refineable_quad_element.h
Go to the documentation of this file.
1 // LIC// ====================================================================
2 // LIC// This file forms part of oomph-lib, the object-oriented,
3 // LIC// multi-physics finite-element library, available
4 // LIC// at http://www.oomph-lib.org.
5 // LIC//
6 // LIC// Copyright (C) 2006-2024 Matthias Heil and Andrew Hazel
7 // LIC//
8 // LIC// This library is free software; you can redistribute it and/or
9 // LIC// modify it under the terms of the GNU Lesser General Public
10 // LIC// License as published by the Free Software Foundation; either
11 // LIC// version 2.1 of the License, or (at your option) any later version.
12 // LIC//
13 // LIC// This library is distributed in the hope that it will be useful,
14 // LIC// but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // LIC// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
16 // LIC// Lesser General Public License for more details.
17 // LIC//
18 // LIC// You should have received a copy of the GNU Lesser General Public
19 // LIC// License along with this library; if not, write to the Free Software
20 // LIC// Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
21 // LIC// 02110-1301 USA.
22 // LIC//
23 // LIC// The authors may be contacted at oomph-lib@maths.man.ac.uk.
24 // LIC//
25 // LIC//====================================================================
26 #ifndef OOMPH_REFINEABLE_QUAD_ELEMENT_HEADER
27 #define OOMPH_REFINEABLE_QUAD_ELEMENT_HEADER
28 
29 // Config header generated by autoconfig
30 #ifdef HAVE_CONFIG_H
31 #include <oomph-lib-config.h>
32 #endif
33 
34 
35 // oomph-lib headers
36 #include "quadtree.h"
37 #include "macro_element.h"
38 #include "refineable_elements.h"
39 #include "Qelements.h"
40 
41 namespace oomph
42 {
43  // Forward definition for mesh.
44  class Mesh;
45 
46  //=======================================================================
47  /// Refineable version of QElement<2,NNODE_1D>.
48  ///
49  /// Refinement is performed by quadtree procedures. When the element is
50  /// subdivided, the geometry of its sons is established by calls
51  /// to their father's
52  /// \code get_x(...) \endcode
53  /// function which refers to
54  /// - the father element's geometric FE mapping (this
55  /// is the default)
56  /// .
57  /// or
58  /// - to a MacroElement 's MacroElement::macro_map (if the pointer
59  /// to the macro element is non-NULL)
60  ///
61  /// The class provides a generic RefineableQElement<2>::build() function
62  /// which deals with generic
63  /// isoparametric QElements in which all values are associated with
64  /// nodes. The RefineableQElement<2>::further_build() function provides
65  /// an interface for any element-specific non-generic build operations.
66  ///
67  //=======================================================================
68  template<>
69  class RefineableQElement<2> : public virtual RefineableElement,
70  public virtual QuadElementBase
71  {
72  public:
73  /// Shorthand for pointer to an argument-free void member
74  /// function of the refineable element
75  typedef void (RefineableQElement<2>::*VoidMemberFctPt)();
76 
77  /// Constructor: Pass refinement level (default 0 = root)
79  {
80 #ifdef LEAK_CHECK
81  LeakCheckNames::RefineableQElement<2> _build += 1;
82 #endif
83  }
84 
85 
86  /// Broken copy constructor
87  RefineableQElement(const RefineableQElement<2>& dummy) = delete;
88 
89  /// Broken assignment operator
90  // Commented out broken assignment operator because this can lead to a
91  // conflict warning when used in the virtual inheritence hierarchy.
92  // Essentially the compiler doesn't realise that two separate
93  // implementations of the broken function are the same and so, quite
94  // rightly, it shouts.
95  /*void operator=(const RefineableQElement<2>&) = delete;*/
96 
97  /// Destructor
99  {
100 #ifdef LEAK_CHECK
101  LeakCheckNames::RefineableQElement<2> _build -= 1;
102 #endif
103  }
104 
105  /// A refineable quad element has four sons
106  unsigned required_nsons() const
107  {
108  return 4;
109  }
110 
111  /// If a neighbouring element has already created a node at
112  /// a position corresponding to the local fractional position within the
113  /// present element, s_fraction, return
114  /// a pointer to that node. If not, return NULL (0).
115  /// If the node is on a periodic boundary the flag is_periodic is true,
116  /// otherwise it will be false.
117  virtual Node* node_created_by_neighbour(const Vector<double>& s_fraction,
118  bool& is_periodic);
119 
120  /// If a son of a neighbouring element has already created a node at
121  /// a position corresponding to the local fractional position within the
122  /// present element, s_fraction, return
123  /// a pointer to that node. If not, return NULL (0).
