &store_local_dof_pt)
Assign the local equation numbers for hanging node variables.
virtual void pre_build(Mesh *&mesh_pt, Vector< Node * > &new_node_pt)
Pre-build the element.
void set_refinement_level(const int &refine_level)
Set the refinement level.
virtual void unbuild()
Unbuild the element, i.e. mark the nodes that were created during its creation for possible deletion.
Tree * Tree_pt
A pointer to a general tree object.
virtual void deactivate_element()
Final operations that must be performed when the element is no longer active in the mesh,...
long number() const
Element number (for debugging/plotting)
double local_to_eulerian_mapping_diagonal(const DShape &dpsids, DenseMatrix< double > &jacobian, DenseMatrix< double > &inverse_jacobian) const
Calculate the mapping from local to Eulerian coordinates given the derivatives of the shape functions...
virtual bool nodes_built()
Return true if all the nodes have been built, false if not.
virtual unsigned ncont_interpolated_values() const =0
Number of continuously interpolated values. Note: We assume that they are located at the beginning of...
virtual void setup_hanging_nodes(Vector< std::ofstream * > &output_stream)
Mark up any hanging nodes that arise as a result of non-uniform refinement. Any hanging nodes will be...
virtual void initial_setup(Tree *const &adopted_father_pt=0, const unsigned &initial_p_order=0)
Initial setup of the element: e.g. set the appropriate internal p-order. If an adopted father is spec...
void identify_field_data_for_interactions(std::set< std::pair< Data *, unsigned >> &paired_field_data)
The purpose of this function is to identify all possible Data that can affect the fields interpolated...
void get_father_at_refinement_level(unsigned &refinement_level, RefineableElement *&father_at_reflevel_pt)
Return a pointer to the "father" element at the specified refinement level.
unsigned refinement_level() const
Return the Refinement level.
static void check_value_id(const int &n_continuously_interpolated_values, const int &value_id)
Static helper function that is used to check that the value_id is in range.
unsigned Refine_level
Refinement level.
void get_dresidual_dnodal_coordinates(RankThreeTensor< double > &dresidual_dnodal_coordinates)
Compute derivatives of elemental residual vector with respect to nodal coordinates....
virtual void fill_in_jacobian_from_nodal_by_fd(Vector< double > &residuals, DenseMatrix< double > &jacobian)
Calculate the contributions to the jacobian from the nodal degrees of freedom using finite difference...
virtual unsigned ninterpolating_node_1d(const int &value_id)
Return the number of nodes in a one_d direction that are used to interpolate the value_id-th unknown....
void disable_refinement()
Suppress of any refinement for this element.
virtual void further_setup_hanging_nodes()
Perform additional hanging node procedures for variables that are not interpolated by all nodes (e....
long Number
Global element number – for plotting/validation purposes.
virtual unsigned ninterpolating_node(const int &value_id)
Return the number of nodes that are used to interpolate the value_id-th unknown. Default is to assume...
virtual void interpolating_basis(const Vector< double > &s, Shape &psi, const int &value_id) const
Return the basis functions that are used to interpolate the value_id-th unknown. By default assume is...
bool refinement_is_enabled()
Flag to indicate suppression of any refinement.
virtual unsigned required_nsons() const
Set the number of sons that can be constructed by the element The default is none.
void deselect_for_refinement()
Deselect the element for refinement.
void assemble_local_to_eulerian_jacobian(const DShape &dpsids, DenseMatrix< double > &jacobian) const
Assemble the jacobian matrix for the mapping from local to Eulerian coordinates, given the derivative...
virtual RefineableElement * father_element_pt() const
Return a pointer to the father element.
unsigned nshape_controlling_nodes()
Number of shape-controlling nodes = the number of non-hanging nodes plus the number of master nodes a...
bool To_be_refined
Flag for refinement.
std::map< Node *, int > * Local_hang_eqn
Storage for local equation numbers of hanging node variables (values stored at master nodes)....
std::map< Node *, unsigned > shape_controlling_node_lookup()
Return lookup scheme for unique number associated with any of the nodes that actively control the sha...
RefineableElement()
Constructor, calls the FiniteElement constructor and initialises the member data.
virtual Node * interpolating_node_pt(const unsigned &n, const int &value_id)
In mixed elements, different sets of nodes are used to interpolate different unknowns....
void assign_nodal_local_eqn_numbers(const bool &store_local_dof_pt)
Overload the function that assigns local equation numbers for the Data stored at the nodes so that ha...
void split(Vector< ELEMENT * > &son_pt) const
Split the element into the number of sons to be constructed and return a vector of pointers to the so...
bool to_be_refined()
Has the element been selected for refinement?
void enable_refinement()
Emnable refinement for this element.
int local_hang_eqn(Node *const &node_pt, const unsigned &i)
Access function that returns the local equation number for the hanging node variables (values stored ...
void assemble_eulerian_base_vectors(const DShape &dpsids, DenseMatrix< double > &interpolated_G) const
Assemble the covariant Eulerian base vectors, assuming that the derivatives of the shape functions wi...
virtual double local_one_d_fraction_of_interpolating_node(const unsigned &n1d, const unsigned &i, const int &value_id)
Return the local one dimensional fraction of the n1d-th node in the direction of the local coordinate...
