Qelements.h
Go to the documentation of this file.
1 // LIC// ====================================================================
2 // LIC// This file forms part of oomph-lib, the object-oriented,
3 // LIC// multi-physics finite-element library, available
4 // LIC// at http://www.oomph-lib.org.
5 // LIC//
6 // LIC// Copyright (C) 2006-2024 Matthias Heil and Andrew Hazel
7 // LIC//
8 // LIC// This library is free software; you can redistribute it and/or
9 // LIC// modify it under the terms of the GNU Lesser General Public
10 // LIC// License as published by the Free Software Foundation; either
11 // LIC// version 2.1 of the License, or (at your option) any later version.
12 // LIC//
13 // LIC// This library is distributed in the hope that it will be useful,
14 // LIC// but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // LIC// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
16 // LIC// Lesser General Public License for more details.
17 // LIC//
18 // LIC// You should have received a copy of the GNU Lesser General Public
19 // LIC// License along with this library; if not, write to the Free Software
20 // LIC// Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
21 // LIC// 02110-1301 USA.
22 // LIC//
23 // LIC// The authors may be contacted at oomph-lib@maths.man.ac.uk.
24 // LIC//
25 // LIC//====================================================================
26 // Header functions for classes that define Qelements
27 // Include guards to prevent multiple inclusion of the header
28 #ifndef OOMPH_QELEMENT_HEADER
29 #define OOMPH_QELEMENT_HEADER
30 
31 // Config header generated by autoconfig
32 #ifdef HAVE_CONFIG_H
33 #include <oomph-lib-config.h>
34 #endif
35 
36 
37 #ifdef OOMPH_HAS_MPI
38 #include "mpi.h"
39 #endif
40 
41 // oomph-lib headers
42 #include "Vector.h"
43 #include "shape.h"
44 #include "integral.h"
45 #include "timesteppers.h"
46 #include "elements.h"
47 #include "macro_element.h"
48 
50 
51 
52 namespace oomph
53 {
54  /// ///////////////////////////////////////////////////////////////////
55  /// ///////////////////////////////////////////////////////////////////
56  /// ///////////////////////////////////////////////////////////////////
57 
58  //========================================================================
59  /// Empty base class for Qelements (created so that
60  /// we can use dynamic_cast<>() to figure out if a an element
61  /// is a Qelement (from a purely geometric point of view).
62  //========================================================================
63  class QElementGeometricBase : public virtual FiniteElement
64  {
65  public:
66  /// Empty default constructor
68 
69  /// Broken copy constructor
71 
72  /// Broken assignment operator
73  // Commented out broken assignment operator because this can lead to a
74  // conflict warning when used in the virtual inheritence hierarchy.
75  // Essentially the compiler doesn't realise that two separate
76  // implementations of the broken function are the same and so, quite
77  // rightly, it shouts.
78  /*void operator=(const QElementGeometricBase&) = delete;*/
79  };
80 
81 
82  /// ///////////////////////////////////////////////////////////////////
83  /// ///////////////////////////////////////////////////////////////////
84  /// ///////////////////////////////////////////////////////////////////
85 
86 
87  //========================================================================
88  /// Base class for Qelements
89  //========================================================================
90  class QElementBase : public virtual QElementGeometricBase
91  {
92  public:
93  /// Constructor: Initialise pointers to macro element reference coords
95 
96  /// Broken copy constructor
97  QElementBase(const QElementBase&) = delete;
98 
99  /// Broken assignment operator
100  /*void operator=(const QElementBase&) = delete;*/
101 
102  /// Destructor: Kill storage for macro element reference coords
103  virtual ~QElementBase()
104  {
105  // Can be deleted blindly as they were nulled initially
106  delete S_macro_ll_pt;
107  S_macro_ll_pt = 0;
108  delete S_macro_ur_pt;
109  S_macro_ur_pt = 0;
110  }
111 
112  /// Check whether the local coordinate are valid or not
114  {
115  unsigned ncoord = dim();
116  for (unsigned i = 0; i < ncoord; i++)
117  {
118  // We're outside
119  if ((s[i] - s_max() > 0.0) || (s_min() - s[i] > 0.0))
120  {
121  return false;
122  }
123  }
124  return true;
125  }
126 
127  /// Adjust local coordinates so that they're located inside
128  /// the element
130  {
131  unsigned ncoord = dim();
132  for (unsigned i = 0; i < ncoord; i++)
133  {
134  // Adjust to move it onto the boundary
135  if (s[i] > s_max()) s[i] = s_max();
136  if (s[i] < s_min()) s[i] = s_min();
137  }
138  }
139 
140 
141  /// Set pointer to macro element also sets up storage for the
142  /// reference coordinates and initialises them
144  {
145  // Get the spatial dimension (= number of local and macro element coords)
146  unsigned n_dim = dim();
147 
148  // Create storage if none has been allocated
149  if (S_macro_ll_pt == 0)
150  {
151  S_macro_ll_pt = new Vector<double>(n_dim);
152  }
153  // Otherwise resize the allocated storage
154  else
155  {
156  S_macro_ll_pt->resize(n_dim);
157  }
158 
159  // Create storage if none has been allocated
160  if (S_macro_ur_pt == 0)
161  {
162  S_macro_ur_pt = new Vector<double>(n_dim);
163  }
164  // Otherwise resize the allocated storage
165  else
166  {
167  S_macro_ur_pt->resize(n_dim);
168  }
169 
170  // Initialise the vertex coordinates in the macro element
171  // Default: The element is unrefined and hence its vertices are those
172  // of the macro element itself
173  for (unsigned i = 0; i < n_dim; i++)
174  {
175  s_macro_ll(i) = -1.0;
176  s_macro_ur(i) = 1.0;
177  }
178 
179  /// Call the corresponding function in the FiniteElement base class
181  }
182 
183 
184  /// Access fct to the i-th coordinate of the element's
185  /// "lower left" vertex in the associated MacroElement
186  double& s_macro_ll(const unsigned& i)
187  {
188 #ifdef PARANOID
189  if (S_macro_ll_pt == 0)
190  {
191  throw OomphLibError("S_macro_ll_pt has not been set\n",
192  OOMPH_CURRENT_FUNCTION,
193  OOMPH_EXCEPTION_LOCATION);
194  }
195 #endif
196  return (*S_macro_ll_pt)[i];
197  }
198 
199 
200  /// Access fct to the i-th coordinate of the element's
201  /// "upper right" vertex in the associated MacroElement
202  double& s_macro_ur(const unsigned& i)
203  {
204 #ifdef PARANOID
205  if (S_macro_ur_pt == 0)
206  {
207  throw OomphLibError("S_macro_ur_pt has not been set\n",
208  OOMPH_CURRENT_FUNCTION,
209  OOMPH_EXCEPTION_LOCATION);
210  }
211 #endif
212  return (*S_macro_ur_pt)[i];
213  }
214 
215 
216  /// Access fct to the i-th coordinate of the element's
217  /// "lower left" vertex in the associated MacroElement. (const version)
218  double s_macro_ll(const unsigned& i) const
219  {
220 #ifdef PARANOID
221  if (S_macro_ll_pt == 0)
222  {
223  throw OomphLibError("S_macro_ll_pt has not been set\n",
224  OOMPH_CURRENT_FUNCTION,
225  OOMPH_EXCEPTION_LOCATION);
226  }
227 #endif
228  return (*S_macro_ll_pt)[i];
229  }
230 
231 
232  /// Access fct to the i-th coordinate of the element's
233  /// "upper right" vertex in the associated MacroElement. (const version)
234  double s_macro_ur(const unsigned& i) const
235  {
236 #ifdef PARANOID
237  if (S_macro_ur_pt == 0)
238  {
239  throw OomphLibError("S_macro_ur_pt has not been set\n",
240  OOMPH_CURRENT_FUNCTION,
241  OOMPH_EXCEPTION_LOCATION);
242  }
243 #endif
244  return (*S_macro_ur_pt)[i];
245  }
246 
247  /// Global coordinates as function of local coordinates.
248  /// using the macro element representation
250  Vector<double>& x) const
251  {
252  // Check that there is a macro element
253  if (Macro_elem_pt == 0)
254  {
255  throw OomphLibError("Macro Element pointer not set in this element\n",
256  OOMPH_CURRENT_FUNCTION,
257  OOMPH_EXCEPTION_LOCATION);
258  }
259 
260  // Use macro element representation
261  unsigned el_dim = dim();
262  Vector<double> s_macro(el_dim);
263  for (unsigned i = 0; i < el_dim; i++)
264  {
265  s_macro[i] =
266  s_macro_ll(i) + 0.5 * (s[i] + 1.0) * (s_macro_ur(i) - s_macro_ll(i));
267  }
268  Macro_elem_pt->macro_map(s_macro, x);
269  }
270 
271  /// Global coordinates as function of local coordinates
272  /// at previous time "level" t (t=0: present; t>0: previous)
273  /// using the macro element representation
274  void get_x_from_macro_element(const unsigned& t,
275  const Vector<double>& s,
276  Vector<double>& x)
277  {
278  // Check that there is a macro element
279  if (Macro_elem_pt == 0)
280  {
281  throw OomphLibError("Macro Element pointer not set in this element\n",
282  OOMPH_CURRENT_FUNCTION,
283  OOMPH_EXCEPTION_LOCATION);
284  }
285 
286  // Use the macro element representation
287  unsigned el_dim = dim();
288  Vector<double> s_macro(el_dim);
289  for (unsigned i = 0; i < el_dim; i++)
290  {
291  s_macro[i] =
292  s_macro_ll(i) + 0.5 * (s[i] + 1.0) * (s_macro_ur(i) - s_macro_ll(i));
293  }
294  Macro_elem_pt->macro_map(t, s_macro, x);
295  }
296 
297  /// Return number of nodes on one face of the element. Always
298  /// nnode_1d^(el_dim - 1).
299  unsigned nnode_on_face() const
300  {
301  // c++ doesn't have pow(int, int) so we have to use all these casts...
302  return static_cast<unsigned>(std::pow(static_cast<double>(nnode_1d()),
303  static_cast<double>(dim() - 1)));
304  }
305 
306  /// It's a Q element!
308  {
309  return ElementGeometry::Q;
310  }
311 
312  private:
313  /// Pointer to vector of lower left vertex coords. in macro element
315 
316  /// Pointer to vector of upper right vertex coords. in macro element
318  };
319 
320 
321  /// ///////////////////////////////////////////////////////////////////////
322  /// ///////////////////////////////////////////////////////////////////////
323  /// ///////////////////////////////////////////////////////////////////////
324 
325 
326  //========================================================================
327  /// Base class for Solid Qelements
328  //========================================================================
329  class QSolidElementBase : public virtual QElementBase,
330  public virtual SolidFiniteElement
331  {
332  public:
333  /// Constructor: Empty
335 
336  /// Broken copy constructor
338 
339  /// Broken assignment operator
340  /*void operator=(const QSolidElementBase&) = delete;*/
341 
342  /// Set pointer to MacroElement -- overloads generic version
343  /// in RefineableQElement<2> and uses the MacroElement
344  /// also as the default for the "undeformed" configuration.
345  /// This assignment can/must be overwritten with
346  /// set_undeformed_macro_elem_pt(...) if the deformation of
347  /// the solid body is driven by a deformation of the
348  /// "current" Domain/MacroElement representation of it's boundary.
350  {
351  // Call the general Q version which sets up the storage
352  // for the reference coordinates
354  // Store pointer to macro element that represents the exact
355  // undeformed geomtry
357  }
358 
359  /// Set pointers to "current" and "undeformed" MacroElements.
362  {
363  // Call the general Q version which sets up the storage
364  // for the reference coordinates
366  // Store pointer to macro element that represents the exact
367  // undeformed geomtry
369  }
370 
371  /// Eulerian and Lagrangian coordinates as function of the
372  /// local coordinates: The Eulerian position is returned in
373  /// FE-interpolated form (\c x_fe) and then in the form obtained
374  /// from the "current" MacroElement representation (if it exists -- if not,
375  /// \c x is the same as \c x_fe). This allows the Domain/MacroElement-
376  /// based representation to be used to apply displacement boundary
377  /// conditions exactly. Ditto for the Lagrangian coordinates returned
378  /// in xi_fe and xi.
380  Vector<double>& x_fe,
381  Vector<double>& x,
382  Vector<double>& xi_fe,
383  Vector<double>& xi) const
384  {
385  // Lagrangian coordinate: Directly from
386  // underlying FE representation
387  unsigned n_xi = xi_fe.size();
388  for (unsigned i = 0; i < n_xi; i++)
389  {
390  xi_fe[i] = interpolated_xi(s, i);
391  }
392 
393  // Lagrangian coordinate from FE representation again
394  if (Undeformed_macro_elem_pt == 0)
395  {
396  unsigned n_xi = xi.size();
397  for (unsigned i = 0; i < n_xi; i++)
398  {
399  xi[i] = xi_fe[i];
400  }
401  }
402  // ...or refer to the "undeformed" MacroElement if it exists.