124  /// If the node is on a periodic boundary the flag is_periodic is true,
125  /// otherwise it will be false.
127  const Vector<double>& s_fraction, bool& is_periodic)
128  {
129  // It is impossible for this situation to arise in meshes
130  // containing elements of uniform p-order. This is here so
131  // that it can be overloaded for p-refineable elements.
132  return 0;
133  }
134 
135  /// Build the element, i.e. give it nodal positions, apply BCs, etc.
136  /// Pointers to any new nodes will be returned in new_node_pt. If
137  /// it is open, the positions of the new
138  /// nodes will be written to the file stream new_nodes_file
139  virtual void build(Mesh*& mesh_pt,
140  Vector<Node*>& new_node_pt,
141  bool& was_already_built,
142  std::ofstream& new_nodes_file);
143 
144  /// Check the integrity of the element: ensure that the position and
145  /// values are continuous across the element edges
146  void check_integrity(double& max_error);
147 
148  /// Print corner nodes, use colour
149  void output_corners(std::ostream& outfile, const std::string& colour) const;
150 
151  /// Pointer to quadtree representation of this element
153  {
154  return dynamic_cast<QuadTree*>(Tree_pt);
155  }
156 
157  /// Pointer to quadtree representation of this element
159  {
160  return dynamic_cast<QuadTree*>(Tree_pt);
161  }
162 
163  /// Markup all hanging nodes & document the results in
164  /// the output streams contained in the vector output_stream, if they
165  /// are open.
166  void setup_hanging_nodes(Vector<std::ofstream*>& output_stream);
167 
168  /// Perform additional hanging node procedures for variables
169  /// that are not interpolated by all nodes (e.g. lower order interpolations
170  /// as for the pressure in Taylor Hood).
171  virtual void further_setup_hanging_nodes() = 0;
172 
173  protected:
174  /// Coincidence between son nodal points and father boundaries:
175  /// Father_bound[node_1d](jnod_son,son_type)={SW/SE/NW/NE/S/E/N/W/OMEGA}
176  static std::map<unsigned, DenseMatrix<int>> Father_bound;
177 
178  /// Setup static matrix for coincidence between son
179  /// nodal points and father boundaries
180  void setup_father_bounds();
181 
182  /// Determine Vector of boundary conditions along edge (N/S/W/E)
183  void get_edge_bcs(const int& edge, Vector<int>& bound_cons) const;
184 
185  public:
186  /// Determine set of (mesh) boundaries that the
187  /// element edge/vertex lives on
188  void get_boundaries(const int& edge, std::set<unsigned>& boundaries) const;
189 
190  /// Determine Vector of boundary conditions along edge
191  /// (or on vertex) bound (S/W/N/E/SW/SE/NW/NE): For value ival
192  /// on this boundary, bound_cons[ival]=1 if pinned and 0 if free.
193  void get_bcs(int bound, Vector<int>& bound_cons) const;
194 
195  /// Return the value of the intrinsic boundary coordinate
196  /// interpolated along the edge (S/W/N/E)
197  void interpolated_zeta_on_edge(const unsigned& boundary,
198  const int& edge,
199  const Vector<double>& s,
200  Vector<double>& zeta);
201 
202  protected:
203  /// Internal helper function that is used to construct the
204  /// hanging node schemes for the value_id-th interpolated value
205  void setup_hang_for_value(const int& value_id);
206 
207  /// Internal helper function that is used to construct the
208  /// hanging node schemes for the positions.
209  virtual void quad_hang_helper(const int& value_id,
210  const int& my_edge,
211  std::ofstream& output_hangfile);
212  };
213 
214 
215  //========================================================================
216  /// Refineable version of Solid quad elements
217  //========================================================================
218  template<>
219  class RefineableSolidQElement<2> : public virtual RefineableQElement<2>,
220  public virtual RefineableSolidElement,
221  public virtual QSolidElementBase
222  {
223  public:
224  /// Constructor, just call the constructor of the RefineableQElement<2>
227  {
228  }
229 
230 
231  /// Broken copy constructor
233 
234  /// Broken assignment operator
235  /*void operator=(const RefineableSolidQElement<2>&) = delete;*/
236 
237  /// Virtual Destructor
239 
240 
241  /// Final over-ride: Use version in QSolidElementBase
242  void set_macro_elem_pt(MacroElement* macro_elem_pt)
243  {
245  }
246 
247  /// Final over-ride: Use version in QSolidElementBase
248  void set_macro_elem_pt(MacroElement* macro_elem_pt,
249  MacroElement* undeformed_macro_elem_pt)
250  {
252  undeformed_macro_elem_pt);
253  }
254 
255  /// Use the generic finite difference routine defined in
256  /// RefineableSolidElement to calculate the Jacobian matrix
257  void get_jacobian(Vector<double>& residuals, DenseMatrix<double>& jacobian)
258  {
259  RefineableSolidElement::get_jacobian(residuals, jacobian);
260  }
261 
262  /// Determine vector of solid (positional) boundary conditions
263  /// along edge (N/S/W/E) [Pressure does not have to be included
264  /// since it can't be subjected to bc at more than one node anyway]
265  void get_edge_solid_bcs(const int& edge,
266  Vector<int>& solid_bound_cons) const;
267 
268  /// Determine vector of solid (positional) boundary conditions
269  /// along edge (or on vertex) bound (S/W/N/E/SW/SE/NW/NE): For direction i,
270  /// solid_bound_cons[i]=1 if displacement in this coordinate direction
271  /// is pinned and 0 if it's free.
