refineable_linearised_navier_stokes_elements.h
Go to the documentation of this file.
1 // LIC// ====================================================================
2 // LIC// This file forms part of oomph-lib, the object-oriented,
3 // LIC// multi-physics finite-element library, available
4 // LIC// at http://www.oomph-lib.org.
5 // LIC//
6 // LIC// Copyright (C) 2006-2024 Matthias Heil and Andrew Hazel
7 // LIC//
8 // LIC// This library is free software; you can redistribute it and/or
9 // LIC// modify it under the terms of the GNU Lesser General Public
10 // LIC// License as published by the Free Software Foundation; either
11 // LIC// version 2.1 of the License, or (at your option) any later version.
12 // LIC//
13 // LIC// This library is distributed in the hope that it will be useful,
14 // LIC// but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // LIC// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
16 // LIC// Lesser General Public License for more details.
17 // LIC//
18 // LIC// You should have received a copy of the GNU Lesser General Public
19 // LIC// License along with this library; if not, write to the Free Software
20 // LIC// Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
21 // LIC// 02110-1301 USA.
22 // LIC//
23 // LIC// The authors may be contacted at oomph-lib@maths.man.ac.uk.
24 // LIC//
25 // LIC//====================================================================
26 // Header file for refineable linearised axisymmetric Navier-Stokes elements
27 
28 #ifndef OOMPH_REFINEABLE_LINEARISED_NAVIER_STOKES_ELEMENTS_HEADER
29 #define OOMPH_REFINEABLE_LINEARISED_NAVIER_STOKES_ELEMENTS_HEADER
30 
31 // Config header generated by autoconfig
32 #ifdef HAVE_CONFIG_H
33 #include <oomph-lib-config.h>
34 #endif
35 
36 // oomph-lib includes
37 #include "../generic/refineable_quad_element.h"
38 #include "../generic/error_estimator.h"
40 
41 namespace oomph
42 {
43  //=======================================================================
44  /// Refineable version of the linearised axisymmetric
45  /// Navier--Stokes equations
46  //=======================================================================
48  : public virtual LinearisedNavierStokesEquations,
49  public virtual RefineableElement,
50  public virtual ElementWithZ2ErrorEstimator
51  {
52  protected:
53  /// Pointer to n_p-th pressure node (Default: NULL,
54  /// indicating that pressure is not based on nodal interpolation).
55  virtual Node* pressure_node_pt(const unsigned& n_p)
56  {
57  return NULL;
58  }
59 
60  /// Unpin all pressure dofs in the element
61  virtual void unpin_elemental_pressure_dofs() = 0;
62 
63  /// Pin unused nodal pressure dofs (empty by default, because
64  /// by default pressure dofs are not associated with nodes)
66 
67  public:
68  /// Empty Constructor
73  {
74  }
75 
76  /// Number of 'flux' terms for Z2 error estimation
77  unsigned num_Z2_flux_terms()
78  {
79  // 3 diagonal strain rates, 3 off diagonal real and imaginary parts
80  return 2 * (DIM + ((DIM * DIM) - DIM) / 2);
81  }
82 
83  /// Get 'flux' for Z2 error recovery: Upper triangular entries
84  /// in strain rate tensor.
86  {
87 #ifdef PARANOID
88  unsigned num_entries = 2 * (DIM + ((DIM * DIM) - DIM) / 2);
89  if (flux.size() != num_entries)
90  {
91  std::ostringstream error_message;
92  error_message << "The flux vector has the wrong number of entries, "
93  << flux.size() << ", whereas it should be " << num_entries
94  << std::endl;
95  throw OomphLibError(
96  error_message.str(),
97  "RefineableLinearisedNavierStokesEquations::get_Z2_flux()",
98  OOMPH_EXCEPTION_LOCATION);
99  }
100 #endif
101 
102  // Get strain rate matrix
103  DenseMatrix<double> real_strainrate(DIM);
104  this->strain_rate(s, real_strainrate, 0);
105  DenseMatrix<double> imag_strainrate(DIM);
106  this->strain_rate(s, imag_strainrate, 1);
107 
108 
109  // Pack into flux Vector
110  unsigned icount = 0;
111 
112  // Start with diagonal terms
113  for (unsigned i = 0; i < DIM; i++)
114  {
115  flux[icount] = real_strainrate(i, i);
116  icount++;
117  }
118 
119  // Off diagonals row by row
120  for (unsigned i = 0; i < DIM; i++)
121  {
122  for (unsigned j = i + 1; j < DIM; j++)
123  {
124  flux[icount] = real_strainrate(i, j);
125  icount++;
126  }
127  }
128 
129  // Start with diagonal terms
130  for (unsigned i = 0; i < DIM; i++)
131  {
132  flux[icount] = imag_strainrate(i, i);
133  icount++;
134  }
135 
136  // Off diagonals row by row
137  for (unsigned i = 0; i < DIM; i++)
138  {
139  for (unsigned j = i + 1; j < DIM; j++)
140  {
141  flux[icount] = imag_strainrate(i, j);
142  icount++;
143  }
144  }
145  }
146 
147  /// Further build: pass the pointers down to the sons
149  {
150  // Find the father element
151  RefineableLinearisedNavierStokesEquations* cast_father_element_pt =
153  this->father_element_pt());
154 
155  // Set the viscosity ratio pointer
156  this->Viscosity_Ratio_pt = cast_father_element_pt->viscosity_ratio_pt();
157 
158  // Set the density ratio pointer
159  this->Density_Ratio_pt = cast_father_element_pt->density_ratio_pt();
160 
161  // Set pointer to global Reynolds number
162  this->Re_pt = cast_father_element_pt->re_pt();
163 
164  // Set pointer to global Reynolds number x Strouhal number (=Womersley)
165  this->ReSt_pt = cast_father_element_pt->re_st_pt();
166 
167  if (cast_father_element_pt->normalisation_element_pt() != 0)
168  {
169  // Pass down the normalisation element
171  cast_father_element_pt->normalisation_element_pt());
172  }
173 
174  // Set the ALE_is_disabled flag
175  this->ALE_is_disabled = cast_father_element_pt->ALE_is_disabled;
176  }
177 
178  /// Loop over all elements in Vector (which typically contains
179  /// all the elements in a fluid mesh) and pin the nodal pressure degrees
180  /// of freedom that are not being used. Function uses
181  /// the member function
182  /// - \c RefineableLinearisedNavierStokesEquations::
183  /// pin_all_nodal_pressure_dofs()
184  /// .
