refineable_linearised_navier_stokes_elements.cc
Go to the documentation of this file.
1 // LIC// ====================================================================
2 // LIC// This file forms part of oomph-lib, the object-oriented,
3 // LIC// multi-physics finite-element library, available
4 // LIC// at http://www.oomph-lib.org.
5 // LIC//
6 // LIC// Copyright (C) 2006-2023 Matthias Heil and Andrew Hazel
7 // LIC//
8 // LIC// This library is free software; you can redistribute it and/or
9 // LIC// modify it under the terms of the GNU Lesser General Public
10 // LIC// License as published by the Free Software Foundation; either
11 // LIC// version 2.1 of the License, or (at your option) any later version.
12 // LIC//
13 // LIC// This library is distributed in the hope that it will be useful,
14 // LIC// but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // LIC// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
16 // LIC// Lesser General Public License for more details.
17 // LIC//
18 // LIC// You should have received a copy of the GNU Lesser General Public
19 // LIC// License along with this library; if not, write to the Free Software
20 // LIC// Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
21 // LIC// 02110-1301 USA.
22 // LIC//
23 // LIC// The authors may be contacted at oomph-lib@maths.man.ac.uk.
24 // LIC//
25 // LIC//====================================================================
26 // Non-inline functions for the refineable linearised axisymmetric
27 // Navier-Stokes elements
28 
29 // oomph-lib includes
31 
32 namespace oomph
33 {
34  //=======================================================================
35  /// Compute the residuals for the refineable linearised axisymmetric
36  /// Navier--Stokes equations; flag=1(or 0): do (or don't) compute the
37  /// Jacobian as well.
38  //=======================================================================
41  Vector<double>& residuals,
42  DenseMatrix<double>& jacobian,
43  DenseMatrix<double>& mass_matrix,
44  unsigned flag)
45  {
46  // Get the time from the first node in the element
47  const double time = this->node_pt(0)->time_stepper_pt()->time();
48 
49  // Determine number of nodes in the element
50  const unsigned n_node = nnode();
51 
52  // Determine how many pressure values there are associated with
53  // a single pressure component
54  const unsigned n_pres = npres_linearised_nst();
55 
56  const unsigned n_veloc = 4 * DIM;
57 
58  // Get the nodal indices at which the velocity is stored
59  unsigned u_nodal_index[n_veloc];
60  for (unsigned i = 0; i < n_veloc; ++i)
61  {
62  u_nodal_index[i] = u_index_linearised_nst(i);
63  }
64 
65  // Which nodal values represent the two pressure components?
66  // (Negative if pressure is not based on nodal interpolation).
67  Vector<int> p_index(2);
68  for (unsigned i = 0; i < 2; i++)
69  {
70  p_index[i] = this->p_index_linearised_nst(i);
71  }
72 
73  // Local array of booleans that are true if the l-th pressure value is
74  // hanging (avoid repeated virtual function calls)
75  bool pressure_dof_is_hanging[n_pres];
76 
77  // If the pressure is stored at a node
78  if (p_index[0] >= 0)
79  {
80  // Read out whether the pressure is hanging
81  for (unsigned l = 0; l < n_pres; ++l)
82  {
83  pressure_dof_is_hanging[l] =
84  pressure_node_pt(l)->is_hanging(p_index[0]);
85  }
86  }
87  // Otherwise the pressure is not stored at a node and so cannot hang
88  else
89  {
90  for (unsigned l = 0; l < n_pres; ++l)
91  {
92  pressure_dof_is_hanging[l] = false;
93  }
94  }
95 
