assembly_handler.cc
Go to the documentation of this file.
1 // LIC// ====================================================================
2 // LIC// This file forms part of oomph-lib, the object-oriented,
3 // LIC// multi-physics finite-element library, available
4 // LIC// at http://www.oomph-lib.org.
5 // LIC//
6 // LIC// Copyright (C) 2006-2024 Matthias Heil and Andrew Hazel
7 // LIC//
8 // LIC// This library is free software; you can redistribute it and/or
9 // LIC// modify it under the terms of the GNU Lesser General Public
10 // LIC// License as published by the Free Software Foundation; either
11 // LIC// version 2.1 of the License, or (at your option) any later version.
12 // LIC//
13 // LIC// This library is distributed in the hope that it will be useful,
14 // LIC// but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // LIC// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
16 // LIC// Lesser General Public License for more details.
17 // LIC//
18 // LIC// You should have received a copy of the GNU Lesser General Public
19 // LIC// License along with this library; if not, write to the Free Software
20 // LIC// Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
21 // LIC// 02110-1301 USA.
22 // LIC//
23 // LIC// The authors may be contacted at oomph-lib@maths.man.ac.uk.
24 // LIC//
25 // LIC//====================================================================
26 // OOOMPH-LIB includes
27 #include "assembly_handler.h"
28 #include "elements.h"
29 #include "problem.h"
30 #include "mesh.h"
31 
32 namespace oomph
33 {
34  /// ////////////////////////////////////////////////////////////////////
35  // Non-inline functions for the AssemblyHandler class
36  /// ///////////////////////////////////////////////////////////////////
37 
38  //===================================================================
39  /// Get the number of elemental degrees of freedom. Direct call
40  /// to the function in the element.
41  //===================================================================
42  unsigned AssemblyHandler::ndof(GeneralisedElement* const& elem_pt)
43  {
44  return elem_pt->ndof();
45  }
46 
47  //===================================================================
48  /// Get the vector of dofs in the element elem_pt at time level t
49  /// Direct call to the function in the element.
50  //===================================================================
52  const unsigned& t,
53  Vector<double>& dof)
54  {
55  return elem_pt->dof_vector(t, dof);
56  }
57 
58  //===================================================================
59  /// Get the vector of pointers to dofs in the element elem_pt
60  /// Direct call to the function in the element.
61  //===================================================================
63  Vector<double*>& dof_pt)
64  {
65  return elem_pt->dof_pt_vector(dof_pt);
66  }
67 
68  /// Return the t-th level of storage associated with the i-th
69  /// (local) dof stored in the problem
70  double& AssemblyHandler::local_problem_dof(Problem* const& problem_pt,
71  const unsigned& t,
72  const unsigned& i)
73  {
74  return *(problem_pt->dof_pt(i) + t);
75  }
76 
77 
78  //==================================================================
79  /// Get the global equation number of the local unknown. Direct call
80  /// to the function in the element.
81  //==================================================================
82  unsigned long AssemblyHandler::eqn_number(GeneralisedElement* const& elem_pt,
83  const unsigned& ieqn_local)
84  {
85  return elem_pt->eqn_number(ieqn_local);
86  }
87 
88  //==================================================================
89  /// Get the residuals by calling the underlying element's residuals
90  /// directly.
91  //=================================================================
93  Vector<double>& residuals)
94  {
95  elem_pt->get_residuals(residuals);
96  }
97 
98  //=======================================================================
99  /// Calculate the elemental Jacobian matrix "d equation / d variable" by
100  /// calling the element's get_jacobian function.