272  void get_solid_bcs(int bound, Vector<int>& solid_bound_cons) const;
273 
274 
275  /// Build the element, i.e. give it nodal positions, apply BCs, etc.
276  /// Incl. documention into new_nodes_file
277  // NOTE: FOR SOME REASON THIS NEEDS TO LIVE IN *.H TO WORK ON INTEL
278  void build(Mesh*& mesh_pt,
279  Vector<Node*>& new_node_pt,
280  bool& was_already_built,
281  std::ofstream& new_nodes_file)
282  {
283  using namespace QuadTreeNames;
284 
285  // Call the standard (non-elastic) build function
287  mesh_pt, new_node_pt, was_already_built, new_nodes_file);
288 
289  // Are we done?
290  if (was_already_built) return;
291 
292  // Now need to loop over the nodes again and set solid variables
293 
294  // What type of son am I? Ask my quadtree representation...
295  int son_type = Tree_pt->son_type();
296 
297  // Which element (!) is my father? (We must have a father
298  // since was_already_built is false...)
299  RefineableSolidQElement<2>* father_el_pt =
300  dynamic_cast<RefineableSolidQElement<2>*>(
301  Tree_pt->father_pt()->object_pt());
302 
303 
304 #ifdef PARANOID
305  // Currently we can't handle the case of generalised coordinates
306  // since we haven't established how they should be interpolated
307  // Buffer this case:
308  if (static_cast<SolidNode*>(father_el_pt->node_pt(0))
309  ->nlagrangian_type() != 1)
310  {
311  throw OomphLibError(
312  "We can't handle generalised nodal positions (yet).\n",
313  OOMPH_CURRENT_FUNCTION,
314  OOMPH_EXCEPTION_LOCATION);
315  }
316 #endif
317 
318  Vector<double> s_lo(2);
319  Vector<double> s_hi(2);
320  Vector<double> s(2);
321  Vector<double> xi(2);
322  Vector<double> xi_fe(2);
323  Vector<double> x(2);
324  Vector<double> x_fe(2);
325 
326  // Setup vertex coordinates in father element:
327  //--------------------------------------------
328  switch (son_type)
329  {
330  case SW:
331  s_lo[0] = -1.0;
332  s_hi[0] = 0.0;
333  s_lo[1] = -1.0;
334  s_hi[1] = 0.0;
335  break;
336 
337  case SE:
338  s_lo[0] = 0.0;
339  s_hi[0] = 1.0;
340  s_lo[1] = -1.0;
341  s_hi[1] = 0.0;
342  break;
343 
344  case NE:
345  s_lo[0] = 0.0;
346  s_hi[0] = 1.0;
347  s_lo[1] = 0.0;
348  s_hi[1] = 1.0;
349  break;
350 
351  case NW:
352  s_lo[0] = -1.0;
353  s_hi[0] = 0.0;
354  s_lo[1] = 0.0;
355  s_hi[1] = 1.0;
356  break;
357  }
358 
359  // Pass the undeformed macro element onto the son
360  // hierher why can I read this?