403  else
404  {
405  unsigned el_dim = dim();
406  Vector<double> s_macro(el_dim);
407  for (unsigned i = 0; i < el_dim; i++)
408  {
409  s_macro[i] = s_macro_ll(i) +
410  0.5 * (s[i] + 1.0) * (s_macro_ur(i) - s_macro_ll(i));
411  }
412  Undeformed_macro_elem_pt->macro_map(s_macro, xi);
413  }
414 
415 
416  // Eulerian coordinate directly from underlying FE representation
417  unsigned n_x = x_fe.size();
418  for (unsigned i = 0; i < n_x; i++)
419  {
420  x_fe[i] = interpolated_x(s, i);
421  }
422 
423  // Eulerian coordinate from FE representation again:
424  if (Macro_elem_pt == 0)
425  {
426  for (unsigned i = 0; i < n_x; i++)
427  {
428  x[i] = x_fe[i];
429  }
430  }
431  // or refer to the "current" MacroElement if it exists.
432  else
433  {
434  unsigned el_dim = dim();
435  Vector<double> s_macro(el_dim);
436  for (unsigned i = 0; i < el_dim; i++)
437  {
438  s_macro[i] = s_macro_ll(i) +
439  0.5 * (s[i] + 1.0) * (s_macro_ur(i) - s_macro_ll(i));
440  }
441  Macro_elem_pt->macro_map(s_macro, x);
442  }
443  }
444  };
445 
446 
447  /// ///////////////////////////////////////////////////////////////////////
448  /// ///////////////////////////////////////////////////////////////////////
449  /// ///////////////////////////////////////////////////////////////////////
450 
451 
452  //=======================================================================
453  /// General QElement class
454  ///
455  /// Empty, just establishes the template parameters
456  //=======================================================================
457  template<unsigned DIM, unsigned NNODE_1D>
458  class QElement
459  {
460  };
461 
462  //=======================================================================
463  /// Base class for all line elements
464  //=======================================================================
465  class LineElementBase : public virtual QElementBase
466  {
467  public:
468  /// Constructor. Empty
470 
471  /// Number of vertex nodes in the element
472  virtual unsigned nvertex_node() const = 0;
473 
474  /// Pointer to the j-th vertex node in the element
475  virtual Node* vertex_node_pt(const unsigned& j) const = 0;
476  };
477 
478  //=======================================================================
479  /// General QElement class specialised to one spatial dimension
480  //=======================================================================
481  template<unsigned NNODE_1D>
482  class QElement<1, NNODE_1D> : public virtual LineElementBase
483  {
484  private:
485  /// Default integration rule: Gaussian integration of same 'order'
486  /// as the element
487  // This is sort of optimal, because it means that the integration is exact
488  // for the shape functions. Can overwrite this in specific element
489  // defintion.
491 
492  public:
493  /// Constructor
495  {
496  // There are NNODE_1D nodes in this element
497  this->set_n_node(NNODE_1D);
498  // Set the dimensions of the element and the nodes, by default, both 1D
499  this->set_dimension(1);
500  // Assign pointer to default (full) integration_scheme
501  this->set_integration_scheme(&Default_integration_scheme);
502  }
503 
504  /// Broken copy constructor
505  QElement(const QElement&) = delete;
506 
507  /// Broken assignment operator
508  /*void operator=(const QElement&) = delete;*/
509 
510  /// Calculate the geometric shape functions at local coordinate s
511  void shape(const Vector<double>& s, Shape& psi) const;
512 
513  /// Compute the geometric shape functions and
514  /// derivatives w.r.t. local coordinates at local coordinate s
515  void dshape_local(const Vector<double>& s,
516  Shape& psi,
517  DShape& dpsids) const;
518 
519  /// Compute the geometric shape functions, derivatives and
520  /// second derivatives w.r.t. local coordinates at local coordinate s
521  /// d2psids(i,0) = \f$ d^2 \psi_j / d s^2 \f$
522  void d2shape_local(const Vector<double>& s,
523  Shape& psi,
524  DShape& dpsids,
525  DShape& d2psids) const;
526 
527  /// Overload the template-free interface for the calculation of
528  /// inverse jacobian matrix. This is a one-dimensional element, so
529  /// use the 1D version.
531  DenseMatrix<double>& inverse_jacobian) const
532  {
533  return FiniteElement::invert_jacobian<1>(jacobian, inverse_jacobian);
534  }
535 
536  /// Min. value of local coordinate
537  double s_min() const
538  {
539  return -1.0;
540  }
541 
542  /// Max. value of local coordinate
543  double s_max() const
544  {
545  return 1.0;
546  }
547 
548  /// Number of vertex nodes in the element
549  unsigned nvertex_node() const
550  {
551  return 2;
552  }
553 
554  /// Pointer to the j-th vertex node in the element
555  Node* vertex_node_pt(const unsigned& j) const
556  {
557  unsigned n_node_1d = nnode_1d();
558  Node* nod_pt;
559  switch (j)
560  {
561  case 0:
562  nod_pt = node_pt(0);
563  break;
564  case 1:
565  nod_pt = node_pt(n_node_1d - 1);
566  break;
567  default:
568  std::ostringstream error_message;
569  error_message << "Vertex node number is " << j
570  << " but must be from 0 to 1\n";
571 
572  throw OomphLibError(error_message.str(),
573  OOMPH_CURRENT_FUNCTION,
574  OOMPH_EXCEPTION_LOCATION);
575  }
576  return nod_pt;
577  }
578 
579  /// Get local coordinates of node j in the element; vector sets its own size
580  void local_coordinate_of_node(const unsigned& j, Vector<double>& s) const
581  {
582  s.resize(1);
583  s[0] = this->s_min() +
584  double(j) / double(NNODE_1D - 1) * (this->s_max() - this->s_min());
585  }
586 
587 
588  /// Get the local fraction of node j in the element
589  void local_fraction_of_node(const unsigned& j, Vector<double>& s_fraction)
590  {
591  s_fraction.resize(1);
592  s_fraction[0] = double(j) / double(NNODE_1D - 1);
593  }
594 
595 
596  /// This function returns the local fraction of all nodes at the n-th
597  /// position in a one dimensional expansion along the i-th local coordinate
598  inline double local_one_d_fraction_of_node(const unsigned& n1d,
599  const unsigned& i)
600  {
601  // It's just the value of the node divided by the number of 1-D nodes
602  return double(n1d) / double(NNODE_1D - 1);
603  }
604 
605  /// Get the node at the specified local coordinate
606  Node* get_node_at_local_coordinate(const Vector<double>& s) const;
607 
608  /// Number of nodes along each element edge
609  unsigned nnode_1d() const
610  {
611  return NNODE_1D;
612  }
613 
614  /// Return the number of actual plot points for paraview
615  /// plot with parameter nplot.
616  unsigned nplot_points_paraview(const unsigned& nplot) const
617  {
618  return nplot;
619  }
620 
621  /// Return the number of local sub-elements for paraview plot with
622  /// parameter nplot.
623  unsigned nsub_elements_paraview(const unsigned& nplot) const
624  {
625  return (nplot - 1);
626  }
627 
628  /// Fill in the offset information for paraview plot.
629  /// Needs to be implemented for each new geometric element type; see
630  /// http://www.vtk.org/VTK/img/file-formats.pdf
631  void write_paraview_output_offset_information(std::ofstream& file_out,
632  const unsigned& nplot,
633  unsigned& counter) const
634  {
635  // Number of local elements we want to plot over
636  unsigned plot = nsub_elements_paraview(nplot);
637 
638  // loops over the i-th local element in parent element
639  for (unsigned i = 0; i < plot; i++)
640  {
641  file_out << i + counter << " " << i + 1 + counter << std::endl;
642  }
643  counter += nplot_points_paraview(nplot);
644  }
645 
646  /// Return the paraview element type.
647  /// Needs to be implemented for each new geometric element type; see
648  /// http://www.vtk.org/VTK/img/file-formats.pdf
649  /// Use type "VTK_LINE" (== 3) for 2D quad elements
650  void write_paraview_type(std::ofstream& file_out,
651  const unsigned& nplot) const
652  {
653  unsigned local_loop = nsub_elements_paraview(nplot);
654  for (unsigned i = 0; i < local_loop; i++)
655  {
656  file_out << "3" << std::endl;
657  }
658  }
659 
660  /// Return the offsets for the paraview sub-elements. Needs
661  /// to be implemented for each new geometric element type; see
662  /// http://www.vtk.org/VTK/img/file-formats.pdf
663  void write_paraview_offsets(std::ofstream& file_out,
664  const unsigned& nplot,
665  unsigned& offset_sum) const
666  {
667  // Loop over all local elements and add its offset to the overall
668  // offset_sum
669  unsigned local_loop = nsub_elements_paraview(nplot);
670  for (unsigned i = 0; i < local_loop; i++)
671  {
672  offset_sum += 2;
673  file_out << offset_sum << std::endl;
674  }
675  }
676 
677  /// Output
678  void output(std::ostream& outfile);
679 
680  /// Output at n_plot points
681  void output(std::ostream& outfile, const unsigned& n_plot);
682 
683  /// C-style output
684  void output(FILE* file_pt);
685 
686  /// C_style output at n_plot points
687  void output(FILE* file_pt, const unsigned& n_plot);
688 
689 
690  /// Get cector of local coordinates of plot point i (when plotting
691  /// nplot points in each "coordinate direction).
693  const unsigned& i,
694  const unsigned& nplot,
695  Vector<double>& s,
696  const bool& use_equally_spaced_interior_sample_points = false) const
697  {
698  if (nplot > 1)
699  {
700  s[0] = -1.0 + 2.0 * double(i) / double(nplot - 1);
701  if (use_equally_spaced_interior_sample_points)
702  {
703  double range = 2.0;
704  double dx_new = range / double(nplot);
705  double range_new = double(nplot - 1) * dx_new;
706  s[0] = -1.0 + 0.5 * dx_new + range_new * (1.0 + s[0]) / range;
707  }
708  }
709  else
710  {
711  s[0] = 0.0;
712  }
713  }
714 
715  /// Return string for tecplot zone header (when plotting
716  /// nplot points in each "coordinate direction)
717  std::string tecplot_zone_string(const unsigned& nplot) const
718  {
719  std::ostringstream header;
720  header << "ZONE I=" << nplot << "\n";
721  return header.str();
722  }
723 
724  /// Return total number of plot points (when plotting
725  /// nplot points in each "coordinate direction)
726  unsigned nplot_points(const unsigned& nplot) const
727  {
728  unsigned DIM = 1;
729  unsigned np = 1;
730  for (unsigned i = 0; i < DIM; i++)
731  {
732  np *= nplot;
733  }
734  return np;
735  }
736 
737  /// Get the number of the ith node on face face_index in the bulk node
738  /// vector.
739  unsigned get_bulk_node_number(const int& face_index,
740  const unsigned& i) const
741  {
742  face_node_number_error_check(i);
743 
744  if (face_index == -1)
745  {
746  return 0;
747  }
748  else if (face_index == +1)
749  {
750  return nnode_1d() - 1;
751  }
752  else
753  {
754  std::string err = "Face index should be in {-1, +1}.";
755  throw OomphLibError(
756  err, OOMPH_EXCEPTION_LOCATION, OOMPH_CURRENT_FUNCTION);
757  }
758  }
759 
760  /// Get the sign of the outer unit normal on the face given by face_index.
761  int face_outer_unit_normal_sign(const int& face_index) const
762  {
763 #ifdef PARANOID
764  if (std::abs(face_index) != 1)
765  {
766  std::string err = "Face index should be in {-1, +1}.";
767  throw OomphLibError(
768  err, OOMPH_EXCEPTION_LOCATION, OOMPH_CURRENT_FUNCTION);
769  }
770 #endif
771  return face_index;
772  }
773 
774  /// Get a pointer to the function mapping face coordinates to bulk
775  /// coordinates
777  const int& face_index) const
778  {
779  if (face_index == 1)
780  {
782  }
783  else if (face_index == -1)
784  {
786  }
787  else
788  {
789  std::string err = "Face index should be in {-1, +1}.";
790  throw OomphLibError(
791  err, OOMPH_EXCEPTION_LOCATION, OOMPH_CURRENT_FUNCTION);
792  }
793  }
794 
795  /// Get a pointer to the derivative of the mapping from face to bulk
796  /// coordinates.