185  /// which is empty by default and should be implemented for
186  /// elements with nodal pressure degrees of freedom
187  /// (e.g. for refineable Taylor-Hood.)
189  const Vector<GeneralisedElement*>& element_pt)
190  {
191  // Loop over all elements to brutally pin all nodal pressure degrees of
192  // freedom
193  const unsigned n_element = element_pt.size();
194  for (unsigned e = 0; e < n_element; e++)
195  {
196  dynamic_cast<RefineableLinearisedNavierStokesEquations*>(element_pt[e])
198  }
199  }
200 
201  /// Unpin all pressure dofs in elements listed in Vector
203  const Vector<GeneralisedElement*>& element_pt)
204  {
205  // Loop over all elements to brutally unpin all nodal pressure degrees of
206  // freedom and internal pressure degrees of freedom
207  const unsigned n_element = element_pt.size();
208  for (unsigned e = 0; e < n_element; e++)
209  {
210  dynamic_cast<RefineableLinearisedNavierStokesEquations*>(element_pt[e])
212  }
213  }
214 
215 
216  private:
217  /// Add element's contribution to the elemental residual vector
218  /// and/or Jacobian matrix
219  /// flag=1: compute both
220  /// flag=0: compute only residual vector
222  Vector<double>& residuals,
223  DenseMatrix<double>& jacobian,
224  DenseMatrix<double>& mass_matrix,
225  unsigned flag);
226 
227  }; // End of RefineableLinearisedNavierStokesEquations class defn
228 
229 
230  /// ///////////////////////////////////////////////////////////////////////////
231  /// ///////////////////////////////////////////////////////////////////////////
232  /// ///////////////////////////////////////////////////////////////////////////
233 
234 
235  //=======================================================================
236  /// Refineable version of linearised axisymmetric quadratic
237  /// Crouzeix-Raviart elements
238  //=======================================================================
242  public virtual RefineableQElement<2>
243  {
244  private:
245  /// Unpin all the internal pressure freedoms
247  {
248  const unsigned n_pres = this->npres_linearised_nst();
249  // Loop over pressure dofs and unpin
250  for (unsigned l = 0; l < n_pres; l++)
251  {
252  // There are two pressure components
253  for (unsigned i = 0; i < 2; i++)
254  {
256  }
257  }
258  }
259 
260  public:
261  /// Constructor
263  : RefineableElement(),
265  RefineableQElement<2>(),
267  {
268  }
269 
270  /// Number of continuously interpolated values: 4*DIM (velocities)
271  unsigned ncont_interpolated_values() const
272  {
273  return 4 * DIM;
274  }
275 
276  /// Rebuild from sons: Reconstruct pressure from the (merged) sons
277  void rebuild_from_sons(Mesh*& mesh_pt)
278  {
279  using namespace QuadTreeNames;
280 
281  // Central pressure value:
282  // -----------------------
283 
284  // Use average of the sons central pressure values
285  // Other options: Take average of the four (discontinuous)
286  // pressure values at the father's midpoint]
287 
288  Vector<double> av_press(2, 0.0);
289 
290  // Loop over the sons
291  for (unsigned ison = 0; ison < 4; ison++)
292  {
293  // Loop over the two pressure components
294  for (unsigned i = 0; i < 2; i++)
295  {
296  // Add the sons midnode pressure
297  av_press[i] +=
298  quadtree_pt()
299  ->son_pt(ison)
300  ->object_pt()
302  ->value(0);
303  }
304  }
305 
306  // Use the average
307  for (unsigned i = 0; i < 2; i++)
308  {
310  ->set_value(0, 0.25 * av_press[i]);
311  }
312 
313  Vector<double> slope1(2, 0.0), slope2(2, 0.0);
314 
315  // Loop over pressure components
316  for (unsigned i = 0; i < 2; i++)
317  {
318  // Slope in s_0 direction
319  // ----------------------
320 
321  // Use average of the 2 FD approximations based on the
322  // elements central pressure values
323  // [Other options: Take average of the four
324  // pressure derivatives]
325 
326  slope1[i] = quadtree_pt()
327  ->son_pt(SE)
328  ->object_pt()
330  ->value(0) -