96 
97  // Set up memory for the fluid shape and test functions
98  Shape psif(n_node), testf(n_node);
99  DShape dpsifdx(n_node, DIM), dtestfdx(n_node, DIM);
100 
101  // Set up memory for the pressure shape and test functions
102  Shape psip(n_pres), testp(n_pres);
103 
104  // Determine number of integration points
105  const unsigned n_intpt = integral_pt()->nweight();
106 
107  // Set up memory for the vector to hold local coordinates (two dimensions)
108  Vector<double> s(DIM);
109 
110  // Get physical variables from the element
111  // (Reynolds number must be multiplied by the density ratio)
112  const double scaled_re = re() * density_ratio();
113  const double scaled_re_st = re_st() * density_ratio();
114  const double visc_ratio = viscosity_ratio();
115 
116  const double eval_real = lambda();
117  const double eval_imag = omega();
118 
119  const std::complex<double> eigenvalue(eval_real, eval_imag);
120 
121  // Integers used to store the local equation numbers
122  int local_eqn = 0;
123 
124  // Local storage for pointers to hang info objects
125  HangInfo* hang_info_pt = 0;
126 
127  // Loop over the integration points
128  for (unsigned ipt = 0; ipt < n_intpt; ipt++)
129  {
130  // Assign values of the local coordinates s
131  for (unsigned i = 0; i < DIM; i++)
132  {
133  s[i] = integral_pt()->knot(ipt, i);
134  }
135 
136  // Get the integral weight
137  const double w = integral_pt()->weight(ipt);
138 
139  // Calculate the fluid shape and test functions, and their derivatives
140  // w.r.t. the global coordinates
142  ipt, psif, dpsifdx, testf, dtestfdx);
143 
144  // Calculate the pressure shape and test functions
145  pshape_linearised_nst(s, psip, testp);
146 
147  // Premultiply the weights and the Jacobian of the mapping between
148  // local and global coordinates
149  const double W = w * J;
150 
151  // Allocate storage for the position and the derivative of the
152  // mesh positions w.r.t. time
153  Vector<double> interpolated_x(DIM, 0.0);
154  // Vector<double> mesh_velocity(2,0.0);
155 
156  // Allocate storage for the velocity components (six of these)
157  // and their derivatives w.r.t. time
158  Vector<std::complex<double>> interpolated_u(DIM);
159  // Vector<double> dudt(6,0.0);
160  // Allocate storage for the eigen function normalisation
161  Vector<std::complex<double>> interpolated_u_normalisation(DIM);
162  for (unsigned i = 0; i < DIM; ++i)
163  {
164  interpolated_u[i].real(0.0);
165  interpolated_u[i].imag(0.0);
166  interpolated_u_normalisation[i].real(0.0);
167  interpolated_u_normalisation[i].imag(0.0);
168  }
169 
170  // Allocate storage for the pressure components (two of these
171  std::complex<double> interpolated_p(0.0, 0.0);
172  std::complex<double> interpolated_p_normalisation(0.0, 0.0);
173 
174  // Allocate storage for the derivatives of the velocity components
175  // w.r.t. global coordinates (r and z)
176  Vector<Vector<std::complex<double>>> interpolated_dudx(DIM);
177  for (unsigned i = 0; i < DIM; ++i)
178  {
179  interpolated_dudx[i].resize(DIM);
180  for (unsigned j = 0; j < DIM; ++j)
181  {
182  interpolated_dudx[i][j].real(0.0);
183  interpolated_dudx[i][j].imag(0.0);
184  }
185  }
186 
187  // Calculate pressure at the integration point
188  // -------------------------------------------
189 
190  // Loop over pressure degrees of freedom (associated with a single
191  // pressure component) in the element
192  for (unsigned l = 0; l < n_pres; l++)
193  {
194  // Cache the shape function
195  const double psip_ = psip(l);
196 