798  const int& face_index) const
799  {
800  if (face_index == 1)
801  {
803  }
804  else if (face_index == -1)
805  {
807  }
808  else
809  {
810  std::string err = "Face index should be in {-1, +1}.";
811  throw OomphLibError(
812  err, OOMPH_EXCEPTION_LOCATION, OOMPH_CURRENT_FUNCTION);
813  }
814  }
815  };
816 
817  //=======================================================================
818  /// Base class for all quad elements
819  //=======================================================================
820  class QuadElementBase : public virtual QElementBase
821  {
822  public:
823  /// Constructor. Empty
825 
826  /// Number of vertex nodes in the element
827  virtual unsigned nvertex_node() const = 0;
828 
829  /// Pointer to the j-th vertex node in the element
830  virtual Node* vertex_node_pt(const unsigned& j) const = 0;
831  };
832 
833  //=======================================================================
834  /// General QElement class specialised to two spatial dimensions
835  //=======================================================================
836  template<unsigned NNODE_1D>
837  class QElement<2, NNODE_1D> : public virtual QuadElementBase
838  {
839  private:
840  /// Default integration rule: Gaussian integration of same 'order'
841  /// as the element
842  // N.B. This is sort of optimal, because it means that the integration is
843  // exact for the shape functions. Can overwrite this in specific element
844  // defintion
846 
847  public:
848  /// Constructor
850  {
851  // There are NNODE_1D*NNODE_1D nodes in this element
852  this->set_n_node(NNODE_1D * NNODE_1D);
853  // Set the dimensions of the element and the nodes, by default, both 2D
854  set_dimension(2);
855  // Assign default (full) spatial integration scheme
856  set_integration_scheme(&Default_integration_scheme);
857  }
858 
859  /// Broken copy constructor
860  QElement(const QElement&) = delete;
861 
862  /// Broken assignment operator
863  /*void operator=(const QElement&) = delete;*/
864 
865  /// Calculate the geometric shape functions at local coordinate s
866  void shape(const Vector<double>& s, Shape& psi) const;
867 
868  /// Compute the geometric shape functions and
869  /// derivatives w.r.t. local coordinates at local coordinate s
870  void dshape_local(const Vector<double>& s,
871  Shape& psi,
872  DShape& dpsids) const;
873 
874  /// Compute the geometric shape functions, derivatives and
875  /// second derivatives w.r.t. local coordinates at local coordinate s
876  /// d2psids(i,0) = \f$ \partial^2 \psi_j / \partial s_0^2 \f$
877  /// d2psids(i,1) = \f$ \partial^2 \psi_j / \partial s_1^2 \f$
878  /// d2psids(i,2) = \f$ \partial^2 \psi_j / \partial s_0 \partial s_1 \f$
879  void d2shape_local(const Vector<double>& s,
880  Shape& psi,
881  DShape& dpsids,
882  DShape& d2psids) const;
883 
884  /// Overload the template-free interface for the calculation of
885  /// inverse jacobian matrix. This is a two-dimensional element, so use
886  /// the two-d version.
888  DenseMatrix<double>& inverse_jacobian) const
889  {
890  return FiniteElement::invert_jacobian<2>(jacobian, inverse_jacobian);
891  }
892 
893  /// Min. value of local coordinate
894  double s_min() const
895  {
896  return -1.0;
897  }
898 
899  /// Max. value of local coordinate
900  double s_max() const
901  {
902  return 1.0;
903  }
904 
905 
906  /// Number of vertex nodes in the element
907  unsigned nvertex_node() const
908  {
909  return 4;
910  }
911 
912  /// Pointer to the j-th vertex node in the element
913  Node* vertex_node_pt(const unsigned& j) const
914  {
915  unsigned n_node_1d = nnode_1d();
916  Node* nod_pt;
917  switch (j)
918  {
919  case 0:
920  nod_pt = node_pt(0);
921  break;
922  case 1:
923  nod_pt = node_pt(n_node_1d - 1);
924  break;
925  case 2:
926  nod_pt = node_pt(n_node_1d * (n_node_1d - 1));
927  break;
928  case 3:
929  nod_pt = node_pt(n_node_1d * n_node_1d - 1);
930  break;
931  default:
932  std::ostringstream error_message;
933  error_message << "Vertex node number is " << j
934  << " but must be from 0 to 3\n";
935 
936  throw OomphLibError(error_message.str(),
937  OOMPH_CURRENT_FUNCTION,
938  OOMPH_EXCEPTION_LOCATION);
939  }
940  return nod_pt;
941  }
942 
943 
944  /// Get local coordinates of node j in the element; vector sets its own size
945  void local_coordinate_of_node(const unsigned& j, Vector<double>& s) const
946  {
947  s.resize(2);
948  unsigned j0 = j % NNODE_1D;
949  unsigned j1 = j / NNODE_1D;
950  const double S_min = this->s_min();
951  const double S_range = this->s_max() - S_min;
952  s[0] = S_min + double(j0) / double(NNODE_1D - 1) * S_range;
953  s[1] = S_min + double(j1) / double(NNODE_1D - 1) * S_range;
954  }
955 
956  /// Get the local fraction of node j in the element
957  void local_fraction_of_node(const unsigned& j, Vector<double>& s_fraction)
958  {
959  s_fraction.resize(2);
960  unsigned j0 = j % NNODE_1D;
961  unsigned j1 = j / NNODE_1D;
962  s_fraction[0] = double(j0) / double(NNODE_1D - 1);
963  s_fraction[1] = double(j1) / double(NNODE_1D - 1);
964  }
965 
966  /// This function returns the local fraction of ant nodes in the n-th
967  /// positoin in a one dimensional expansion along the i-th local coordinate
968  inline double local_one_d_fraction_of_node(const unsigned& n1d,
969  const unsigned& i)
970  {
971  // It's just the value of the node divided by the number of 1-D nodes
972  return double(n1d) / double(NNODE_1D - 1);
973  }
974 
975  /// Get the node at the specified local coordinate
976  Node* get_node_at_local_coordinate(const Vector<double>& s) const;
977 
978  /// Number of nodes along each element edge
979  unsigned nnode_1d() const
980  {
981  return NNODE_1D;
982  }
983 
984  /// Return the number of actual plot points for paraview
985  /// plot with parameter nplot.
986  unsigned nplot_points_paraview(const unsigned& nplot) const
987  {
988  return nplot * nplot;
989  }
990 
991  /// Return the number of local sub-elements for paraview plot with
992  /// parameter nplot.
993  unsigned nsub_elements_paraview(const unsigned& nplot) const
994  {
995  return (nplot - 1) * (nplot - 1);
996  }
997 
998  /// Fill in the offset information for paraview plot.
999  /// Needs to be implemented for each new geometric element type; see
1000  /// http://www.vtk.org/VTK/img/file-formats.pdf
1001  void write_paraview_output_offset_information(std::ofstream& file_out,
1002  const unsigned& nplot,
1003  unsigned& counter) const
1004  {
1005  // Number of local elements we want to plot over
1006  unsigned plot = nsub_elements_paraview(nplot);
1007 
1008  // loops over the i-th local element in parent element
1009  for (unsigned i = 0; i < plot; i++)
1010  {
1011  unsigned d = (i - (i % (nplot - 1))) / (nplot - 1);
1012 
1013  file_out << i % (nplot - 1) + d * nplot + counter << " "
1014  << i % (nplot - 1) + 1 + d * nplot + counter << " "
1015  << i % (nplot - 1) + 1 + (d + 1) * nplot + counter << " "
1016  << i % (nplot - 1) + (d + 1) * nplot + counter << std::endl;
1017  }
1018  counter += nplot_points_paraview(nplot);
1019  }
1020 
1021  /// Return the paraview element type.
1022  /// Needs to be implemented for each new geometric element type; see
1023  /// http://www.vtk.org/VTK/img/file-formats.pdf
1024  /// Use type "VTK_QUAD" (== 9) for 2D quad elements
1025  void write_paraview_type(std::ofstream& file_out,
1026  const unsigned& nplot) const
1027  {
1028  unsigned local_loop = nsub_elements_paraview(nplot);
1029  for (unsigned i = 0; i < local_loop; i++)
1030  {
1031  file_out << "9" << std::endl;
1032  }
1033  }
1034 
1035  /// Return the offsets for the paraview sub-elements. Needs
1036  /// to be implemented for each new geometric element type; see
1037  /// http://www.vtk.org/VTK/img/file-formats.pdf
1038  void write_paraview_offsets(std::ofstream& file_out,
1039  const unsigned& nplot,
1040  unsigned& offset_sum) const
1041  {
1042  // Loop over all local elements and add its offset to the overall
1043  // offset_sum
1044  unsigned local_loop = nsub_elements_paraview(nplot);
1045  for (unsigned i = 0; i < local_loop; i++)
1046  {
1047  offset_sum += 4;
1048  file_out << offset_sum << std::endl;
1049  }
1050  }
1051 
1052  /// Output
1053  void output(std::ostream& outfile);
1054 
1055  /// Output at n_plot points
1056  void output(std::ostream& outfile, const unsigned& n_plot);
1057 
1058  /// C-style output
1059  void output(FILE* file_pt);
1060 
1061  /// C_style output at n_plot points
1062  void output(FILE* file_pt, const unsigned& n_plot);
1063 
1064 
1065  /// Get cector of local coordinates of plot point i (when plotting
1066  /// nplot points in each "coordinate direction).
1068  const unsigned& i,
1069  const unsigned& nplot,
1070  Vector<double>& s,
1071  const bool& use_equally_spaced_interior_sample_points = false) const
1072  {
1073  if (nplot > 1)
1074  {
1075  unsigned i0 = i % nplot;
1076  unsigned i1 = (i - i0) / nplot;
1077 
1078  s[0] = -1.0 + 2.0 * double(i0) / double(nplot - 1);
1079  s[1] = -1.0 + 2.0 * double(i1) / double(nplot - 1);
1080  if (use_equally_spaced_interior_sample_points)
1081  {
1082  double range = 2.0;
1083  double dx_new = range / double(nplot);
1084  double range_new = double(nplot - 1) * dx_new;
1085  s[0] = -1.0 + 0.5 * dx_new + range_new * (1.0 + s[0]) / range;
1086  s[1] = -1.0 + 0.5 * dx_new + range_new * (1.0 + s[1]) / range;
1087  }
1088  }
1089  else
1090  {
1091  s[0] = 0.0;
1092  s[1] = 0.0;
1093  }
1094  }
1095 
1096  /// Return string for tecplot zone header (when plotting
1097  /// nplot points in each "coordinate direction)
1098  std::string tecplot_zone_string(const unsigned& nplot) const
1099  {
1100  std::ostringstream header;
1101  header << "ZONE I=" << nplot << ", J=" << nplot << "\n";
1102  return header.str();
1103  }
1104 
1105  /// Return total number of plot points (when plotting
1106  /// nplot points in each "coordinate direction)
1107  unsigned nplot_points(const unsigned& nplot) const
1108  {
1109  unsigned DIM = 2;
1110  unsigned np = 1;
1111  for (unsigned i = 0; i < DIM; i++)
1112  {
1113  np *= nplot;
1114  }
1115  return np;
1116  };
1117 
1118  /// Get the number of the ith node on face face_index (in the bulk node
1119  /// vector).
1120  unsigned get_bulk_node_number(const int& face_index,
1121  const unsigned& i) const
1122  {
1123  face_node_number_error_check(i);
1124 
1125  const unsigned nn1d = nnode_1d();
1126 
1127  if (face_index == -1)
1128  {
1129  return i * nn1d;
1130  }
1131  else if (face_index == +1)
1132  {
1133  return nn1d * i + nn1d - 1;
1134  }
1135  else if (face_index == -2)
1136  {
1137  return i;
1138  }
1139  else if (face_index == +2)
1140  {
1141  return nn1d * (nn1d - 1) + i;
1142  }
1143  else
1144  {
1145  std::string err = "Face index should be in {-1, +1, -2, +2}.";
1146  throw OomphLibError(
1147  err, OOMPH_EXCEPTION_LOCATION, OOMPH_CURRENT_FUNCTION);
1148  }
1149  }
1150 
1151  /// Get the sign of the outer unit normal on the face given by face_index.