331  quadtree_pt()
332  ->son_pt(SW)
333  ->object_pt()
335  ->value(0);
336 
337  slope2[i] = quadtree_pt()
338  ->son_pt(NE)
339  ->object_pt()
341  ->value(0) -
342  quadtree_pt()
343  ->son_pt(NW)
344  ->object_pt()
346  ->value(0);
347 
348  // Use the average
350  ->set_value(1, 0.5 * (slope1[i] + slope2[i]));
351 
352  // Slope in s_1 direction
353  // ----------------------
354 
355  // Use average of the 2 FD approximations based on the
356  // elements central pressure values
357  // [Other options: Take average of the four
358  // pressure derivatives]
359 
360  slope1[i] = quadtree_pt()
361  ->son_pt(NE)
362  ->object_pt()
364  ->value(0) -
365  quadtree_pt()
366  ->son_pt(SE)
367  ->object_pt()
369  ->value(0);
370 
371  slope2[i] = quadtree_pt()
372  ->son_pt(NW)
373  ->object_pt()
375  ->value(0) -
376  quadtree_pt()
377  ->son_pt(SW)
378  ->object_pt()
380  ->value(0);
381 
382  // Use the average
384  ->set_value(2, 0.5 * (slope1[i] + slope2[i]));
385  } // End of loop over pressure components
386  }
387 
388  /// Order of recovery shape functions for Z2 error estimation:
389  /// Same order as shape functions.
390  unsigned nrecovery_order()
391  {
392  return 2;
393  }
394 
395  /// Number of vertex nodes in the element
396  unsigned nvertex_node() const
397  {
399  }
400 
401  /// Pointer to the j-th vertex node in the element
402  Node* vertex_node_pt(const unsigned& j) const
403  {
405  }
406 
407  /// Get the function value u in Vector.
408  /// Note: Given the generality of the interface (this function
409  /// is usually called from black-box documentation or interpolation
410  /// routines), the values Vector sets its own size in here.
412  Vector<double>& values)
413  {
414  // Determine size of values Vector: U^C, U^S, W^C, W^S, V^C, V^S
415  const unsigned n_values = 4 * DIM;
416 
417  // Set size of values Vector and initialise to zero
418  values.resize(n_values, 0.0);
419 
420  // Calculate velocities: values[0],...
421  for (unsigned i = 0; i < n_values; i++)
422  {
423  values[i] = interpolated_u_linearised_nst(s, i);
424  }
425  }
426 
427  /// Get all function values [U^C,U^S,...,P^S] at previous timestep t
428  /// (t=0: present; t>0: previous timestep).
429  /// \n
430  /// Note: Given the generality of the interface (this function is
431  /// usually called from black-box documentation or interpolation
432  /// routines), the values Vector sets its own size in here.
433  /// \n
434  /// Note: No pressure history is kept, so pressure is always
435  /// the current value.
436  void get_interpolated_values(const unsigned& t,
437  const Vector<double>& s,
438  Vector<double>& values)
439  {
440  // Set size of Vector: U^C, U^S, W^C, W^S, V^C, V^S
441  values.resize(4 * DIM);
442 
443  // Initialise to zero
444  for (unsigned i = 0; i < 4 * DIM; i++)
445  {
446  values[i] = 0.0;
447  }
448 
449  // Determine number of nodes in element
450  const unsigned n_node = nnode();
451 
452  // Shape functions
453  Shape psif(n_node);
454  shape(s, psif);
455 
456  // Calculate velocities: values[0],...
457  for (unsigned i = 0; i < (4 * DIM); i++)
458  {
459  // Get the local index at which the i-th velocity is stored
460  const unsigned u_local_index = u_index_linearised_nst(i);
461  for (unsigned l = 0; l < n_node; l++)
462  {
463  values[i] += nodal_value(t, l, u_local_index) * psif[l];
464  }
465  }
466  }
467 
468  /// Perform additional hanging node procedures for variables
469  /// that are not interpolated by all nodes. Empty
471 
472  /// Further build for Crouzeix_Raviart interpolates the internal
473  /// pressure dofs from father element: Make sure pressure values and
474  /// dp/ds agree between fathers and sons at the midpoints of the son
475  /// elements.
477  {
478  // Call the generic further build
480 
481  using namespace QuadTreeNames;
482 
483  // What type of son am I? Ask my quadtree representation...