361  if (father_el_pt->Undeformed_macro_elem_pt != 0)
362  {
363  Undeformed_macro_elem_pt = father_el_pt->Undeformed_macro_elem_pt;
364  for (unsigned i = 0; i < 2; i++)
365  {
366  s_macro_ll(i) =
367  father_el_pt->s_macro_ll(i) +
368  0.5 * (s_lo[i] + 1.0) *
369  (father_el_pt->s_macro_ur(i) - father_el_pt->s_macro_ll(i));
370  s_macro_ur(i) =
371  father_el_pt->s_macro_ll(i) +
372  0.5 * (s_hi[i] + 1.0) *
373  (father_el_pt->s_macro_ur(i) - father_el_pt->s_macro_ll(i));
374  }
375  }
376 
377  // Local node number
378  unsigned n = 0;
379 
380  // Find number of 1D nodes in element
381  unsigned n_p = nnode_1d();
382 
383  // Loop over nodes in element
384  for (unsigned i0 = 0; i0 < n_p; i0++)
385  {
386  // Local coordinate in father element
387  s[0] = s_lo[0] + (s_hi[0] - s_lo[0]) * double(i0) / double(n_p - 1);
388 
389  for (unsigned i1 = 0; i1 < n_p; i1++)
390  {
391  // Local coordinate in father element
392  s[1] = s_lo[1] + (s_hi[1] - s_lo[1]) * double(i1) / double(n_p - 1);
393 
394  // Local node number
395  n = i0 + n_p * i1;
396 
397  // Get position from father element -- this uses the macro
398  // element representation(s) if appropriate. If the node
399  // turns out to be a hanging node later on, then
400  // its position gets adjusted in line with its
401  // hanging node interpolation.
402  father_el_pt->get_x_and_xi(s, x_fe, x, xi_fe, xi);
403 
404  // Cast the node to an Solid node
405  SolidNode* elastic_node_pt = static_cast<SolidNode*>(node_pt(n));
406 
407  for (unsigned i = 0; i < 2; i++)
408  {
409  // x_fe is the FE representation -- this is all we can
410  // work with in a solid mechanics problem. If you wish
411  // to reposition nodes on curvilinear boundaries of
412  // a domain to their exact positions on those boundaries
413  // you'll have to do this yourself! [Note: We used to
414  // use the macro-element-based representation
415  // to assign the position of pinned nodes but this is not always
416  // correct since pinning doesn't mean "pin in place" or
417  // "pin to the curvilinear boundary". For instance, we could impose
418  // the boundary displacement manually.
419  // x_fe is the FE representation
420  elastic_node_pt->x(i) = x_fe[i];
421 
422  // Lagrangian coordinates can come from undeformed macro element
423 
424  if (Use_undeformed_macro_element_for_new_lagrangian_coords)
425  {
426  elastic_node_pt->xi(i) = xi[i];
427  }
428  else
429  {
430  elastic_node_pt->xi(i) = xi_fe[i];
431  }
432  }
433 
434 
435  // Are there any history values to be dealt with?
436  TimeStepper* time_stepper_pt =
437  father_el_pt->node_pt(0)->time_stepper_pt();
438 
439  // Number of history values (incl. present)
440  unsigned ntstorage = time_stepper_pt->ntstorage();
441  if (ntstorage != 1)
442  {
443  // Loop over # of history values (excluding present which has been
444  // done above)
445  for (unsigned t = 1; t < ntstorage; t++)
446  {
447  // History values can (and in the case of Newmark timestepping,
448  // the scheme most likely to be used for Solid computations, do)
449  // include non-positional values, e.g. velocities and
450  // accelerations.
451 
452  // Set previous positions of the new node
453  for (unsigned i = 0; i < 2; i++)
454  {
455  elastic_node_pt->x(t, i) =
456  father_el_pt->interpolated_x(t, s, i);
457  }
458  }
459  }
460 
461  } // End of vertical loop over nodes in element
462 
463  } // End of horizontal loop over nodes in element
464  }
465  };
466 
467 } // namespace oomph
468 
469 #endif
static char t char * s
Definition: cfortran.h:568
cstr elem_len * i
Definition: cfortran.h:603
char t
Definition: cfortran.h:568
TimeStepper *& time_stepper_pt()
Return the pointer to the timestepper.
Definition: nodes.h:238
Node *& node_pt(const unsigned &n)
Return a pointer to the local node n.
Definition: elements.h:2179
virtual double interpolated_x(const Vector< double > &s, const unsigned &i) const
Return FE interpolated coordinate x[i] at local coordinate s.
Definition: elements.cc:3992
virtual void get_jacobian(Vector< double > &residuals, DenseMatrix< double > &jacobian)
Calculate the elemental Jacobian matrix "d equation / d variable".
Definition: elements.h:994
Base class for MacroElement s that are used during mesh refinement in domains with curvlinear and/or ...
Definition: macro_element.h:73
A general mesh class.
Definition: mesh.h:67
Nodes are derived from Data, but, in addition, have a definite (Eulerian) position in a space of a gi...
Definition: nodes.h:906
double & x(const unsigned &i)
Return the i-th nodal coordinate.