1152  int face_outer_unit_normal_sign(const int& face_index) const
1153  {
1154  if (face_index < 0)
1155  {
1156  return 1;
1157  }
1158  else if (face_index > 0)
1159  {
1160  return -1;
1161  }
1162  else
1163  {
1164  std::string err = "Face index should be one of {-1, +1, -2, +2}.";
1165  throw OomphLibError(
1166  err, OOMPH_EXCEPTION_LOCATION, OOMPH_CURRENT_FUNCTION);
1167  }
1168  }
1169 
1170  /// Get a pointer to the function mapping face coordinates to bulk
1171  /// coordinates
1173  const int& face_index) const
1174  {
1175  if (face_index == 1)
1176  {
1178  }
1179  else if (face_index == -1)
1180  {
1182  }
1183  else if (face_index == -2)
1184  {
1186  }
1187  else if (face_index == 2)
1188  {
1190  }
1191  else
1192  {
1193  std::string err = "Face index should be in {-1, +1}.";
1194  throw OomphLibError(
1195  err, OOMPH_EXCEPTION_LOCATION, OOMPH_CURRENT_FUNCTION);
1196  }
1197  }
1198 
1199  /// Get a pointer to the derivative of the mapping from face to bulk
1200  /// coordinates.
1202  const int& face_index) const
1203  {
1204  if (face_index == 1)
1205  {
1207  }
1208  else if (face_index == -1)
1209  {
1211  }
1212  else if (face_index == -2)
1213  {
1215  }
1216  else if (face_index == 2)
1217  {
1219  }
1220  else
1221  {
1222  std::string err = "Face index should be in {-1, +1}.";
1223  throw OomphLibError(
1224  err, OOMPH_EXCEPTION_LOCATION, OOMPH_CURRENT_FUNCTION);
1225  }
1226  }
1227  };
1228 
1229  //=======================================================================
1230  /// Base class for all brick elements
1231  //=======================================================================
1232  class BrickElementBase : public virtual QElementBase
1233  {
1234  public:
1235  /// Constructor. Empty
1237 
1238  /// Number of vertex nodes in the element
1239  virtual unsigned nvertex_node() const = 0;
1240 
1241  /// Pointer to the j-th vertex node in the element
1242  virtual Node* vertex_node_pt(const unsigned& j) const = 0;
1243  };
1244 
1245  //=======================================================================
1246  /// General QElement class specialised to three spatial dimensions
1247  //=======================================================================
1248  template<unsigned NNODE_1D>
1249  class QElement<3, NNODE_1D> : public virtual BrickElementBase
1250  {
1251  private:
1252  /// Default integration rule: Gaussian integration of same 'order'
1253  /// as the element
1254  // N.B. This is sort of optimal, because it means that the integration is
1255  // exact for the shape functions. Can overwrite this in specific element
1256  // defintion
1258 
1259  public:
1260  /// Constructor
1262  {
1263  // There are NNODE_1D^3 nodes in this element
1264  this->set_n_node(NNODE_1D * NNODE_1D * NNODE_1D);
1265  // Set the dimensions of the element and the nodes, by default, both 3D
1266  set_dimension(3);
1267  // Assign default (full_ spatial integration_scheme
1268  set_integration_scheme(&Default_integration_scheme);
1269  }
1270 
1271 
1272  /// Broken copy constructor
1273  QElement(const QElement&) = delete;
1274 
1275  /// Broken assignment operator
1276  /*void operator=(const QElement&) = delete;*/
1277 
1278  /// Calculate the geometric shape functions at local coordinate s
1279  void shape(const Vector<double>& s, Shape& psi) const;
1280 
1281  /// Compute the geometric shape functions and
1282  /// derivatives w.r.t. local coordinates at local coordinate s
1283  void dshape_local(const Vector<double>& s,
1284  Shape& psi,
1285  DShape& dpsids) const;
1286 
1287  /// Compute the geometric shape functions, derivatives and
1288  /// second derivatives w.r.t. local coordinates at local coordinate s.
1289  /// d2psids(i,0) = \f$ \partial^2 \psi_j / \partial s_0^2 \f$
1290  /// d2psids(i,1) = \f$ \partial^2 \psi_j / \partial s_1^2 \f$
1291  /// d2psids(i,2) = \f$ \partial^2 \psi_j / \partial s_2^2 \f$
1292  /// d2psids(i,3) = \f$ \partial^2 \psi_j / \partial s_0 \partial s_1 \f$
1293  /// d2psids(i,4) = \f$ \partial^2 \psi_j / \partial s_0 \partial s_2 \f$
1294  /// d2psids(i,5) = \f$ \partial^2 \psi_j / \partial s_1 \partial s_2 \f$
1295  void d2shape_local(const Vector<double>& s,
1296  Shape& psi,
1297  DShape& dpsids,
1298  DShape& d2psids) const;
1299 
1300 
1301  /// Overload the template-free interface for the calculation of
1302  /// the inverse jacobian mapping. This is a three-dimensional element,
1303  /// so use the 3d version
1305  DenseMatrix<double>& inverse_jacobian) const
1306  {
1307  return FiniteElement::invert_jacobian<3>(jacobian, inverse_jacobian);
1308  }
1309 
1310  /// Min. value of local coordinate
1311  double s_min() const
1312  {
1313  return -1.0;
1314  }
1315 
1316  /// Max. value of local coordinate
1317  double s_max() const
1318  {
1319  return 1.0;
1320  }
1321 
1322  /// Number of vertex nodes in the element
1323  unsigned nvertex_node() const
1324  {
1325  return 8;
1326  }
1327 
1328  /// Pointer to the j-th vertex node in the element
1329  Node* vertex_node_pt(const unsigned& j) const
1330  {
1331  unsigned N = nnode_1d();
1332  Node* nod_pt;
1333  switch (j)
1334  {
1335  case 0:
1336  nod_pt = node_pt(0);
1337  break;
1338  case 1:
1339  nod_pt = node_pt(N - 1);
1340  break;
1341  case 2:
1342  nod_pt = node_pt(N * (N - 1));
1343  break;
1344  case 3:
1345  nod_pt = node_pt(N * N - 1);
1346  break;
1347  case 4:
1348  nod_pt = node_pt(N * N * (N - 1));
1349  break;
1350  case 5:
1351  nod_pt = node_pt(N * N * (N - 1) + (N - 1));
1352  break;
1353  case 6:
1354  nod_pt = node_pt(N * N * N - N);
1355  break;
1356  case 7:
1357  nod_pt = node_pt(N * N * N - 1);
1358  break;
1359  default:
1360  std::ostringstream error_message;
1361  error_message << "Vertex node number is " << j
1362  << " but must be from 0 to 7\n";
1363 
1364  throw OomphLibError(error_message.str(),
1365  OOMPH_CURRENT_FUNCTION,
1366  OOMPH_EXCEPTION_LOCATION);
1367  }
1368  return nod_pt;
1369  }
1370 
1371  /// Get local coordinates of node j in the element; vector sets its own size
1372  void local_coordinate_of_node(const unsigned& j, Vector<double>& s) const
1373  {
1374  s.resize(3);
1375  unsigned j0 = j % NNODE_1D;
1376  unsigned j1 = (j / NNODE_1D) % NNODE_1D;
1377  unsigned j2 = j / (NNODE_1D * NNODE_1D);
1378  const double S_min = this->s_min();
1379  const double S_range = this->s_max() - S_min;
1380 
1381  s[0] = S_min + double(j0) / double(NNODE_1D - 1) * S_range;
1382  s[1] = S_min + double(j1) / double(NNODE_1D - 1) * S_range;
1383  s[2] = S_min + double(j2) / double(NNODE_1D - 1) * S_range;
1384  }
1385 
1386  /// Get the local fraction of node j in the element
1387  void local_fraction_of_node(const unsigned& j, Vector<double>& s_fraction)
1388  {
1389  s_fraction.resize(3);
1390  unsigned j0 = j % NNODE_1D;
1391  unsigned j1 = (j / NNODE_1D) % NNODE_1D;
1392  unsigned j2 = j / (NNODE_1D * NNODE_1D);
1393  s_fraction[0] = double(j0) / double(NNODE_1D - 1);
1394  s_fraction[1] = double(j1) / double(NNODE_1D - 1);
1395  s_fraction[2] = double(j2) / double(NNODE_1D - 1);
1396  }
1397 
1398  /// This function returns the local fraction of any nodes in the n-th
1399  /// positoin in a one dimensional expansion along the i-th local coordinate
1400  inline double local_one_d_fraction_of_node(const unsigned& n1d,
1401  const unsigned& i)
1402  {
1403  // It's just the value of the node divided by the number of 1-D nodes
1404  return double(n1d) / double(NNODE_1D - 1);
1405  }
1406 
1407  /// Get the node at the specified local coordinate
1408  Node* get_node_at_local_coordinate(const Vector<double>& s) const;
1409 
1410  /// Number of nodes along each element edge
1411  unsigned nnode_1d() const
1412  {
1413  return NNODE_1D;
1414  }
1415 
1416  /// Return the number of actual plot points for paraview
1417  /// plot with parameter nplot.
1418  unsigned nplot_points_paraview(const unsigned& nplot) const
1419  {
1420  return nplot * nplot * nplot;
1421  }
1422 
1423  /// Return the number of local sub-elements for paraview plot with
1424  /// parameter nplot.
1425  unsigned nsub_elements_paraview(const unsigned& nplot) const
1426  {
1427  return (nplot - 1) * (nplot - 1) * (nplot - 1);
1428  }
1429 
1430  /// Fill in the offset information for paraview plot.
1431  /// Needs to be implemented for each new geometric element type; see
1432  /// http://www.vtk.org/VTK/img/file-formats.pdf
1433  void write_paraview_output_offset_information(std::ofstream& file_out,
1434  const unsigned& nplot,
1435  unsigned& counter) const
1436  {
1437  // Number of local elements we want to plot over
1438  unsigned plot = nsub_elements_paraview(nplot);
1439 
1440  for (unsigned j = 0; j < plot; j += (nplot - 1) * (nplot - 1) + 1)
1441  {
1442  // To keep track of how many cross-sections we've looped over
1443  unsigned r = ((j - (j % ((nplot - 1) * (nplot - 1)))) /
1444  ((nplot - 1) * (nplot - 1)));
1445 
1446  // loop over all the elemnets in this sublevel
1447  unsigned sub_plot = (nplot - 1) * (nplot - 1);
1448 
1449  // loops over the i-th local element in parent element
1450  for (unsigned i = 0; i < sub_plot; i++)
1451  {
1452  unsigned d = ((i - (i % (nplot - 1))) / (nplot - 1));
1453 
1454 
1455  // Lower level of rectangle
1456  file_out
1457  << i % (nplot - 1) + d * nplot + r * nplot * nplot + counter << " "
1458  << i % (nplot - 1) + 1 + d * nplot + r * nplot * nplot + counter
1459  << " "
1460  << i % (nplot - 1) + 1 + (d + 1) * nplot + r * nplot * nplot +
1461  counter
1462  << " "
1463  << i % (nplot - 1) + (d + 1) * nplot + r * nplot * nplot + counter
1464  << " "
1465 
1466  // Upper level of rectangle
1467  << i % (nplot - 1) + d * nplot + (r + 1) * nplot * nplot + counter
1468  << " "
1469  << i % (nplot - 1) + 1 + d * nplot + (r + 1) * nplot * nplot +
1470  counter
1471  << " "
1472  << i % (nplot - 1) + 1 + (d + 1) * nplot + (r + 1) * nplot * nplot +
1473  counter
1474  << " "
1475  << i % (nplot - 1) + (d + 1) * nplot + (r + 1) * nplot * nplot +
1476  counter
1477  << std::endl;
1478  }
1479  }
1480  counter += nplot_points_paraview(nplot);
1481  }
1482 
1483  /// Return the paraview element type.
1484  /// Needs to be implemented for each new geometric element type; see
1485  /// http://www.vtk.org/VTK/img/file-formats.pdf
1486  /// Use type "VTK_HEXAHEDRON" (== 12) for 2D quad elements
1487  void write_paraview_type(std::ofstream& file_out,
1488  const unsigned& nplot) const
1489  {
1490  unsigned local_loop = nsub_elements_paraview(nplot);
1491  for (unsigned i = 0; i < local_loop; i++)
1492  {
1493  file_out << "12" << std::endl;
1494  }
1495  }
1496 
1497  /// Return the offsets for the paraview sub-elements. Needs
1498  /// to be implemented for each new geometric element type; see
1499  /// http://www.vtk.org/VTK/img/file-formats.pdf
1500  void write_paraview_offsets(std::ofstream& file_out,
1501  const unsigned& nplot,
1502  unsigned& offset_sum) const
1503  {
1504  unsigned local_loop = nsub_elements_paraview(nplot);
1505  for (unsigned i = 0; i < local_loop; i++)
1506  {
1507  offset_sum += 8;
1508  file_out << offset_sum << std::endl;
1509  }
1510  }
1511 
1512  /// Output
1513  void output(std::ostream& outfile);
1514 
1515  /// Output at n_plot points
1516  void output(std::ostream& outfile, const unsigned& n_plot);
1517 
1518  /// C-style output
1519  void output(FILE* file_pt);
1520 
1521  /// C_style output at n_plot points
1522  void output(FILE* file_pt, const unsigned& n_plot);
1523 
1524  /// Get cector of local coordinates of plot point i (when plotting
1525  /// nplot points in each "coordinate direction).