484  int son_type = quadtree_pt()->son_type();
485 
486  // Pointer to my father (in element impersonation)
487  RefineableElement* father_el_pt = quadtree_pt()->father_pt()->object_pt();
488 
489  Vector<double> s_father(2);
490 
491  // Son midpoint is located at the following coordinates in father element:
492 
493  // South west son
494  if (son_type == SW)
495  {
496  s_father[0] = -0.5;
497  s_father[1] = -0.5;
498  }
499  // South east son
500  else if (son_type == SE)
501  {
502  s_father[0] = 0.5;
503  s_father[1] = -0.5;
504  }
505  // North east son
506  else if (son_type == NE)
507  {
508  s_father[0] = 0.5;
509  s_father[1] = 0.5;
510  }
511 
512  // North west son
513  else if (son_type == NW)
514  {
515  s_father[0] = -0.5;
516  s_father[1] = 0.5;
517  }
518 
519  // Pressure values in father element
520  // ---------------------------------
521 
522  // Find pointer to father element
525  father_el_pt);
526 
527  // Set up storage for pressure in father element
528  Vector<double> press(2, 0.0);
529 
530  // Loop over pressure components
531  for (unsigned i = 0; i < 2; i++)
532  {
533  // Get pressure from father element
534  press[i] =
535  cast_father_el_pt->interpolated_p_linearised_nst(s_father, i);
536 
537  // Pressure value gets copied straight into internal dof:
539  ->set_value(0, press[i]);
540 
541  // The slopes get copied from father
543  ->set_value(1,
544  0.5 *
545  cast_father_el_pt
547  ->value(1));
548 
550  ->set_value(2,
551  0.5 *
552  cast_father_el_pt
554  ->value(2));
555  } // End of loop over pressure components
556  }
557 
558  }; // End of RefineableLinearisedQCrouzeixRaviartElement defn
559 
560 
561  /// ////////////////////////////////////////////////////////////////////////
562  /// ////////////////////////////////////////////////////////////////////////
563  /// ////////////////////////////////////////////////////////////////////////
564 
565 
566  //=======================================================================
567  /// Face geometry of the refineable linearised axisym
568  /// Crouzeix-Raviart elements
569  //=======================================================================
570  template<>
572  : public virtual FaceGeometry<LinearisedQCrouzeixRaviartElement>
573  {
574  public:
576  };
577 
578 
579  //=======================================================================
580  /// Face geometry of face geometric of the refineable linearised
581  /// axisym Crouzeix-Raviart elements
582  //=======================================================================
583  template<>
585  : public virtual FaceGeometry<
586  FaceGeometry<LinearisedQCrouzeixRaviartElement>>
587  {
588  public:
591  {
592  }
593  };
594 
595 
596  /// ///////////////////////////////////////////////////////////////////////////
597  /// ///////////////////////////////////////////////////////////////////////////
598  /// ///////////////////////////////////////////////////////////////////////////
599 
600 
601  //=======================================================================
602  /// Refineable version of linearised axisymmetric quadratic
603  /// Taylor-Hood elements
604  //=======================================================================
608  public virtual RefineableQElement<2>
609  {
610  private:
611  /// Pointer to n_p-th pressure node
612  Node* pressure_node_pt(const unsigned& n_p)
613  {
614  return this->node_pt(this->Pconv[n_p]);
615  }
616 
617  /// Unpin all pressure dofs
619  {
620  // Determine number of nodes in element
621  const unsigned n_node = this->nnode();
622 
623  // Get nodal indeces of the two pressure components
624  Vector<int> p_index(2);
625  for (unsigned i = 0; i < 2; i++)
626  {
627  p_index[i] = this->p_index_linearised_nst(i);
628  }
629 
630  // Loop over nodes and unpin both pressure components
631  for (unsigned n = 0; n < n_node; n++)
632  {
633  for (unsigned i = 0; i < 2; i++)
634  {
635  this->node_pt(n)->unpin(p_index[i]);
636  }
637  }
638  }
639 
640  /// Unpin the proper nodal pressure dofs
642  {
643  // Determine number of nodes in element
644  const unsigned n_node = this->nnode();
645 
646  // Get nodal indeces of the two pressure components
647  Vector<int> p_index(2);
648  for (unsigned i = 0; i < 2; i++)
649  {
650  p_index[i] = this->p_index_linearised_nst(i);
651  }
652 
653  // Loop over all nodes and pin all the nodal pressures
654  for (unsigned n = 0; n < n_node; n++)
655  {
656  for (unsigned i = 0; i < 2; i++)
657  {
658  this->node_pt(n)->pin(p_index[i]);
659  }
660  }
661 
662  // Loop over all actual pressure nodes and unpin if they're not hanging
663  const unsigned n_pres = this->npres_linearised_nst();
664  for (unsigned l = 0; l < n_pres; l++)
665  {
666  Node* nod_pt = this->node_pt(this->Pconv[l]);
667  for (unsigned i = 0; i < 2; i++)
668  {
669  if (!nod_pt->is_hanging(p_index[i]))
670  {
671  nod_pt->unpin(p_index[i]);
672  }
673  }
674  }
675  }
676 
677  public:
678  /// Constructor:
680  : RefineableElement(),
682  RefineableQElement<2>(),
684  {
685  }
686 
687  /// Number of values (pinned or dofs) required at node n.