197  // Get the complex nodal pressure values
198  const std::complex<double> p_value(this->p_linearised_nst(l, 0),
199  this->p_linearised_nst(l, 1));
200 
201  // Add contribution
202  interpolated_p += p_value * psip_;
203 
204  // Repeat for normalisation
205  const std::complex<double> p_norm_value(this->p_linearised_nst(l, 2),
206  this->p_linearised_nst(l, 3));
207  interpolated_p_normalisation += p_norm_value * psip_;
208  }
209  // End of loop over the pressure degrees of freedom in the element
210 
211  // Calculate velocities and their derivatives at the integration point
212  // -------------------------------------------------------------------
213 
214  // Loop over the element's nodes
215  for (unsigned l = 0; l < n_node; l++)
216  {
217  // Cache the shape function
218  const double psif_ = psif(l);
219 
220  // Loop over the DIM coordinate directions
221  for (unsigned i = 0; i < DIM; i++)
222  {
223  interpolated_x[i] += this->nodal_position(l, i) * psif_;
224  }
225 
226  // Loop over the DIM complex velocity components
227  for (unsigned i = 0; i < DIM; i++)
228  {
229  // Get the value
230  const std::complex<double> u_value(
231  this->nodal_value(l, u_nodal_index[2 * i + 0]),
232  this->nodal_value(l, u_nodal_index[2 * i + 1]));
233 
234  // Add contribution
235  interpolated_u[i] += u_value * psif_;
236 
237  // Add contribution to dudt
238  // dudt[i] += du_dt_linearised_nst(l,i)*psif_;
239 
240  // Loop over two coordinate directions (for derivatives)
241  for (unsigned j = 0; j < DIM; j++)
242  {
243  interpolated_dudx[i][j] += u_value * dpsifdx(l, j);
244  }
245 
246  // Interpolate the normalisation function
247  const std::complex<double> normalisation_value(
248  this->nodal_value(l, u_nodal_index[2 * (DIM + i)]),
249  this->nodal_value(l, u_nodal_index[2 * (DIM + i) + 1]));
250  interpolated_u_normalisation[i] += normalisation_value * psif_;
251  }
252  } // End of loop over the element's nodes
253 
254  // Get the mesh velocity if ALE is enabled
255  /*if(!ALE_is_disabled)
256  {
257  // Loop over the element's nodes
258  for(unsigned l=0;l<n_node;l++)
259  {
260  // Loop over the two coordinate directions
261  for(unsigned i=0;i<2;i++)
262  {
263  mesh_velocity[i] += this->raw_dnodal_position_dt(l,i)*psif(l);
264  }
265  }
266  }*/
267 
268  // Get velocities and their derivatives from base flow problem
269  // -----------------------------------------------------------
270 
271  // Allocate storage for the velocity components of the base state
272  // solution (initialise to zero)
273  Vector<double> base_flow_u(DIM, 0.0);
274 
275  // Get the user-defined base state solution velocity components
276  get_base_flow_u(time, ipt, interpolated_x, base_flow_u);
277 
278  // Allocate storage for the derivatives of the base state solution's
279  // velocity components w.r.t. global coordinate (r and z)
280  // N.B. the derivatives of the base flow components w.r.t. the
281  // azimuthal coordinate direction (theta) are always zero since the
282  // base flow is axisymmetric
283  DenseMatrix<double> base_flow_dudx(DIM, DIM, 0.0);
284 
285  // Get the derivatives of the user-defined base state solution
286  // velocity components w.r.t. global coordinates
287  get_base_flow_dudx(time, ipt, interpolated_x, base_flow_dudx);
288 
289 
290  // MOMENTUM EQUATIONS
291  //------------------
292 
293  // Number of master nodes
294  unsigned n_master = 1;
295 
296  // Storage for the weight of the shape function
297  double hang_weight = 1.0;
298 
299  // Loop over the test functions