1527  const unsigned& i,
1528  const unsigned& nplot,
1529  Vector<double>& s,
1530  const bool& use_equally_spaced_interior_sample_points = false) const
1531  {
1532  if (nplot > 1)
1533  {
1534  unsigned i01 = i % (nplot * nplot);
1535  unsigned i0 = i01 % nplot;
1536  unsigned i1 = (i01 - i0) / nplot;
1537  unsigned i2 = (i - i01) / (nplot * nplot);
1538 
1539  s[0] = -1.0 + 2.0 * double(i0) / double(nplot - 1);
1540  s[1] = -1.0 + 2.0 * double(i1) / double(nplot - 1);
1541  s[2] = -1.0 + 2.0 * double(i2) / double(nplot - 1);
1542  if (use_equally_spaced_interior_sample_points)
1543  {
1544  double range = 2.0;
1545  double dx_new = range / double(nplot);
1546  double range_new = double(nplot - 1) * dx_new;
1547  s[0] = -1.0 + 0.5 * dx_new + range_new * (1.0 + s[0]) / range;
1548  s[1] = -1.0 + 0.5 * dx_new + range_new * (1.0 + s[1]) / range;
1549  s[2] = -1.0 + 0.5 * dx_new + range_new * (1.0 + s[2]) / range;
1550  }
1551  }
1552  else
1553  {
1554  s[0] = 0.0;
1555  s[1] = 0.0;
1556  s[2] = 0.0;
1557  }
1558  }
1559 
1560  /// Return string for tecplot zone header (when plotting
1561  /// nplot points in each "coordinate direction)
1562  std::string tecplot_zone_string(const unsigned& nplot) const
1563  {
1564  std::ostringstream header;
1565  header << "ZONE I=" << nplot << ", J=" << nplot << ", K=" << nplot
1566  << "\n";
1567  return header.str();
1568  }
1569 
1570  /// Return total number of plot points (when plotting
1571  /// nplot points in each "coordinate direction)
1572  unsigned nplot_points(const unsigned& nplot) const
1573  {
1574  unsigned DIM = 3;
1575  unsigned np = 1;
1576  for (unsigned i = 0; i < DIM; i++)
1577  {
1578  np *= nplot;
1579  }
1580  return np;
1581  };
1582 
1583  /// Get the number of the ith node on face face_index in the bulk node
1584  /// vector.
1585  unsigned get_bulk_node_number(const int& face_index,
1586  const unsigned& i) const
1587  {
1588  face_node_number_error_check(i);
1589 
1590  const unsigned nn1d = nnode_1d();
1591 
1592  if (face_index == -1)
1593  {
1594  return i * nn1d;
1595  }
1596  else if (face_index == +1)
1597  {
1598  return i * nn1d + (nn1d - 1);
1599  }
1600  else if (face_index == -2)
1601  {
1602  return i % nn1d + (i / nn1d) * nn1d * nn1d;
1603  }
1604  else if (face_index == +2)
1605  {
1606  return i % nn1d + (i / nn1d) * nn1d * nn1d + (nn1d * (nn1d - 1));
1607  }
1608  else if (face_index == -3)
1609  {
1610  return i;
1611  }
1612  else if (face_index == +3)
1613  {
1614  return i + (nn1d * nn1d) * (nn1d - 1);
1615  }
1616  else
1617  {
1618  std::string err = "Face index should be in {-1, +1, -2, +2, -3, +3}.";
1619  throw OomphLibError(
1620  err, OOMPH_EXCEPTION_LOCATION, OOMPH_CURRENT_FUNCTION);
1621  }
1622  }
1623 
1624  /// Get the sign of the outer unit normal on the face given by face_index.
1625  int face_outer_unit_normal_sign(const int& face_index) const
1626  {
1627  if (face_index == -3)
1628  {
1629  return -1;
1630  }
1631  else if (face_index == +3)
1632  {
1633  return 1;
1634  }
1635  else if (face_index == -2)
1636  {
1637  return 1;
1638  }
1639  else if (face_index == 2)
1640  {
1641  return -1;
1642  }
1643  else if (face_index == -1)
1644  {
1645  return -1;
1646  }
1647  else if (face_index == 1)
1648  {
1649  return 1;
1650  }
1651  else
1652  {
1653  std::string err = "Face index should be in {-1, +1, -2, +2, -3, +3}.";
1654  throw OomphLibError(
1655  err, OOMPH_EXCEPTION_LOCATION, OOMPH_CURRENT_FUNCTION);
1656  }
1657  }
1658 
1659  /// Get a pointer to the function mapping face coordinates to bulk
1660  /// coordinates
1662  const int& face_index) const
1663  {
1664  if (face_index == 1)
1665  {
1667  }
1668  else if (face_index == -1)
1669  {
1671  }
1672  else if (face_index == -2)
1673  {
1675  }
1676  else if (face_index == 2)
1677  {
1679  }
1680  else if (face_index == -3)
1681  {
1683  }
1684  else if (face_index == 3)
1685  {
1687  }
1688  else
1689  {
1690  std::string err = "Face index should be in {-1, +1}.";
1691  throw OomphLibError(
1692  err, OOMPH_EXCEPTION_LOCATION, OOMPH_CURRENT_FUNCTION);
1693  }
1694  }
1695 
1696  /// Get a pointer to the derivative of the mapping from face to bulk
1697  /// coordinates.
1699  const int& face_index) const
1700  {
1701  if (face_index == 1)
1702  {
1704  }
1705  else if (face_index == -1)
1706  {
1708  }
1709  else if (face_index == -2)
1710  {
1712  }
1713  else if (face_index == 2)
1714  {
1716  }
1717  else if (face_index == -3)
1718  {
1720  }
1721  else if (face_index == 3)
1722  {
1724  }
1725  else
1726  {
1727  std::string err = "Face index should be in {-1, +1}.";
1728  throw OomphLibError(
1729  err, OOMPH_EXCEPTION_LOCATION, OOMPH_CURRENT_FUNCTION);
1730  }
1731  }
1732  };
1733 
1734  //=======================================================================
1735  /// SolidQElement elements are quadrilateral elements whose
1736  /// derivatives also include those based upon the lagrangian
1737  /// positions of the nodes.
1738  /// They are the basis for solid mechanics elements
1739  //=======================================================================
1740  template<unsigned DIM, unsigned NNODE_1D>
1742  {
1743  };
1744 
1745 
1746  //=======================================================================
1747  /// SolidQElement elements, specialised to one spatial dimension
1748  //=======================================================================
1749  template<unsigned NNODE_1D>
1750  class SolidQElement<1, NNODE_1D> : public virtual QElement<1, NNODE_1D>,
1751  public virtual QSolidElementBase
1752  {
1753  public:
1754  /// Constructor
1756  {
1757  // Set the Lagrangian dimension of the element
1758  set_lagrangian_dimension(1);
1759  }
1760 
1761  /// Broken copy constructor
1762  SolidQElement(const SolidQElement&) = delete;
1763 
1764  /// Broken assignment operator
1765  /*void operator=(const SolidQElement&) = delete;*/
1766 
1767  /// Overload the output function
1768  void output(std::ostream& outfile)
1769  {
1770  FiniteElement::output(outfile);
1771  }
1772 
1773  /// Output at n_plot points
1774  inline void output(std::ostream& outfile, const unsigned& n_plot);
1775 
1776  /// C-style output
1777  void output(FILE* file_pt)
1778  {
1779  FiniteElement::output(file_pt);
1780  }
1781 
1782  /// C_style output at n_plot points
1783  inline void output(FILE* file_pt, const unsigned& n_plot);
1784 
1785  /// Build the lower-dimensional FaceElement (an element of type
1786  /// SolidQElement<0,NNODE_1D>).
1787  /// The face index takes one of two values corresponding
1788  /// to the two possible faces:
1789  /// -1 (Left) s[0] = -1.0
1790  /// +1 (Right) s[0] = 1.0
1791  inline void build_face_element(const int& face_index,
1792  FaceElement* face_element_pt);
1793  };
1794 
1795  // For the dumb Intel 9.0 compiler, these need to live in here
1796 
1797  /// ////////////////////////////////////////////////////////////////////////
1798  /// ////////////////////////////////////////////////////////////////////////
1799  // SolidQElements
1800  /// ////////////////////////////////////////////////////////////////////////
1801  /// ////////////////////////////////////////////////////////////////////////
1802 
1803  /// ////////////////////////////////////////////////////////////////////////
1804  // 1D SolidQElements
1805  /// ////////////////////////////////////////////////////////////////////////
1806 
1807 
1808  //=======================================================================
1809  /// The output function for n_plot points in each coordinate direction
1810  /// for the 1D element
1811  //=======================================================================
1812  template<unsigned NNODE_1D>
1813  void SolidQElement<1, NNODE_1D>::output(std::ostream& outfile,
1814  const unsigned& n_plot)
1815  {
1816  // Local variables
1817  Vector<double> s(1);
1818 
1819  // Tecplot header info
1820  outfile << "ZONE I=" << n_plot << std::endl;
1821 
1822  // Find the dimension of the nodes
1823  unsigned n_dim = this->nodal_dimension();
1824 
1825  // Find the Lagrangian dimension of the first node
1826  unsigned n_lagr = static_cast<SolidNode*>(node_pt(0))->nlagrangian();
1827 
1828  // Loop over element nodes
1829  for (unsigned l = 0; l < n_plot; l++)
1830  {
1831  s[0] = -1.0 + l * 2.0 / (n_plot - 1);
1832 
1833  // Output the Eulerian coordinates
1834  for (unsigned i = 0; i < n_dim; i++)
1835  {
1836  outfile << QElement<1, NNODE_1D>::interpolated_x(s, i) << " ";
1837  }
1838  // Output the Lagranian coordinates
1839  for (unsigned i = 0; i < n_lagr; i++)
1840  {
1841  outfile << SolidQElement<1, NNODE_1D>::interpolated_xi(s, i) << " ";
1842  }
1843  outfile << std::endl;
1844  }
1845  outfile << std::endl;
1846  }
1847 
1848  //=======================================================================
1849  /// C-style output function for n_plot points in each coordinate direction
1850  /// for the 1D element
1851  //=======================================================================
1852  template<unsigned NNODE_1D>
1853  void SolidQElement<1, NNODE_1D>::output(FILE* file_pt, const unsigned& n_plot)
1854  {
1855  // Local variables
1856  Vector<double> s(1);
1857 
1858  // Tecplot header info
1859  fprintf(file_pt, "ZONE I=%i\n", n_plot);
1860 
1861  // Find the dimension of the nodes
1862  unsigned n_dim = this->nodal_dimension();
1863 
1864  // Find the Lagrangian dimension of the first node
1865  unsigned n_lagr = static_cast<SolidNode*>(node_pt(0))->nlagrangian();
1866 
1867  // Loop over element nodes
1868  for (unsigned l = 0; l < n_plot; l++)
1869  {
1870  s[0] = -1.0 + l * 2.0 / (n_plot - 1);
1871 
1872  // Output the Eulerian coordinates
1873  for (unsigned i = 0; i < n_dim; i++)
1874  {
1875  fprintf(file_pt, "%g ", QElement<1, NNODE_1D>::interpolated_x(s, i));
1876  }
1877  // Output the Lagranian coordinates
1878  for (unsigned i = 0; i < n_lagr; i++)
1879  {
1880  fprintf(
1881  file_pt, "%g ", SolidQElement<1, NNODE_1D>::interpolated_xi(s, i));
1882  }
1883  fprintf(file_pt, "\n");
1884  }
1885  fprintf(file_pt, "\n");
1886  }
1887 
1888 
1889  //===========================================================
1890  /// Function to setup geometrical information for lower-dimensional
1891  /// FaceElements (which are of type SolidQElement<0,1>).