688  /// Bumped up to 8 so we don't have to worry if a hanging mid-side node
689  /// gets shared by a corner node (which has extra degrees of freedom)
690  unsigned required_nvalue(const unsigned& n) const
691  {
692  return 8;
693  }
694 
695  /// Number of continuously interpolated values: 8
696  /// (6 velocities + 2 pressures)
697  unsigned ncont_interpolated_values() const
698  {
699  return 8;
700  }
701 
702  /// Rebuild from sons: empty
703  void rebuild_from_sons(Mesh*& mesh_pt) {}
704 
705  /// Order of recovery shape functions for Z2 error estimation:
706  /// Same order as shape functions.
707  unsigned nrecovery_order()
708  {
709  return 2;
710  }
711 
712  /// Number of vertex nodes in the element
713  unsigned nvertex_node() const
714  {
716  }
717 
718  /// Pointer to the j-th vertex node in the element
719  Node* vertex_node_pt(const unsigned& j) const
720  {
722  }
723 
724  /// Get the function value u in Vector.
725  /// Note: Given the generality of the interface (this function
726  /// is usually called from black-box documentation or interpolation
727  /// routines), the values Vector sets its own size in here.
729  Vector<double>& values)
730  {
731  // Determine size of values Vector:
732  // U^C, U^S, W^C, W^S, V^C, V^S, P^C, P^S
733  const unsigned n_values = 2 * (DIM + 1);
734 
735  // Set size of values Vector and initialise to zero
736  values.resize(n_values, 0.0);
737 
738  // Calculate velocities: values[0],...
739  for (unsigned i = 0; i < (2 * DIM); i++)
740  {
741  values[i] = interpolated_u_linearised_nst(s, i);
742  }
743 
744  // Calculate pressure: values[DIM], values[DIM+1]
745  for (unsigned i = 0; i < 2; i++)
746  {
747  values[DIM + i] = interpolated_p_linearised_nst(s, i);
748  }
749  }
750 
751  /// Get the function value u in Vector.
752  /// Note: Given the generality of the interface (this function
753  /// is usually called from black-box documentation or interpolation
754  /// routines), the values Vector sets its own size in here.
755  void get_interpolated_values(const unsigned& t,
756  const Vector<double>& s,
757  Vector<double>& values)
758  {
759  // Set size of values Vector: U^C, U^S, W^C, W^S, V^C, V^S, P^C, P^S
760  values.resize(2 * (DIM + 1));
761 
762  // Initialise all entries to zero
763  for (unsigned i = 0; i < 2 * (DIM + 1); i++)
764  {
765  values[i] = 0.0;
766  }
767 
768  // Determine number of nodes in element
769  const unsigned n_node = nnode();
770 
771  // Shape functions
772  Shape psif(n_node);
773  shape(s, psif);
774 
775  // Calculate velocities: values[0],...
776  for (unsigned i = 0; i < (2 * DIM); i++)
777  {
778  // Get the nodal coordinate of the velocity
779  const unsigned u_nodal_index = u_index_linearised_nst(i);
780  for (unsigned l = 0; l < n_node; l++)
781  {
782  values[i] += nodal_value(t, l, u_nodal_index) * psif[l];
783  }
784  }
785 
786  // Calculate pressure: values[DIM], values[DIM+1]
787  // (no history is carried in the pressure)
788  for (unsigned i = 0; i < 2; i++)
789  {
790  values[DIM + i] = interpolated_p_linearised_nst(s, i);
791  }
792  }
793 
794  /// Perform additional hanging node procedures for variables
795  /// that are not interpolated by all nodes. The two pressure components
796  /// are stored at the 6th and 7th location in each node
798  {
799  for (unsigned i = 0; i < 2; i++)
800  {
801  this->setup_hang_for_value((2 * DIM) + i);
802  }
803  }
804 
805  /// The velocities are isoparametric and so the "nodes"
806  /// interpolating the velocities are the geometric nodes. The
807  /// pressure "nodes" are a subset of the nodes, so when n_value==6
808  /// or 7, the n-th pressure node is returned.
809  Node* interpolating_node_pt(const unsigned& n, const int& n_value)
810 
811  {
812  // The only different nodes are the pressure nodes
813  if (n_value == (2 * DIM) || n_value == ((2 * DIM) + 1))
814  {
815  return this->node_pt(this->Pconv[n]);
816  }
817 
818  // The other variables are interpolated via the usual nodes
819  else
820  {
821  return this->node_pt(n);
822  }
823  }
824 
825  /// The pressure nodes are the corner nodes, so when n_value==6
826  /// or 7, the fraction is the same as the 1d node number, 0 or 1.
827  double local_one_d_fraction_of_interpolating_node(const unsigned& n1d,
828  const unsigned& i,
829  const int& n_value)
830  {
831  if (n_value == (2 * DIM) || n_value == ((2 * DIM) + 1))
832  {
833  // The pressure nodes are just located on the boundaries at 0 or 1
834  return double(n1d);
835  }
836  // Otherwise the velocity nodes are the same as the geometric ones
837  else
838  {
839  return this->local_one_d_fraction_of_node(n1d, i);
840  }
841  }
842 
843  /// The velocity nodes are the same as the geometric nodes.
844  /// The pressure nodes must be calculated by using the same methods
845  /// as the geometric nodes, but by recalling that there are only two
846  /// pressure nodes per edge.