Definition: nodes.h:1060
An OomphLibError object which should be thrown when an run-time error is encountered....
double & s_macro_ll(const unsigned &i)
Access fct to the i-th coordinate of the element's "lower left" vertex in the associated MacroElement...
Definition: Qelements.h:186
double & s_macro_ur(const unsigned &i)
Access fct to the i-th coordinate of the element's "upper right" vertex in the associated MacroElemen...
Definition: Qelements.h:202
/////////////////////////////////////////////////////////////////////// /////////////////////////////...
Definition: Qelements.h:331
virtual void set_macro_elem_pt(MacroElement *macro_elem_pt)
Broken assignment operator.
Definition: Qelements.h:349
void get_x_and_xi(const Vector< double > &s, Vector< double > &x_fe, Vector< double > &x, Vector< double > &xi_fe, Vector< double > &xi) const
Eulerian and Lagrangian coordinates as function of the local coordinates: The Eulerian position is re...
Definition: Qelements.h:379
Base class for all quad elements.
Definition: Qelements.h:821
QuadTree class: Recursively defined, generalised quadtree.
Definition: quadtree.h:104
RefineableElements are FiniteElements that may be subdivided into children to provide a better local ...
Refineable version of QElement<2,NNODE_1D>.
virtual void further_setup_hanging_nodes()=0
Perform additional hanging node procedures for variables that are not interpolated by all nodes (e....
QuadTree * quadtree_pt() const
Pointer to quadtree representation of this element.
QuadTree * quadtree_pt()
Pointer to quadtree representation of this element.
RefineableQElement()
Constructor: Pass refinement level (default 0 = root)
static std::map< unsigned, DenseMatrix< int > > Father_bound
Coincidence between son nodal points and father boundaries: Father_bound[node_1d](jnod_son,...
unsigned required_nsons() const
A refineable quad element has four sons.
virtual ~RefineableQElement()
Broken assignment operator.
RefineableQElement(const RefineableQElement< 2 > &dummy)=delete
Broken copy constructor.
virtual Node * node_created_by_son_of_neighbour(const Vector< double > &s_fraction, bool &is_periodic)
If a son of a neighbouring element has already created a node at a position corresponding to the loca...
A class that is used to template the refineable Q elements by dimension. It's really nothing more tha...
Definition: Qelements.h:2259
/////////////////////////////////////////////////////////////////// /////////////////////////////////...
Refineable version of Solid quad elements.
void build(Mesh *&mesh_pt, Vector< Node * > &new_node_pt, bool &was_already_built, std::ofstream &new_nodes_file)
Build the element, i.e. give it nodal positions, apply BCs, etc. Incl. documention into new_nodes_fil...
virtual ~RefineableSolidQElement()
Broken assignment operator.
void set_macro_elem_pt(MacroElement *macro_elem_pt, MacroElement *undeformed_macro_elem_pt)
Final over-ride: Use version in QSolidElementBase.
RefineableSolidQElement()
Constructor, just call the constructor of the RefineableQElement<2>
void get_jacobian(Vector< double > &residuals, DenseMatrix< double > &jacobian)
Use the generic finite difference routine defined in RefineableSolidElement to calculate the Jacobian...
void set_macro_elem_pt(MacroElement *macro_elem_pt)
Final over-ride: Use version in QSolidElementBase.
RefineableSolidQElement(const RefineableSolidQElement< 2 > &dummy)=delete
Broken copy constructor.
A class that is used to template the solid refineable Q elements by dimension. It's really nothing mo...
Definition: Qelements.h:2286
MacroElement * Undeformed_macro_elem_pt
Pointer to the element's "undeformed" macro element (NULL by default)
Definition: elements.h:4080
A Class for nodes that deform elastically (i.e. position is an unknown in the problem)....
Definition: nodes.h:1686
unsigned nlagrangian_type() const
Number of types of Lagrangian coordinates used to interpolate the Lagrangian coordinates within the e...
Definition: nodes.h:1877
double & xi(const unsigned &i)
Reference to i-th Lagrangian position.
Definition: nodes.h:1883
////////////////////////////////////////////////////////////////////// //////////////////////////////...
Definition: timesteppers.h:231
unsigned ntstorage() const
Return the number of doubles required to represent history (one for steady)
Definition: timesteppers.h:601
std::string string(const unsigned &i)
Return the i-th string or "" if the relevant string hasn't been defined.
long RefineableQElement< 2 > _build
Vector< std::string > colour
Tecplot colours.
//////////////////////////////////////////////////////////////////// ////////////////////////////////...