1892  //===========================================================
1893  template<unsigned NNODE_1D>
1895  const int& face_index, FaceElement* face_element_pt)
1896  {
1897  // Build the standard non-solid FaceElement
1898  QElement<1, NNODE_1D>::build_face_element(face_index, face_element_pt);
1899 
1900  // Set the Lagrangian dimension from the first node of the present element
1901  dynamic_cast<SolidFiniteElement*>(face_element_pt)
1902  ->set_lagrangian_dimension(
1903  static_cast<SolidNode*>(node_pt(0))->nlagrangian());
1904  }
1905 
1906 
1907  //=======================================================================
1908  /// SolidQElement elements, specialised to two spatial dimensions
1909  //=======================================================================
1910  template<unsigned NNODE_1D>
1911  class SolidQElement<2, NNODE_1D> : public virtual QElement<2, NNODE_1D>,
1912  public virtual QSolidElementBase
1913  {
1914  public:
1915  /// Constructor
1917  : QElementBase(),
1918  QElement<2, NNODE_1D>(),
1921  {
1922  // Set the Lagrangian dimension of the element
1923  set_lagrangian_dimension(2);
1924  }
1925 
1926  /// Broken copy constructor
1927  SolidQElement(const SolidQElement&) = delete;
1928 
1929  /// Broken assignment operator
1930  /*void operator=(const SolidQElement&) = delete;*/
1931 
1932  /// Overload the output function
1933  void output(std::ostream& outfile)
1934  {
1935  FiniteElement::output(outfile);
1936  }
1937 
1938  /// Output at n_plot^2 points
1939  inline void output(std::ostream& outfile, const unsigned& n_plot);
1940 
1941  /// C-style output
1942  void output(FILE* file_pt)
1943  {
1944  FiniteElement::output(file_pt);
1945  }
1946 
1947  /// C_style output at n_plot points
1948  inline void output(FILE* file_pt, const unsigned& n_plot);
1949 
1950 
1951  /// Build the lower-dimensional FaceElement (an element of type
1952  /// SolidQElement<1,NNODE_1D>).The face index takes one of four values
1953  /// corresponding to the four possible faces:
1954  /// -1 (West) s[0] = -1.0
1955  /// +1 (East) s[0] = 1.0
1956  /// -2 (South) s[1] = -1.0
1957  /// +2 (North) s[1] = 1.0
1958  inline void build_face_element(const int& face_index,
1959  FaceElement* face_element_pt);
1960  };
1961 
1962 
1963  /// ////////////////////////////////////////////////////////////////////////
1964  // 2D SolidQElements
1965  /// ////////////////////////////////////////////////////////////////////////
1966 
1967  //===========================================================
1968  /// The output function for any number of points per element
1969  //===========================================================
1970  template<unsigned NNODE_1D>
1971  void SolidQElement<2, NNODE_1D>::output(std::ostream& outfile,
1972  const unsigned& n_plot)
1973  {
1974  // Local variables
1975  Vector<double> s(2);
1976 
1977  // Tecplot header info
1978  outfile << "ZONE I=" << n_plot << ", J=" << n_plot << std::endl;
1979 
1980  // Find the dimension of the nodes
1981  unsigned n_dim = this->nodal_dimension();
1982 
1983  // Find the Lagrangian dimension of the first node
1984  unsigned n_lagr = static_cast<SolidNode*>(node_pt(0))->nlagrangian();
1985 
1986  // Loop over plot points
1987  for (unsigned l2 = 0; l2 < n_plot; l2++)
1988  {
1989  s[1] = -1.0 + l2 * 2.0 / (n_plot - 1);
1990  for (unsigned l1 = 0; l1 < n_plot; l1++)
1991  {
1992  s[0] = -1.0 + l1 * 2.0 / (n_plot - 1);
1993 
1994  // Output the Eulerian coordinates
1995  for (unsigned i = 0; i < n_dim; i++)
1996  {
1997  outfile << QElement<2, NNODE_1D>::interpolated_x(s, i) << " ";
1998  }
1999  // Output the Lagranian coordinates
2000  for (unsigned i = 0; i < n_lagr; i++)
2001  {
2002  outfile << SolidQElement<2, NNODE_1D>::interpolated_xi(s, i) << " ";
2003  }
2004  outfile << std::endl;
2005  }
2006  }
2007  outfile << std::endl;
2008  }
2009 
2010 
2011  //====================================================================
2012  /// C-style output function for any number of points per element
2013  //====================================================================
2014  template<unsigned NNODE_1D>
2015  void SolidQElement<2, NNODE_1D>::output(FILE* file_pt, const unsigned& n_plot)
2016  {
2017  // Local variables
2018  Vector<double> s(2);
2019 
2020  // Tecplot header info
2021  fprintf(file_pt, "ZONE I=%i, J=%i\n", n_plot, n_plot);
2022 
2023  // Find the dimension of the nodes
2024  unsigned n_dim = this->nodal_dimension();
2025 
2026  // Find the Lagrangian dimension of the first node
2027  unsigned n_lagr = static_cast<SolidNode*>(node_pt(0))->nlagrangian();
2028 
2029  // Loop over plot points
2030  for (unsigned l2 = 0; l2 < n_plot; l2++)
2031  {
2032  s[1] = -1.0 + l2 * 2.0 / (n_plot - 1);
2033  for (unsigned l1 = 0; l1 < n_plot; l1++)
2034  {
2035  s[0] = -1.0 + l1 * 2.0 / (n_plot - 1);
2036 
2037  // Output the Eulerian coordinates
2038  for (unsigned i = 0; i < n_dim; i++)
2039  {
2040  fprintf(file_pt, "%g ", QElement<2, NNODE_1D>::interpolated_x(s, i));
2041  }
2042  // Output the Lagranian coordinates
2043  for (unsigned i = 0; i < n_lagr; i++)
2044  {
2045  fprintf(
2046  file_pt, "%g ", SolidQElement<2, NNODE_1D>::interpolated_xi(s, i));
2047  }
2048  fprintf(file_pt, "\n");
2049  }
2050  }
2051  fprintf(file_pt, "\n");
2052  }
2053 
2054 
2055  //===========================================================
2056  /// Function to setup geometrical information for lower-dimensional
2057  /// FaceElements (which are of type SolidQElement<1,NNODE_1D>).
2058  //===========================================================
2059  template<unsigned NNODE_1D>
2061  const int& face_index, FaceElement* face_element_pt)
2062  {
2063  // Build the standard non-solid FaceElement
2064  QElement<2, NNODE_1D>::build_face_element(face_index, face_element_pt);
2065 
2066  // Set the Lagrangian dimension from the first node of the present element
2067  dynamic_cast<SolidFiniteElement*>(face_element_pt)
2068  ->set_lagrangian_dimension(
2069  static_cast<SolidNode*>(node_pt(0))->nlagrangian());
2070  }
2071 
2072 
2073  //=======================================================================
2074  /// SolidQElement elements, specialised to three spatial dimensions
2075  //=======================================================================
2076  template<unsigned NNODE_1D>
2077  class SolidQElement<3, NNODE_1D> : public virtual QElement<3, NNODE_1D>,
2078  public virtual QSolidElementBase
2079  {
2080  public:
2081  /// Constructor
2083  : QElementBase(),
2084  QElement<3, NNODE_1D>(),
2087  {
2088  // Set the Lagrangian dimension of the element
2089  set_lagrangian_dimension(3);
2090  }
2091 
2092  /// Broken copy constructor
2093  SolidQElement(const SolidQElement&) = delete;
2094 
2095  /// Broken assignment operator
2096  /*void operator=(const SolidQElement&) = delete;*/
2097 
2098  /// Overload the output function
2099  void output(std::ostream& outfile)
2100  {
2101  FiniteElement::output(outfile);
2102  }
2103 
2104  /// Output at n_plot^2 points
2105  inline void output(std::ostream& outfile, const unsigned& n_plot);
2106 
2107  /// C-style output
2108  void output(FILE* file_pt)
2109  {
2110  FiniteElement::output(file_pt);
2111  }
2112 
2113  /// C_style output at n_plot points
2114  inline void output(FILE* file_pt, const unsigned& n_plot);
2115 
2116 
2117  /// Build the lower-dimensional FaceElement (an element of type
2118  /// SolidQElement<2,NNODE_1D>). The face index takes of one
2119  /// six values corresponding
2120  /// to the six possible faces:
2121  /// -1 (Left) s[0] = -1.0
2122  /// +1 (Right) s[0] = 1.0
2123  /// -2 (Down) s[1] = -1.0
2124  /// +2 (Up) s[1] = 1.0
2125  /// -3 (Back) s[2] = -1.0
2126  /// +3 (Front) s[2] = 1.0
2127  inline void build_face_element(const int& face_index,
2128  FaceElement* face_element_pt);
2129  };
2130 
2131 
2132  /// ////////////////////////////////////////////////////////////////////////
2133  // 3D SolidQElements
2134  /// ////////////////////////////////////////////////////////////////////////
2135 
2136  //===========================================================
2137  /// The output function for any number of points per element
2138  //===========================================================
2139  template<unsigned NNODE_1D>
2140  void SolidQElement<3, NNODE_1D>::output(std::ostream& outfile,
2141  const unsigned& n_plot)
2142  {
2143  // Local variables
2144  Vector<double> s(3);
2145 
2146  // Tecplot header info
2147  outfile << "ZONE I=" << n_plot << ", J=" << n_plot << ", K=" << n_plot
2148  << std::endl;
2149 
2150  // Find the dimension of the nodes
2151  unsigned n_dim = this->nodal_dimension();
2152 
2153  // Find the Lagrangian dimension of the first node
2154  unsigned n_lagr = static_cast<SolidNode*>(node_pt(0))->nlagrangian();
2155 
2156  // Loop over plot points
2157  for (unsigned l3 = 0; l3 < n_plot; l3++)
2158  {
2159  s[2] = -1.0 + l3 * 2.0 / (n_plot - 1);
2160  for (unsigned l2 = 0; l2 < n_plot; l2++)
2161  {
2162  s[1] = -1.0 + l2 * 2.0 / (n_plot - 1);
2163  for (unsigned l1 = 0; l1 < n_plot; l1++)
2164  {
2165  s[0] = -1.0 + l1 * 2.0 / (n_plot - 1);
2166 
2167  // Output the Eulerian coordinates
2168  for (unsigned i = 0; i < n_dim; i++)
2169  {
2170  outfile << QElement<3, NNODE_1D>::interpolated_x(s, i) << " ";
2171  }
2172  // Output the Lagranian coordinates
2173  for (unsigned i = 0; i < n_lagr; i++)
2174  {
2175  outfile << SolidQElement<3, NNODE_1D>::interpolated_xi(s, i) << " ";
2176  }
2177  outfile << std::endl;
2178  }
2179  }
2180  }
2181  outfile << std::endl;
2182  }
2183 
2184 
2185  //====================================================================
2186  /// C-style output function for any number of points per element
2187  //====================================================================
2188  template<unsigned NNODE_1D>
2189  void SolidQElement<3, NNODE_1D>::output(FILE* file_pt, const unsigned& n_plot)
2190  {
2191  // Local variables
2192  Vector<double> s(3);
2193 
2194  // Tecplot header info
2195  fprintf(file_pt, "ZONE I=%i, J=%i, K=%i\n", n_plot, n_plot, n_plot);
2196 
2197  // Find the dimension of the nodes
2198  unsigned n_dim = this->nodal_dimension();
2199 
2200  // Find the Lagrangian dimension of the first node
2201  unsigned n_lagr = static_cast<SolidNode*>(node_pt(0))->nlagrangian();
2202 
2203  // Loop over plot points
2204  for (unsigned l3 = 0; l3 < n_plot; l3++)
2205  {
2206  s[2] = -1.0 + l3 * 2.0 / (n_plot - 1);
2207  for (unsigned l2 = 0; l2 < n_plot; l2++)
2208  {
2209  s[1] = -1.0 + l2 * 2.0 / (n_plot - 1);
2210  for (unsigned l1 = 0; l1 < n_plot; l1++)
2211  {
2212  s[0] = -1.0 + l1 * 2.0 / (n_plot - 1);
2213 
2214  // Output the Eulerian coordinates
2215  for (unsigned i = 0; i < n_dim; i++)
2216  {
2217  fprintf(
2218  file_pt, "%g ", QElement<3, NNODE_1D>::interpolated_x(s, i));
2219  }
2220  // Output the Lagranian coordinates
2221  for (unsigned i = 0; i < n_lagr; i++)
2222  {
2223  fprintf(file_pt,
2224  "%g ",
2226  }
2227  fprintf(file_pt, "\n");
2228  }
2229  }
2230  }
2231  fprintf(file_pt, "\n");
2232  }
2233 
2234 
2235  //===========================================================
2236  /// Function to setup geometrical information for lower-dimensional
2237  /// FaceElements (which are of type SolidQElement<1,NNODE_1D>).