848  const int& n_value)
849  {
850  // If we are calculating pressure nodes
851  if (n_value == static_cast<int>(2 * DIM) ||
852  n_value == static_cast<int>((2 * DIM) + 1))
853  {
854  // Storage for the index of the pressure node
855  unsigned total_index = 0;
856  // The number of nodes along each 1d edge is 2.
857  const unsigned NNODE_1D = 2;
858  // Storage for the index along each boundary
859  // Note that it's only a 2D spatial element
860  Vector<int> index(2);
861  // Loop over the coordinates
862  for (unsigned i = 0; i < 2; i++)
863  {
864  // If we are at the lower limit, the index is zero
865  if (s[i] == -1.0)
866  {
867  index[i] = 0;
868  }
869 
870  // If we are at the upper limit, the index is the number of nodes
871  // minus 1
872  else if (s[i] == 1.0)
873  {
874  index[i] = NNODE_1D - 1;
875  }
876 
877  // Otherwise, we have to calculate the index in general
878  else
879  {
880  // For uniformly spaced nodes the 0th node number would be
881  double float_index = 0.5 * (1.0 + s[i]) * (NNODE_1D - 1);
882  index[i] = int(float_index);
883  // What is the excess. This should be safe because the
884  // taking the integer part rounds down
885  double excess = float_index - index[i];
886  // If the excess is bigger than our tolerance there is no node,
887  // return null
889  ((1.0 - excess) > FiniteElement::Node_location_tolerance))
890  {
891  return 0;
892  }
893  }
894  /// Construct the general pressure index from the components.
895  total_index +=
896  index[i] * static_cast<unsigned>(pow(static_cast<float>(NNODE_1D),
897  static_cast<int>(i)));
898  }
899  // If we've got here we have a node, so let's return a pointer to it
900  return this->node_pt(this->Pconv[total_index]);
901  }
902  // Otherwise velocity nodes are the same as pressure nodes
903  else
904  {
905  return this->get_node_at_local_coordinate(s);
906  }
907  }
908 
909 
910  /// The number of 1d pressure nodes is 2, the number of 1d
911  /// velocity nodes is the same as the number of 1d geometric nodes.
912  unsigned ninterpolating_node_1d(const int& n_value)
913  {
914  if (n_value == (2 * DIM) || n_value == ((2 * DIM) + 1))
915  {
916  return 2;
917  }
918  else
919  {
920  return this->nnode_1d();
921  }
922  }
923 
924  /// The number of pressure nodes is 4. The number of
925  /// velocity nodes is the same as the number of geometric nodes.
926  unsigned ninterpolating_node(const int& n_value)
927  {
928  if (n_value == (2 * DIM) || n_value == ((2 * DIM) + 1))
929  {
930  return 4;
931  }
932  else
933  {
934  return this->nnode();
935  }
936  }
937 
938  /// The basis interpolating the pressure is given by pshape().
939  /// / The basis interpolating the velocity is shape().
941  Shape& psi,
942  const int& n_value) const
943  {
944  if (n_value == (2 * DIM) || n_value == ((2 * DIM) + 1))
945  {
946  return this->pshape_linearised_nst(s, psi);
947  }
948  else
949  {
950  return this->shape(s, psi);
951  }
952  }
953 
954  }; // End of RefineableLinearisedQTaylorHoodElement class defn
955 
956 
957  /// ////////////////////////////////////////////////////////////////////////
958  /// ////////////////////////////////////////////////////////////////////////
959  /// ////////////////////////////////////////////////////////////////////////
960 
961 
962  //=======================================================================
963  /// Face geometry of the refineable linearised axisym
964  /// Taylor-Hood elements
965  //=======================================================================
966  template<>
968  : public virtual FaceGeometry<LinearisedQTaylorHoodElement>
969  {
970  public:
972  };
973 
974 
975  //=======================================================================
976  /// Face geometry of face geometric of the refineable linearised
977  /// axisym Taylor-Hood elements
978  //=======================================================================
979  template<>
981  : public virtual FaceGeometry<FaceGeometry<LinearisedQTaylorHoodElement>>
982  {
983  public:
985  {
986  }
987  };
988 
989 
990 } // End of namespace oomph
991 
992 #endif
e
Definition: cfortran.h:571
static char t char * s
Definition: cfortran.h:568
cstr elem_len * i
Definition: cfortran.h:603
char t
Definition: cfortran.h:568
void pin(const unsigned &i)
Pin the i-th stored variable.
Definition: nodes.h:385
void unpin(const unsigned &i)
Unpin the i-th stored variable.
Definition: nodes.h:391
void set_value(const unsigned &i, const double &value_)
Set the i-th stored data value to specified value. The only reason that we require an explicit set fu...
Definition: nodes.h:271
double value(const unsigned &i) const
Return i-th stored value. This function is not virtual so that it can be inlined. This means that if ...
Definition: nodes.h:293
Base class for finite elements that can compute the quantities that are required for the Z2 error est...
//////////////////////////////////////////////////////////////////// ////////////////////////////////...
Definition: elements.h:5002
Node *& node_pt(const unsigned &n)
Return a pointer to the local node n.