RefineableElement(const RefineableElement &)=delete
Broken copy constructor.
void set_tree_pt(Tree *my_tree_pt)
Set pointer to quadtree representation of this element.
bool Sons_to_be_unrefined
Flag for unrefinement.
virtual Node * get_interpolating_node_at_local_coordinate(const Vector< double > &s, const int &value_id)
Return a pointer to the node that interpolates the value-id-th unknown at local coordinate s....
virtual void get_interpolated_values(const Vector< double > &s, Vector< double > &values)
Get all continously interpolated function values in this element as a Vector. Note: Vector sets is ow...
std::map< Node *, unsigned > Shape_controlling_node_lookup
Lookup scheme for unique number associated with any of the nodes that actively control the shape of t...
virtual void get_interpolated_values(const unsigned &t, const Vector< double > &s, Vector< double > &values)=0
Get all continously interpolated function values at previous timestep in this element as a Vector....
bool sons_to_be_unrefined()
Has the element been selected for unrefinement?
bool Refinement_is_enabled
Flag to indicate suppression of any refinement.
virtual ~RefineableElement()
Destructor, delete the allocated storage for the hanging equations.
virtual void check_integrity(double &max_error)=0
Check the integrity of the element: Continuity of positions values, etc. Essentially,...
void operator=(const RefineableElement &)=delete
Broken assignment operator.
void deselect_sons_for_unrefinement()
No unrefinement will be performed by merging the four sons of this element.
/////////////////////////////////////////////////////////////////// /////////////////////////////////...
virtual void further_build()
Further build: Pass the father's Use_undeformed_macro_element_for_new_lagrangian_coords flag down,...
void disable_use_of_undeformed_macro_element_for_new_lagrangian_coords()
Unset the flag deciding if the Lagrangian coordinates of newly-created interior SolidNodes are to be ...
bool is_undeformed_macro_element_used_for_new_lagrangian_coords() const
Return the flag deciding if the Lagrangian coordinates of newly-created interior SolidNodes are to be...
Data * geom_data_pt(const unsigned &j)
Return pointer to the j-th Data item that the object's shape depends on: Positional data of non-hangi...
double local_to_lagrangian_mapping_diagonal(const DShape &dpsids, DenseMatrix< double > &jacobian, DenseMatrix< double > &inverse_jacobian) const
Calculate the mapping from local to Lagrangian coordinates given the derivatives of the shape functio...
void assemble_local_to_lagrangian_jacobian2(const DShape &d2psids, DenseMatrix< double > &jacobian2) const
Assemble the the "jacobian" matrix of second derivatives, given the second derivatives of the shape f...
void enable_use_of_undeformed_macro_element_for_new_lagrangian_coords()
Set the flag deciding if the Lagrangian coordinates of newly-created interior SolidNodes are to be de...
unsigned ngeom_data() const
The number of geometric data affecting a RefineableSolidFiniteElement is the positional Data of all n...
void assign_solid_local_eqn_numbers(const bool &store_local_dof_pt)
Overload the local equation numbers for Data stored as part of solid nodes to include hanging node da...
bool Use_undeformed_macro_element_for_new_lagrangian_coords
Flag deciding if the Lagrangian coordinates of newly-created interior SolidNodes are to be determined...
virtual ~RefineableSolidElement()
Virtual Destructor, delete any allocated storage.
void assign_solid_hanging_local_eqn_numbers(const bool &store_local_dof_pt)
Assign local equation numbers to the hanging values associated with positions or additional solid val...
void fill_in_jacobian_from_solid_position_by_fd(Vector< double > &residuals, DenseMatrix< double > &jacobian)
Compute element residual Vector and element Jacobian matrix corresponding to the solid positions....
std::map< Node *, DenseMatrix< int > > Local_position_hang_eqn
Storage for local equation numbers of hanging node variables associated with nodal positions....
void identify_geometric_data(std::set< Data * > &geometric_data_pt)
Specify Data that affects the geometry of the element by adding the position Data to the set that's p...
DenseMatrix< int > & local_position_hang_eqn(Node *const &node_pt)
Access the local equation number of of hanging node variables associated with nodal positions....
void assemble_local_to_lagrangian_jacobian(const DShape &dpsids, DenseMatrix< double > &jacobian) const
Assemble the jacobian matrix for the mapping from local to lagrangian coordinates,...
A Class for shape functions. In simple cases, the shape functions have only one index that can be tho...
Definition: shape.h:76
////////////////////////////////////////////////////////////////////// //////////////////////////////...
Definition: elements.h:3561
virtual void assign_solid_local_eqn_numbers(const bool &store_local_dof)
Assigns local equation numbers for the generic solid local equation numbering schemes....
Definition: elements.cc:6898
A generalised tree base class that abstracts the common functionality between the quad- and octrees u...
Definition: tree.h:74
RefineableElement * object_pt() const
Return the pointer to the object (RefineableElement) represented by the tree.
Definition: tree.h:88
Tree * father_pt() const
Return pointer to father: NULL if it's a root node.
Definition: tree.h:235
TreeRoot *& root_pt()
Return pointer to root of the tree.
Definition: tree.h:141
//////////////////////////////////////////////////////////////////// ////////////////////////////////...