2238  //===========================================================
2239  template<unsigned NNODE_1D>
2241  const int& face_index, FaceElement* face_element_pt)
2242  {
2243  // Build the standard non-solid FaceElement
2244  QElement<3, NNODE_1D>::build_face_element(face_index, face_element_pt);
2245 
2246  // Set the Lagrangian dimension from the first node of the present element
2247  dynamic_cast<SolidFiniteElement*>(face_element_pt)
2248  ->set_lagrangian_dimension(
2249  static_cast<SolidNode*>(node_pt(0))->nlagrangian());
2250  }
2251 
2252 
2253  //==============================================================
2254  /// A class that is used to template the refineable Q elements
2255  /// by dimension. It's really nothing more than a policy class
2256  //=============================================================
2257  template<unsigned DIM>
2259  {
2260  public:
2261  /// Empty constuctor
2263  };
2264 
2265  //==============================================================
2266  /// A class that is used to template the p-refineable Q elements
2267  /// by dimension. It's really nothing more than a policy class.
2268  /// The default template parameter ensures that these elements
2269  /// inherit from the QElement of the correct type if they start
2270  /// with a p-order higher than linear (e.g. Navier-Stokes Elements).
2271  //=============================================================
2272  template<unsigned DIM, unsigned INITIAL_NNODE_1D = 2>
2274  {
2275  public:
2276  /// Empty constuctor
2278  };
2279 
2280  //==============================================================
2281  /// A class that is used to template the solid refineable Q elements
2282  /// by dimension. It's really nothing more than a policy class
2283  //=============================================================
2284  template<unsigned DIM>
2286  {
2287  public:
2288  /// Empty constuctor
2290  };
2291 
2292 
2293 } // namespace oomph
2294 
2295 #endif
static char t char * s
Definition: cfortran.h:568
cstr elem_len * i
Definition: cfortran.h:603
char t
Definition: cfortran.h:568
Base class for all brick elements.
Definition: Qelements.h:1233
virtual Node * vertex_node_pt(const unsigned &j) const =0
Pointer to the j-th vertex node in the element.
virtual unsigned nvertex_node() const =0
Number of vertex nodes in the element.
BrickElementBase()
Constructor. Empty.
Definition: Qelements.h:1236
A Class for the derivatives of shape functions The class design is essentially the same as Shape,...
Definition: shape.h:278
FaceElements are elements that coincide with the faces of higher-dimensional "bulk" elements....
Definition: elements.h:4342
A general Finite Element class.
Definition: elements.h:1317
virtual void set_macro_elem_pt(MacroElement *macro_elem_pt)
Set pointer to macro element – can be overloaded in derived elements to perform additional tasks.
Definition: elements.h:1876
virtual void output(std::ostream &outfile)
Output the element data — typically the values at the nodes in a format suitable for post-processing.
Definition: elements.h:3054
virtual double s_min() const
Min value of local coordinate.
Definition: elements.h:2797
virtual double interpolated_x(const Vector< double > &s, const unsigned &i) const
Return FE interpolated coordinate x[i] at local coordinate s.
Definition: elements.cc:3992
unsigned dim() const
Return the spatial dimension of the element, i.e. the number of local coordinates required to paramet...
Definition: elements.h:2615
MacroElement * Macro_elem_pt
Pointer to the element's macro element (NULL by default)
Definition: elements.h:1687
virtual double s_max() const
Max. value of local coordinate.
Definition: elements.h:2807
MacroElement * macro_elem_pt()
Access function to pointer to macro element.
Definition: elements.h:1882
virtual unsigned nnode_1d() const
Return the number of nodes along one edge of the element Default is to return zero — must be overload...
Definition: elements.h:2222
Base class for all line elements.
Definition: Qelements.h:466
LineElementBase()
Constructor. Empty.
Definition: Qelements.h:469
virtual Node * vertex_node_pt(const unsigned &j) const =0
Pointer to the j-th vertex node in the element.
virtual unsigned nvertex_node() const =0
Number of vertex nodes in the element.
Base class for MacroElement s that are used during mesh refinement in domains with curvlinear and/or ...
Definition: macro_element.h:73
void macro_map(const Vector< double > &s, Vector< double > &r)
The mapping from local to global coordinates at the current time : r(s)
Nodes are derived from Data, but, in addition, have a definite (Eulerian) position in a space of a gi...
Definition: nodes.h:906
An OomphLibError object which should be thrown when an run-time error is encountered....
A class that is used to template the p-refineable Q elements by dimension. It's really nothing more t...
Definition: Qelements.h:2274
PRefineableQElement()
Empty constuctor.
Definition: Qelements.h:2277
/////////////////////////////////////////////////////////////////// /////////////////////////////////...
Definition: Qelements.h:91
virtual void set_macro_elem_pt(MacroElement *macro_elem_pt)
Set pointer to macro element also sets up storage for the reference coordinates and initialises them.
Definition: Qelements.h:143
QElementBase(const QElementBase &)=delete
Broken copy constructor.
Vector< double > * S_macro_ur_pt
Pointer to vector of upper right vertex coords. in macro element.
Definition: Qelements.h:317
QElementBase()
Constructor: Initialise pointers to macro element reference coords.
Definition: Qelements.h:94
bool local_coord_is_valid(const Vector< double > &s)
Check whether the local coordinate are valid or not.
Definition: Qelements.h:113
ElementGeometry::ElementGeometry element_geometry() const
It's a Q element!
Definition: Qelements.h:307
void get_x_from_macro_element(const unsigned &t, const Vector< double > &s, Vector< double > &x)
Global coordinates as function of local coordinates at previous time "level" t (t=0: present; t>0: pr...
Definition: Qelements.h:274
double & s_macro_ll(const unsigned &i)
Access fct to the i-th coordinate of the element's "lower left" vertex in the associated MacroElement...
Definition: Qelements.h:186
void get_x_from_macro_element(const Vector< double > &s, Vector< double > &x) const
Global coordinates as function of local coordinates. using the macro element representation.
Definition: Qelements.h:249
void move_local_coord_back_into_element(Vector< double > &s) const
Adjust local coordinates so that they're located inside the element.
Definition: Qelements.h:129
double s_macro_ll(const unsigned &i) const
Access fct to the i-th coordinate of the element's "lower left" vertex in the associated MacroElement...
Definition: Qelements.h:218
unsigned nnode_on_face() const
Return number of nodes on one face of the element. Always nnode_1d^(el_dim - 1).
Definition: Qelements.h:299
Vector< double > * S_macro_ll_pt
Pointer to vector of lower left vertex coords. in macro element.
Definition: Qelements.h:314
double s_macro_ur(const unsigned &i) const
Access fct to the i-th coordinate of the element's "upper right" vertex in the associated MacroElemen...
Definition: Qelements.h:234
double & s_macro_ur(const unsigned &i)
Access fct to the i-th coordinate of the element's "upper right" vertex in the associated MacroElemen...
Definition: Qelements.h:202
virtual ~QElementBase()
Broken assignment operator.
Definition: Qelements.h:103
/////////////////////////////////////////////////////////////////// /////////////////////////////////...
Definition: Qelements.h:64
QElementGeometricBase()
Empty default constructor.
Definition: Qelements.h:67
QElementGeometricBase(const QElementGeometricBase &)=delete
Broken copy constructor.
std::string tecplot_zone_string(const unsigned &nplot) const
Return string for tecplot zone header (when plotting nplot points in each "coordinate direction)
Definition: Qelements.h:717
BulkCoordinateDerivativesFctPt bulk_coordinate_derivatives_fct_pt(const int &face_index) const
Get a pointer to the derivative of the mapping from face to bulk coordinates.
Definition: Qelements.h:797
void write_paraview_output_offset_information(std::ofstream &file_out, const unsigned &nplot, unsigned &counter) const
Fill in the offset information for paraview plot. Needs to be implemented for each new geometric elem...
Definition: Qelements.h:631
QElement(const QElement &)=delete
Broken copy constructor.
void local_fraction_of_node(const unsigned &j, Vector< double > &s_fraction)
Get the local fraction of node j in the element.
Definition: Qelements.h:589
unsigned get_bulk_node_number(const int &face_index, const unsigned &i) const
Get the number of the ith node on face face_index in the bulk node vector.
Definition: Qelements.h:739
unsigned nvertex_node() const
Number of vertex nodes in the element.
Definition: Qelements.h:549
unsigned nplot_points_paraview(const unsigned &nplot) const
Return the number of actual plot points for paraview plot with parameter nplot.
Definition: Qelements.h:616
static Gauss< 1, NNODE_1D > Default_integration_scheme
Default integration rule: Gaussian integration of same 'order' as the element.
Definition: Qelements.h:490
double invert_jacobian_mapping(const DenseMatrix< double > &jacobian, DenseMatrix< double > &inverse_jacobian) const
Overload the template-free interface for the calculation of inverse jacobian matrix....
Definition: Qelements.h:530
CoordinateMappingFctPt face_to_bulk_coordinate_fct_pt(const int &face_index) const
Get a pointer to the function mapping face coordinates to bulk coordinates.
Definition: Qelements.h:776
double s_min() const
Min. value of local coordinate.
Definition: Qelements.h:537
unsigned nnode_1d() const
Number of nodes along each element edge.
Definition: Qelements.h:609
double local_one_d_fraction_of_node(const unsigned &n1d, const unsigned &i)
This function returns the local fraction of all nodes at the n-th position in a one dimensional expan...
Definition: Qelements.h:598
Node * vertex_node_pt(const unsigned &j) const
Pointer to the j-th vertex node in the element.
Definition: Qelements.h:555
unsigned nsub_elements_paraview(const unsigned &nplot) const
Return the number of local sub-elements for paraview plot with parameter nplot.
Definition: Qelements.h:623
void write_paraview_type(std::ofstream &file_out, const unsigned &nplot) const
Return the paraview element type. Needs to be implemented for each new geometric element type; see ht...
Definition: Qelements.h:650
void local_coordinate_of_node(const unsigned &j, Vector< double > &s) const
Get local coordinates of node j in the element; vector sets its own size.
Definition: Qelements.h:580
unsigned nplot_points(const unsigned &nplot) const
Return total number of plot points (when plotting nplot points in each "coordinate direction)
Definition: Qelements.h:726
void get_s_plot(const unsigned &i, const unsigned &nplot, Vector< double > &s, const bool &use_equally_spaced_interior_sample_points=false) const
Get cector of local coordinates of plot point i (when plotting nplot points in each "coordinate direc...
Definition: Qelements.h:692
int face_outer_unit_normal_sign(const int &face_index) const
Get the sign of the outer unit normal on the face given by face_index.
Definition: Qelements.h:761
double s_max() const
Max. value of local coordinate.
Definition: Qelements.h:543
void write_paraview_offsets(std::ofstream &file_out, const unsigned &nplot, unsigned &offset_sum) const
Return the offsets for the paraview sub-elements. Needs to be implemented for each new geometric elem...
Definition: Qelements.h:663
CoordinateMappingFctPt face_to_bulk_coordinate_fct_pt(const int &face_index) const
Get a pointer to the function mapping face coordinates to bulk coordinates.
Definition: Qelements.h:1172
double s_min() const
Min. value of local coordinate.
Definition: Qelements.h:894
unsigned nplot_points(const unsigned &nplot) const
Return total number of plot points (when plotting nplot points in each "coordinate direction)
Definition: Qelements.h:1107
void write_paraview_type(std::ofstream &file_out, const unsigned &nplot) const
Return the paraview element type. Needs to be implemented for each new geometric element type; see ht...
Definition: Qelements.h:1025
double invert_jacobian_mapping(const DenseMatrix< double > &jacobian, DenseMatrix< double > &inverse_jacobian) const
Overload the template-free interface for the calculation of inverse jacobian matrix....
Definition: Qelements.h:887
void write_paraview_offsets(std::ofstream &file_out, const unsigned &nplot, unsigned &offset_sum) const
Return the offsets for the paraview sub-elements. Needs to be implemented for each new geometric elem...
Definition: Qelements.h:1038
unsigned nvertex_node() const
Number of vertex nodes in the element.
Definition: Qelements.h:907
BulkCoordinateDerivativesFctPt bulk_coordinate_derivatives_fct_pt(const int &face_index) const
Get a pointer to the derivative of the mapping from face to bulk coordinates.
Definition: Qelements.h:1201
void get_s_plot(const unsigned &i, const unsigned &nplot, Vector< double > &s, const bool &use_equally_spaced_interior_sample_points=false) const
Get cector of local coordinates of plot point i (when plotting nplot points in each "coordinate direc...
Definition: Qelements.h:1067
void local_fraction_of_node(const unsigned &j, Vector< double > &s_fraction)
Get the local fraction of node j in the element.
Definition: Qelements.h:957
unsigned nnode_1d() const
Number of nodes along each element edge.