Definition: elements.h:2179
double nodal_value(const unsigned &n, const unsigned &i) const
Return the i-th value stored at local node n. Produces suitably interpolated values for hanging nodes...
Definition: elements.h:2597
virtual Node * get_node_at_local_coordinate(const Vector< double > &s) const
If there is a node at this local coordinate, return the pointer to the node.
Definition: elements.cc:3912
virtual unsigned nvertex_node() const
Return the number of vertex nodes in this element. Broken virtual function in "pure" finite elements.
Definition: elements.h:2495
static const double Node_location_tolerance
Default value for the tolerance to be used when locating nodes via local coordinates.
Definition: elements.h:1378
virtual void shape(const Vector< double > &s, Shape &psi) const =0
Calculate the geometric shape functions at local coordinate s. This function must be overloaded for e...
unsigned nnode() const
Return the number of nodes.
Definition: elements.h:2214
virtual Node * vertex_node_pt(const unsigned &j) const
Pointer to the j-th vertex node in the element. Broken virtual function in "pure" finite elements.
Definition: elements.h:2504
virtual unsigned nnode_1d() const
Return the number of nodes along one edge of the element Default is to return zero — must be overload...
Definition: elements.h:2222
virtual double local_one_d_fraction_of_node(const unsigned &n1d, const unsigned &i)
Get the local fraction of any node in the n-th position in a one dimensional expansion along the i-th...
Definition: elements.h:1862
Data *& internal_data_pt(const unsigned &i)
Return a pointer to i-th internal data object.
Definition: elements.h:622
A class for elements that solve the linearised version of the unsteady Navier–Stokes equations in cyl...
virtual unsigned u_index_linearised_nst(const unsigned &i) const
Return the index at which the i-th unknown velocity component is stored. The default value,...
double *& re_pt()
Pointer to Reynolds number.
LinearisedNavierStokesEigenfunctionNormalisationElement * normalisation_element_pt()
Pointer to normalisation element.
void strain_rate(const Vector< double > &s, DenseMatrix< double > &strain_rate, const unsigned &real) const
Strain-rate tensor: where (in that order)
bool ALE_is_disabled
Boolean flag to indicate if ALE formulation is disabled when the time-derivatives are computed....
void set_eigenfunction_normalisation_element(LinearisedNavierStokesEigenfunctionNormalisationElement *const &normalisation_el_pt)
the boolean flag check_nodal_data is set to false.
double * Viscosity_Ratio_pt
Pointer to the viscosity ratio (relative to the viscosity used in the definition of the Reynolds numb...
double interpolated_p_linearised_nst(const Vector< double > &s, const unsigned &i) const
Return the i-th component of the FE interpolated pressure p[i] at local coordinate s.
double * ReSt_pt
Pointer to global Reynolds number x Strouhal number (=Womersley)
double * Re_pt
Pointer to global Reynolds number.
double *& viscosity_ratio_pt()
Pointer to the viscosity ratio.
double *& re_st_pt()
Pointer to product of Reynolds and Strouhal number (=Womersley number)
double *& density_ratio_pt()
Pointer to the density ratio.
double * Density_Ratio_pt
Pointer to the density ratio (relative to the density used in the definition of the Reynolds number)
double interpolated_u_linearised_nst(const Vector< double > &s, const unsigned &i) const
Compute the element's residual Vector and the jacobian matrix. Virtual function can be overloaded by ...
virtual int p_index_linearised_nst(const unsigned &i) const
Which nodal value represents the pressure?
/////////////////////////////////////////////////////////////////////////// /////////////////////////...
unsigned npres_linearised_nst() const
Return number of pressure values corresponding to a single pressure component.
Vector< unsigned > P_linearised_nst_internal_index
Internal indices that indicate at which internal data the pressure values are stored....
void pshape_linearised_nst(const Vector< double > &s, Shape &psi) const
Compute the pressure shape functions at local coordinate s.
/////////////////////////////////////////////////////////////////////////// /////////////////////////...
A general mesh class.
Definition: mesh.h:67
Nodes are derived from Data, but, in addition, have a definite (Eulerian) position in a space of a gi...
Definition: nodes.h:906
bool is_hanging() const
Test whether the node is geometrically hanging.
Definition: nodes.h:1285
An OomphLibError object which should be thrown when an run-time error is encountered....
RefineableElements are FiniteElements that may be subdivided into children to provide a better local ...
virtual RefineableElement * father_element_pt() const
Return a pointer to the father element.
Refineable version of the linearised axisymmetric Navier–Stokes equations.
void further_build()
Further build: pass the pointers down to the sons.
unsigned num_Z2_flux_terms()
Number of 'flux' terms for Z2 error estimation.
static void pin_redundant_nodal_pressures(const Vector< GeneralisedElement * > &element_pt)
Loop over all elements in Vector (which typically contains all the elements in a fluid mesh) and pin ...
virtual void pin_elemental_redundant_nodal_pressure_dofs()
Pin unused nodal pressure dofs (empty by default, because by default pressure dofs are not associated...
virtual Node * pressure_node_pt(const unsigned &n_p)
Pointer to n_p-th pressure node (Default: NULL, indicating that pressure is not based on nodal interp...
virtual void unpin_elemental_pressure_dofs()=0
Unpin all pressure dofs in the element.
void get_Z2_flux(const Vector< double > &s, Vector< double > &flux)
Get 'flux' for Z2 error recovery: Upper triangular entries in strain rate tensor.
static void unpin_all_pressure_dofs(const Vector< GeneralisedElement * > &element_pt)
Unpin all pressure dofs in elements listed in Vector.
void fill_in_generic_residual_contribution_linearised_nst(Vector< double > &residuals, DenseMatrix< double > &jacobian, DenseMatrix< double > &mass_matrix, unsigned flag)
Add element's contribution to the elemental residual vector and/or Jacobian matrix flag=1: compute bo...