300  for (unsigned l = 0; l < n_node; l++)
301  {
302  // Local boolean to indicate whether the node is hanging
303  bool is_node_hanging = node_pt(l)->is_hanging();
304 
305  if (is_node_hanging)
306  {
307  hang_info_pt = node_pt(l)->hanging_pt();
308 
309  // Read out number of master nodes from hanging data
310  n_master = hang_info_pt->nmaster();
311  }
312  // Otherwise the node is its own master
313  else
314  {
315  n_master = 1;
316  }
317 
318  // Loop over the master nodes
319  for (unsigned m = 0; m < n_master; m++)
320  {
321  // Loop over the velocity components
322  for (unsigned i = 0; i < DIM; i++)
323  {
324  // Assemble the residuals
325  // Time dependent term
326  std::complex<double> residual_contribution =
327  -scaled_re_st * eigenvalue * interpolated_u[i] * testf[l] * W;
328  // Pressure term
329  residual_contribution += interpolated_p * dtestfdx(l, i) * W;
330  // Viscous terms
331  for (unsigned k = 0; k < DIM; ++k)
332  {
333  residual_contribution -=
334  visc_ratio *
335  (interpolated_dudx[i][k] + Gamma[i] * interpolated_dudx[k][i]) *
336  dtestfdx(l, k) * W;
337  }
338 
339  // Advective terms
340  for (unsigned k = 0; k < DIM; ++k)
341  {
342  residual_contribution -=
343  scaled_re *
344  (base_flow_u[k] * interpolated_dudx[i][k] +
345  interpolated_u[k] * base_flow_dudx(i, k)) *
346  testf[l] * W;
347  }
348 
349  // Now separate real and imaginary parts
350 
351  if (is_node_hanging)
352  {
353  local_eqn = this->local_hang_eqn(hang_info_pt->master_node_pt(m),
354  u_nodal_index[2 * i]);
355  hang_weight = hang_info_pt->master_weight(m);
356  }
357  // If node is not hanging number or not
358  else
359  {
360  local_eqn = nodal_local_eqn(l, u_nodal_index[2 * i]);
361  hang_weight = 1.0;
362  }
363 
364  if (local_eqn >= 0)
365  {
366  residuals[local_eqn] +=
367  residual_contribution.real() * hang_weight;
368  }
369 
370 
371  if (is_node_hanging)
372  {
373  local_eqn = this->local_hang_eqn(hang_info_pt->master_node_pt(m),
374  u_nodal_index[2 * i + 1]);
375  hang_weight = hang_info_pt->master_weight(m);
376  }
377  // If node is not hanging number or not
378  else
379  {
380  local_eqn = nodal_local_eqn(l, u_nodal_index[2 * i + 1]);
381  hang_weight = 1.0;
382  }
383  if (local_eqn >= 0)
384  {
385  residuals[local_eqn] +=
386  residual_contribution.imag() * hang_weight;
387  }
388 
389 
390  // CALCULATE THE JACOBIAN
391  /*if(flag)
392  {
393  //Loop over the velocity shape functions again
394  for(unsigned l2=0;l2<n_node;l2++)
395  {
396  //Loop over the velocity components again
397  for(unsigned i2=0;i2<DIM;i2++)
398  {
399  //If at a non-zero degree of freedom add in the entry
400  local_unknown = nodal_local_eqn(l2,u_nodal_index[i2]);
401  if(local_unknown >= 0)
402  {
403  //Add contribution to Elemental Matrix
404  jacobian(local_eqn,local_unknown)
405  -= visc_ratio*Gamma[i]*dpsifdx(l2,i)*dtestfdx(l,i2)*W;
406 
407  //Extra component if i2 = i
408  if(i2 == i)
409  {
410  //Loop over velocity components
411  for(unsigned k=0;k<DIM;k++)
412  {
413  jacobian(local_eqn,local_unknown)
414  -= visc_ratio*dpsifdx(l2,k)*dtestfdx(l,k)*W;
415  }
416  }
417 
418  //Now add in the inertial terms
419  jacobian(local_eqn,local_unknown)
420  -= scaled_re*psif[l2]*interpolated_dudx(i,i2)*testf[l]*W;
421 
422  //Extra component if i2=i
423  if(i2 == i)
424  {
425  //Add the mass matrix term (only diagonal entries)
426  //Note that this is positive because the mass matrix
427  //is taken to the other side of the equation when
428  //formulating the generalised eigenproblem.