Definition: Qelements.h:979
unsigned nplot_points_paraview(const unsigned &nplot) const
Return the number of actual plot points for paraview plot with parameter nplot.
Definition: Qelements.h:986
void write_paraview_output_offset_information(std::ofstream &file_out, const unsigned &nplot, unsigned &counter) const
Fill in the offset information for paraview plot. Needs to be implemented for each new geometric elem...
Definition: Qelements.h:1001
static Gauss< 2, NNODE_1D > Default_integration_scheme
Default integration rule: Gaussian integration of same 'order' as the element.
Definition: Qelements.h:845
Node * vertex_node_pt(const unsigned &j) const
Pointer to the j-th vertex node in the element.
Definition: Qelements.h:913
QElement(const QElement &)=delete
Broken copy constructor.
std::string tecplot_zone_string(const unsigned &nplot) const
Return string for tecplot zone header (when plotting nplot points in each "coordinate direction)
Definition: Qelements.h:1098
void local_coordinate_of_node(const unsigned &j, Vector< double > &s) const
Get local coordinates of node j in the element; vector sets its own size.
Definition: Qelements.h:945
unsigned nsub_elements_paraview(const unsigned &nplot) const
Return the number of local sub-elements for paraview plot with parameter nplot.
Definition: Qelements.h:993
double local_one_d_fraction_of_node(const unsigned &n1d, const unsigned &i)
This function returns the local fraction of ant nodes in the n-th positoin in a one dimensional expan...
Definition: Qelements.h:968
double s_max() const
Max. value of local coordinate.
Definition: Qelements.h:900
int face_outer_unit_normal_sign(const int &face_index) const
Get the sign of the outer unit normal on the face given by face_index.
Definition: Qelements.h:1152
unsigned get_bulk_node_number(const int &face_index, const unsigned &i) const
Get the number of the ith node on face face_index (in the bulk node vector).
Definition: Qelements.h:1120
unsigned nplot_points(const unsigned &nplot) const
Return total number of plot points (when plotting nplot points in each "coordinate direction)
Definition: Qelements.h:1572
double local_one_d_fraction_of_node(const unsigned &n1d, const unsigned &i)
This function returns the local fraction of any nodes in the n-th positoin in a one dimensional expan...
Definition: Qelements.h:1400
Node * vertex_node_pt(const unsigned &j) const
Pointer to the j-th vertex node in the element.
Definition: Qelements.h:1329
int face_outer_unit_normal_sign(const int &face_index) const
Get the sign of the outer unit normal on the face given by face_index.
Definition: Qelements.h:1625
BulkCoordinateDerivativesFctPt bulk_coordinate_derivatives_fct_pt(const int &face_index) const
Get a pointer to the derivative of the mapping from face to bulk coordinates.
Definition: Qelements.h:1698
double s_max() const
Max. value of local coordinate.
Definition: Qelements.h:1317
unsigned nnode_1d() const
Number of nodes along each element edge.
Definition: Qelements.h:1411
void get_s_plot(const unsigned &i, const unsigned &nplot, Vector< double > &s, const bool &use_equally_spaced_interior_sample_points=false) const
Get cector of local coordinates of plot point i (when plotting nplot points in each "coordinate direc...
Definition: Qelements.h:1526
double s_min() const
Min. value of local coordinate.
Definition: Qelements.h:1311
unsigned nplot_points_paraview(const unsigned &nplot) const
Return the number of actual plot points for paraview plot with parameter nplot.
Definition: Qelements.h:1418
CoordinateMappingFctPt face_to_bulk_coordinate_fct_pt(const int &face_index) const
Get a pointer to the function mapping face coordinates to bulk coordinates.
Definition: Qelements.h:1661
void local_fraction_of_node(const unsigned &j, Vector< double > &s_fraction)
Get the local fraction of node j in the element.
Definition: Qelements.h:1387
unsigned nvertex_node() const
Number of vertex nodes in the element.
Definition: Qelements.h:1323
unsigned get_bulk_node_number(const int &face_index, const unsigned &i) const
Get the number of the ith node on face face_index in the bulk node vector.
Definition: Qelements.h:1585
std::string tecplot_zone_string(const unsigned &nplot) const
Return string for tecplot zone header (when plotting nplot points in each "coordinate direction)
Definition: Qelements.h:1562
void write_paraview_offsets(std::ofstream &file_out, const unsigned &nplot, unsigned &offset_sum) const
Return the offsets for the paraview sub-elements. Needs to be implemented for each new geometric elem...
Definition: Qelements.h:1500
double invert_jacobian_mapping(const DenseMatrix< double > &jacobian, DenseMatrix< double > &inverse_jacobian) const
Overload the template-free interface for the calculation of the inverse jacobian mapping....
Definition: Qelements.h:1304
QElement(const QElement &)=delete
Broken copy constructor.
void write_paraview_type(std::ofstream &file_out, const unsigned &nplot) const
Return the paraview element type. Needs to be implemented for each new geometric element type; see ht...
Definition: Qelements.h:1487
static Gauss< 3, NNODE_1D > Default_integration_scheme
Default integration rule: Gaussian integration of same 'order' as the element.
Definition: Qelements.h:1257
unsigned nsub_elements_paraview(const unsigned &nplot) const
Return the number of local sub-elements for paraview plot with parameter nplot.
Definition: Qelements.h:1425
void local_coordinate_of_node(const unsigned &j, Vector< double > &s) const
Get local coordinates of node j in the element; vector sets its own size.
Definition: Qelements.h:1372
void write_paraview_output_offset_information(std::ofstream &file_out, const unsigned &nplot, unsigned &counter) const
Fill in the offset information for paraview plot. Needs to be implemented for each new geometric elem...
Definition: Qelements.h:1433
/////////////////////////////////////////////////////////////////////// /////////////////////////////...
Definition: Qelements.h:459
/////////////////////////////////////////////////////////////////////// /////////////////////////////...
Definition: Qelements.h:331
virtual void set_macro_elem_pt(MacroElement *macro_elem_pt)
Broken assignment operator.
Definition: Qelements.h:349
void get_x_and_xi(const Vector< double > &s, Vector< double > &x_fe, Vector< double > &x, Vector< double > &xi_fe, Vector< double > &xi) const
Eulerian and Lagrangian coordinates as function of the local coordinates: The Eulerian position is re...
Definition: Qelements.h:379
QSolidElementBase()
Constructor: Empty.
Definition: Qelements.h:334
virtual void set_macro_elem_pt(MacroElement *macro_elem_pt, MacroElement *undeformed_macro_elem_pt)
Set pointers to "current" and "undeformed" MacroElements.
Definition: Qelements.h:360
QSolidElementBase(const QSolidElementBase &)=delete
Broken copy constructor.
Base class for all quad elements.
Definition: Qelements.h:821
QuadElementBase()
Constructor. Empty.
Definition: Qelements.h:824
virtual Node * vertex_node_pt(const unsigned &j) const =0
Pointer to the j-th vertex node in the element.
virtual unsigned nvertex_node() const =0
Number of vertex nodes in the element.
A class that is used to template the refineable Q elements by dimension. It's really nothing more tha...
Definition: Qelements.h:2259
RefineableQElement()
Empty constuctor.
Definition: Qelements.h:2262
A class that is used to template the solid refineable Q elements by dimension. It's really nothing mo...
Definition: Qelements.h:2286
RefineableSolidQElement()
Empty constuctor.
Definition: Qelements.h:2289
A Class for shape functions. In simple cases, the shape functions have only one index that can be tho...
Definition: shape.h:76
////////////////////////////////////////////////////////////////////// //////////////////////////////...
Definition: elements.h:3565
void set_undeformed_macro_elem_pt(MacroElement *undeformed_macro_elem_pt)
Set pointer to "undeformed" macro element. Can be overloaded in derived classes to perform additional...
Definition: elements.h:3703
MacroElement * undeformed_macro_elem_pt()
Access function to pointer to "undeformed" macro element.
Definition: elements.h:3710
MacroElement * Undeformed_macro_elem_pt
Pointer to the element's "undeformed" macro element (NULL by default)
Definition: elements.h:4080
virtual double interpolated_xi(const Vector< double > &s, const unsigned &i) const
Return i-th FE-interpolated Lagrangian coordinate xi[i] at local coordinate s.
Definition: elements.cc:7134
A Class for nodes that deform elastically (i.e. position is an unknown in the problem)....
Definition: nodes.h:1686
unsigned nlagrangian() const
Return number of lagrangian coordinates.
Definition: nodes.h:1870
void output(FILE *file_pt)
C-style output.
Definition: Qelements.h:1777
void output(std::ostream &outfile)
Broken assignment operator.
Definition: Qelements.h:1768
SolidQElement(const SolidQElement &)=delete
Broken copy constructor.
void output(FILE *file_pt)
C-style output.
Definition: Qelements.h:1942
SolidQElement(const SolidQElement &)=delete
Broken copy constructor.
void output(std::ostream &outfile)
Broken assignment operator.
Definition: Qelements.h:1933
void output(std::ostream &outfile)
Broken assignment operator.
Definition: Qelements.h:2099
void output(FILE *file_pt)
C-style output.
Definition: Qelements.h:2108
SolidQElement(const SolidQElement &)=delete
Broken copy constructor.
SolidQElement elements are quadrilateral elements whose derivatives also include those based upon the...
Definition: Qelements.h:1742
void output()
Doc the command line arguments.
std::string string(const unsigned &i)
Return the i-th string or "" if the relevant string hasn't been defined.
void shape(const double &s, double *Psi)
Definition for 1D Lagrange shape functions. The value of all the shape functions at the local coordin...
Definition: shape.h:564
void faces0(const Vector< double > &s, DenseMatrix< double > &dsbulk_dsface, unsigned &interior_direction)
Function for both faces – the bulk coordinate is fixed on both.
void face1(const Vector< double > &s, Vector< double > &s_bulk)
The translation scheme for the face s0 = 1.0.
void face0(const Vector< double > &s, Vector< double > &s_bulk)
The translation scheme for the face s0 = -1.0.
void faces1(const Vector< double > &s, DenseMatrix< double > &dsbulk_dsface, unsigned &interior_direction)
Function for the north and south faces, along which s1 is fixed.
void faces0(const Vector< double > &s, DenseMatrix< double > &dsbulk_dsface, unsigned &interior_direction)
Function for the east and west faces, along which s0 is fixed.
void face2(const Vector< double > &s, Vector< double > &s_bulk)
The translation scheme for the east face (s0 = 1.0)
void face1(const Vector< double > &s, Vector< double > &s_bulk)
The translation scheme for the south face (s1 = -1.0)
void face0(const Vector< double > &s, Vector< double > &s_bulk)
The translation scheme for the west face (s0 = -1.0)
void face3(const Vector< double > &s, Vector< double > &s_bulk)
The translation scheme for the north face (s1 = 1.0)
void faces2(const Vector< double > &s, DenseMatrix< double > &dsbulk_dsface, unsigned &interior_direction)
Function for the left and right faces, along which s2 is fixed.
void faces0(const Vector< double > &s, DenseMatrix< double > &dsbulk_dsface, unsigned &interior_direction)
Function for the back and front faces, along which s0 is fixed.
void faces1(const Vector< double > &s, DenseMatrix< double > &dsbulk_dsface, unsigned &interior_direction)
Function for the up and down faces, along which s1 is fixed.
void face4(const Vector< double > &s, Vector< double > &s_bulk)
The translation scheme for the up face (s1 = 1.0)
void face1(const Vector< double > &s, Vector< double > &s_bulk)
The translation scheme for the down face (s1 = -1.0)
void face2(const Vector< double > &s, Vector< double > &s_bulk)
The translation scheme for the back face (s2 = -1.0)
void face0(const Vector< double > &s, Vector< double > &s_bulk)
The translation scheme for the left face (s0 = -1.0)
void face5(const Vector< double > &s, Vector< double > &s_bulk)
The translation scheme for the front face (s2 = 1.0)
void face3(const Vector< double > &s, Vector< double > &s_bulk)
The translation scheme for the right face (s0 = 1.0)
//////////////////////////////////////////////////////////////////// ////////////////////////////////...
void(* BulkCoordinateDerivativesFctPt)(const Vector< double > &s, DenseMatrix< double > &ds_bulk_dsface, unsigned &interior_direction)
Typedef for the function that returns the partial derivative of the local coordinates in the bulk ele...
Definition: elements.h:1294
void(* CoordinateMappingFctPt)(const Vector< double > &s, Vector< double > &s_bulk)
Typedef for the function that translates the face coordinate to the coordinate in the bulk element.
Definition: elements.h:1286