/////////////////////////////////////////////////////////////////////////// /////////////////////////...
void further_build()
Further build for Crouzeix_Raviart interpolates the internal pressure dofs from father element: Make ...
void get_interpolated_values(const unsigned &t, const Vector< double > &s, Vector< double > &values)
Get all function values [U^C,U^S,...,P^S] at previous timestep t (t=0: present; t>0: previous timeste...
unsigned nrecovery_order()
Order of recovery shape functions for Z2 error estimation: Same order as shape functions.
unsigned nvertex_node() const
Number of vertex nodes in the element.
void rebuild_from_sons(Mesh *&mesh_pt)
Rebuild from sons: Reconstruct pressure from the (merged) sons.
void unpin_elemental_pressure_dofs()
Unpin all the internal pressure freedoms.
void get_interpolated_values(const Vector< double > &s, Vector< double > &values)
Get the function value u in Vector. Note: Given the generality of the interface (this function is usu...
unsigned ncont_interpolated_values() const
Number of continuously interpolated values: 4*DIM (velocities)
Node * vertex_node_pt(const unsigned &j) const
Pointer to the j-th vertex node in the element.
void further_setup_hanging_nodes()
Perform additional hanging node procedures for variables that are not interpolated by all nodes....
/////////////////////////////////////////////////////////////////////////// /////////////////////////...
unsigned nrecovery_order()
Order of recovery shape functions for Z2 error estimation: Same order as shape functions.
double local_one_d_fraction_of_interpolating_node(const unsigned &n1d, const unsigned &i, const int &n_value)
The pressure nodes are the corner nodes, so when n_value==6 or 7, the fraction is the same as the 1d ...
unsigned required_nvalue(const unsigned &n) const
Number of values (pinned or dofs) required at node n. Bumped up to 8 so we don't have to worry if a h...
unsigned ncont_interpolated_values() const
Number of continuously interpolated values: 8 (6 velocities + 2 pressures)
Node * get_interpolating_node_at_local_coordinate(const Vector< double > &s, const int &n_value)
The velocity nodes are the same as the geometric nodes. The pressure nodes must be calculated by usin...
Node * pressure_node_pt(const unsigned &n_p)
Pointer to n_p-th pressure node.
void further_setup_hanging_nodes()
Perform additional hanging node procedures for variables that are not interpolated by all nodes....
Node * interpolating_node_pt(const unsigned &n, const int &n_value)
The velocities are isoparametric and so the "nodes" interpolating the velocities are the geometric no...
void get_interpolated_values(const Vector< double > &s, Vector< double > &values)
Get the function value u in Vector. Note: Given the generality of the interface (this function is usu...
void pin_elemental_redundant_nodal_pressure_dofs()
Unpin the proper nodal pressure dofs.
void get_interpolated_values(const unsigned &t, const Vector< double > &s, Vector< double > &values)
Get the function value u in Vector. Note: Given the generality of the interface (this function is usu...
unsigned nvertex_node() const
Number of vertex nodes in the element.
unsigned ninterpolating_node_1d(const int &n_value)
The number of 1d pressure nodes is 2, the number of 1d velocity nodes is the same as the number of 1d...
unsigned ninterpolating_node(const int &n_value)
The number of pressure nodes is 4. The number of velocity nodes is the same as the number of geometri...
void interpolating_basis(const Vector< double > &s, Shape &psi, const int &n_value) const
The basis interpolating the pressure is given by pshape(). / The basis interpolating the velocity is ...
Node * vertex_node_pt(const unsigned &j) const
Pointer to the j-th vertex node in the element.
QuadTree * quadtree_pt()
Pointer to quadtree representation of this element.
void setup_hang_for_value(const int &value_id)
Internal helper function that is used to construct the hanging node schemes for the value_id-th inter...
A class that is used to template the refineable Q elements by dimension. It's really nothing more tha...
Definition: Qelements.h:2259
A Class for shape functions. In simple cases, the shape functions have only one index that can be tho...
Definition: shape.h:76
RefineableElement * object_pt() const
Return the pointer to the object (RefineableElement) represented by the tree.
Definition: tree.h:88
Tree * father_pt() const
Return pointer to father: NULL if it's a root node.
Definition: tree.h:235
int son_type() const
Return son type.
Definition: tree.h:214
Tree * son_pt(const int &son_index) const
Return pointer to the son for a given index. Note that to aid code readability specific enums have be...
Definition: tree.h:103
//////////////////////////////////////////////////////////////////// ////////////////////////////////...