429  if(flag==2)
430  {
431  mass_matrix(local_eqn,local_unknown) +=
432  scaled_re_st*psif[l2]*testf[l]*W;
433  }
434 
435  //du/dt term
436  jacobian(local_eqn,local_unknown)
437  -= scaled_re_st*
438  node_pt(l2)->time_stepper_pt()->weight(1,0)*
439  psif[l2]*testf[l]*W;
440 
441  //Loop over the velocity components
442  for(unsigned k=0;k<DIM;k++)
443  {
444  double tmp=scaled_re*interpolated_u[k];
445  if (!ALE_is_disabled) tmp-=scaled_re_st*mesh_velocity[k];
446  jacobian(local_eqn,local_unknown) -=
447  tmp*dpsifdx(l2,k)*testf[l]*W;
448  }
449  }
450 
451  }
452  }
453  }
454 
455  //Now loop over pressure shape functions
456  //This is the contribution from pressure gradient
457  for(unsigned l2=0;l2<n_pres;l2++)
458  {
459  //If we are at a non-zero degree of freedom in the entry
460  local_unknown = p_local_eqn(l2);
461  if(local_unknown >= 0)
462  {
463  jacobian(local_eqn,local_unknown)
464  += psip[l2]*dtestfdx(l,i)*W;
465  }
466  }
467  } //End of Jacobian calculation
468 
469  }*/ //End of if not boundary condition statement
470 
471  } // End of loop over dimension
472  } // End of loop over master nodes
473  } // End of loop over shape functions
474 
475 
476  // CONTINUITY EQUATION
477  //-------------------
478 
479  // Loop over the shape functions
480  for (unsigned l = 0; l < n_pres; l++)
481  {
482  if (pressure_dof_is_hanging[l])
483  {
484  hang_info_pt = this->pressure_node_pt(l)->hanging_pt(p_index[0]);
485  n_master = hang_info_pt->nmaster();
486  }
487  else
488  {
489  n_master = 1;
490  }
491 
492  // Loop over the master nodes
493  for (unsigned m = 0; m < n_master; ++m)
494  {
495  // Assemble the residuals
496  std::complex<double> residual_contribution = interpolated_dudx[0][0];
497  for (unsigned k = 1; k < DIM; ++k)
498  {
499  residual_contribution += interpolated_dudx[k][k];
500  }
501 
502  if (pressure_dof_is_hanging[l])
503  {
504  local_eqn =
505  this->local_hang_eqn(hang_info_pt->master_node_pt(m), p_index[0]);
506  hang_weight = hang_info_pt->master_weight(m);
507  }
508  else
509  {
510  local_eqn = this->p_local_eqn(l, 0);
511  hang_weight = 1.0;
512  }
513 
514  // If not a boundary conditions
515  if (local_eqn >= 0)
516  {
517  residuals[local_eqn] +=
518  residual_contribution.real() * testp[l] * W * hang_weight;
519  }
520 
521  if (pressure_dof_is_hanging[l])
522  {
523  local_eqn =
524  this->local_hang_eqn(hang_info_pt->master_node_pt(m), p_index[1]);
525  hang_weight = hang_info_pt->master_weight(m);
526  }
527  else
528  {
529  local_eqn = this->p_local_eqn(l, 1);
530  hang_weight = 1.0;
531  }
532 
533  // If not a boundary conditions
534  if (local_eqn >= 0)
535  {
536  residuals[local_eqn] +=
537  residual_contribution.imag() * testp[l] * W * hang_weight;
538  }
539 
540  } // End of loop over master nodes
541  } // End of loop over l
542 
543  // Normalisation condition. Leave this alone because there is
544  // no test function involved.
545  std::complex<double> residual_contribution =
546  interpolated_p_normalisation * interpolated_p;
547  for (unsigned k = 0; k < DIM; ++k)
548  {
549  residual_contribution +=
550  interpolated_u_normalisation[k] * interpolated_u[k];
551  }
552 
553  local_eqn = this->eigenvalue_local_eqn(0);
554  if (local_eqn >= 0)
555  {
556  residuals[local_eqn] += residual_contribution.real() * W;
557  }
558 
559  local_eqn = this->eigenvalue_local_eqn(1);
560  if (local_eqn >= 0)
561  {
562  residuals[local_eqn] += residual_contribution.imag() * W;
563  }
564 
565  } // End of loop over the integration points
566 
567  } // End of fill_in_generic_residual_contribution_linearised_nst
568 
569 } // End of namespace oomph
static char t char * s
Definition: cfortran.h:568
cstr elem_len * i
Definition: cfortran.h:603
A Class for the derivatives of shape functions The class design is essentially the same as Shape,...
Definition: shape.h:278
TimeStepper *& time_stepper_pt()
Return the pointer to the timestepper.
Definition: nodes.h:238
Node *& node_pt(const unsigned &n)
Return a pointer to the local node n.
Definition: elements.h:2175
double nodal_value(const unsigned &n, const unsigned &i) const
Return the i-th value stored at local node n. Produces suitably interpolated values for hanging nodes...
Definition: elements.h:2593
virtual double interpolated_x(const Vector< double > &s, const unsigned &i) const
Return FE interpolated coordinate x[i] at local coordinate s.
Definition: elements.cc:3962
int nodal_local_eqn(const unsigned &n, const unsigned &i) const
Return the local equation number corresponding to the i-th value at the n-th local node.
Definition: elements.h:1432
unsigned nnode() const
Return the number of nodes.
Definition: elements.h:2210
Integral *const & integral_pt() const
Return the pointer to the integration scheme (const version)
Definition: elements.h:1963
double nodal_position(const unsigned &n, const unsigned &i) const
Return the i-th coordinate at local node n. If the node is hanging, the appropriate interpolation is ...
Definition: elements.h:2317
Class that contains data for hanging nodes.
Definition: nodes.h:742
double const & master_weight(const unsigned &i) const
Return weight for dofs on i-th master node.
Definition: nodes.h:808
Node *const & master_node_pt(const unsigned &i) const
Return a pointer to the i-th master node.
Definition: nodes.h:791
unsigned nmaster() const
Return the number of master nodes.
Definition: nodes.h:785
virtual double knot(const unsigned &i, const unsigned &j) const =0
Return local coordinate s[j] of i-th integration point.
virtual unsigned nweight() const =0
Return the number of integration points of the scheme.
virtual double weight(const unsigned &i) const =0
Return weight of i-th integration point.
virtual unsigned u_index_linearised_nst(const unsigned &i) const
Return the index at which the i-th unknown velocity component is stored. The default value,...
static Vector< double > Gamma
Vector to decide whether the stress-divergence form is used or not.
virtual unsigned npres_linearised_nst() const =0
Return the number of pressure degrees of freedom associated with a single pressure component in the e...
virtual int p_local_eqn(const unsigned &n, const unsigned &i)=0
Access function for the local equation number information for the i-th component of the pressure....
const double & re_st() const
Product of Reynolds and Strouhal number (=Womersley number)
virtual void pshape_linearised_nst(const Vector< double > &s, Shape &psi) const =0
Compute the pressure shape functions at local coordinate s.
virtual void get_base_flow_u(const double &time, const unsigned &ipt, const Vector< double > &x, Vector< double > &result) const
Calculate the velocity components of the base flow solution at a given time and Eulerian position.
virtual double p_linearised_nst(const unsigned &n_p, const unsigned &i) const =0
Return the i-th pressure value at local pressure "node" n_p. Uses suitably interpolated value for han...
virtual double dshape_and_dtest_eulerian_at_knot_linearised_nst(const unsigned &ipt, Shape &psi, DShape &dpsidx, Shape &test, DShape &dtestdx) const =0
Compute the shape functions and their derivatives w.r.t. global coordinates at the ipt-th integration...
virtual void get_base_flow_dudx(const double &time, const unsigned &ipt, const Vector< double > &x, DenseMatrix< double > &result) const
Calculate the derivatives of the velocity components of the base flow solution w.r....
const double & viscosity_ratio() const
Viscosity ratio for element: element's viscosity relative to the viscosity used in the definition of ...
virtual int p_index_linearised_nst(const unsigned &i) const
Which nodal value represents the pressure?
const double & density_ratio() const
Density ratio for element: element's density relative to the viscosity used in the definition of the ...
HangInfo *const & hanging_pt() const
Return pointer to hanging node data (this refers to the geometric hanging node status) (const version...
Definition: nodes.h:1228
bool is_hanging() const
Test whether the node is geometrically hanging.
Definition: nodes.h:1285
int local_hang_eqn(Node *const &node_pt, const unsigned &i)
Access function that returns the local equation number for the hanging node variables (values stored ...
virtual Node * pressure_node_pt(const unsigned &n_p)
Pointer to n_p-th pressure node (Default: NULL, indicating that pressure is not based on nodal interp...
void fill_in_generic_residual_contribution_linearised_nst(Vector< double > &residuals, DenseMatrix< double > &jacobian, DenseMatrix< double > &mass_matrix, unsigned flag)
Add element's contribution to the elemental residual vector and/or Jacobian matrix flag=1: compute bo...
A Class for shape functions. In simple cases, the shape functions have only one index that can be tho...
Definition: shape.h:76
double & time()
Return current value of continous time.
Definition: timesteppers.h:332
//////////////////////////////////////////////////////////////////// ////////////////////////////////...