101  //======================================================================
103  Vector<double>& residuals,
104  DenseMatrix<double>& jacobian)
105  {
106  elem_pt->get_jacobian(residuals, jacobian);
107  }
108 
109  //=======================================================================
110  /// Calculate all desired vectors and matrices that are required by
111  /// the element by calling the get_jacobian function
112  //=======================================================================
114  GeneralisedElement* const& elem_pt,
115  Vector<Vector<double>>& vec,
116  Vector<DenseMatrix<double>>& matrix)
117  {
118  get_jacobian(elem_pt, vec[0], matrix[0]);
119  }
120 
121  //=======================================================================
122  /// Calculate the derivative of the residuals with respect to
123  /// a parameter, by calling the elemental function
124  //======================================================================
126  GeneralisedElement* const& elem_pt,
127  double* const& parameter_pt,
128  Vector<double>& dres_dparam)
129  {
130  elem_pt->get_dresiduals_dparameter(parameter_pt, dres_dparam);
131  }
132 
133 
134  //=====================================================================
135  /// Calculate the derivative of the residuals and jacobian
136  /// with respect to a parameter by calling the elemental function
137  //========================================================================
139  GeneralisedElement* const& elem_pt,
140  double* const& parameter_pt,
141  Vector<double>& dres_dparam,
142  DenseMatrix<double>& djac_dparam)
143  {
144  elem_pt->get_djacobian_dparameter(parameter_pt, dres_dparam, djac_dparam);
145  }
146 
147  /// Calculate the product of the Hessian (derivative of Jacobian with
148  /// respect to all variables) an eigenvector, Y, and
149  /// other specified vectors, C
150  /// (d(J_{ij})/d u_{k}) Y_{j} C_{k}
151  /// At the moment the dof pointer is passed in to enable
152  /// easy calculation of finite difference default
154  GeneralisedElement* const& elem_pt,
155  Vector<double> const& Y,
156  DenseMatrix<double> const& C,
157  DenseMatrix<double>& product)
158  {
159  elem_pt->get_hessian_vector_products(Y, C, product);
160  }
161 
162 
163  //=======================================================================
164  /// Return the eigenfunction(s) associated with the bifurcation that
165  /// has been detected in bifurcation tracking problems. Default
166  /// Broken implementation
167  //=======================================================================
169  {
170  std::ostringstream error_stream;
171  error_stream << "There is no bifurcation parameter associated with the "
172  "current assembly handler.\n"
173  << "Eigenfunction are only calculated by the Fold, PitchFork "
174  "and Hopf Handlers"
175  << "\n";
176 
177  throw OomphLibError(
178  error_stream.str(), OOMPH_CURRENT_FUNCTION, OOMPH_EXCEPTION_LOCATION);
179  return 0;
180  }
181 
182 
183  //=======================================================================
184  /// Return the eigenfunction(s) associated with the bifurcation that
185  /// has been detected in bifurcation tracking problems. Default
186  /// Broken implementation
187  //=======================================================================
189  {
190  std::ostringstream error_stream;
191  error_stream << "There is no eigenfunction associated with the current "
192  "assembly handler.\n"
193  << "Eigenfunction are only calculated by the Fold, PitchFork "
194  "and Hopf Handlers"
195  << "\n";
196 
197  throw OomphLibError(
198  error_stream.str(), OOMPH_CURRENT_FUNCTION, OOMPH_EXCEPTION_LOCATION);
199  }
200 
201  /// ==========================================================================
202  /// Compute the inner products of the given vector of pairs of
203  /// history values over the element. The values of the index in the pair
204  /// may be the same.
205  //===========================================================================
207  GeneralisedElement* const& elem_pt,
208  Vector<std::pair<unsigned, unsigned>> const& history_index,
209  Vector<double>& inner_product)
210  {
211  elem_pt->get_inner_products(history_index, inner_product);
212  }
213 
214  //==========================================================================
215  /// Compute the vectors that when taken as a dot product with
216  /// other history values give the inner product over the element.
217  /// In other words if we call get_inner_product_vectors({0,1},output)
218  /// output[0] will be a vector such that dofs.output[0] gives the inner
219  /// product of current dofs with themselves.
220  //==========================================================================
222  GeneralisedElement* const& elem_pt,
223  Vector<unsigned> const& history_index,
224  Vector<Vector<double>>& inner_product_vector)
225  {
226  elem_pt->get_inner_product_vectors(history_index, inner_product_vector);
227  }
228 
229 
230  /// ////////////////////////////////////////////////////////////////////
231  // Non-inline functions for the ExplicitTimeStepHandler class
232  /// ///////////////////////////////////////////////////////////////////
233 
234 
235  //===================================================================
236  /// Get the number of elemental degrees of freedom. Direct call
237  /// to the function in the element.
238  //===================================================================
240  {
241  return elem_pt->ndof();
242  }
243 
244  //==================================================================
245  /// Get the global equation number of the local unknown. Direct call
246  /// to the function in the element.
247  //==================================================================
249  GeneralisedElement* const& elem_pt, const unsigned& ieqn_local)
250  {
251  return elem_pt->eqn_number(ieqn_local);
252  }
253 
254  //==================================================================
255  /// Call the element's residuals
256  //=================================================================
258  GeneralisedElement* const& elem_pt, Vector<double>& residuals)
259  {
260  elem_pt->get_residuals(residuals);
261  }
262 
263  //=======================================================================
264  /// Replace get jacobian with the call to get the mass matrix
265  //======================================================================
267  Vector<double>& residuals,
268  DenseMatrix<double>& jacobian)
269  {
270  elem_pt->get_mass_matrix(residuals, jacobian);
271  }
272 
273 
274  //=======================================================================
275  /// Calculate all desired vectors and matrices that are required by
276  /// the problem by calling those of the underlying element.
277  //=======================================================================
279  GeneralisedElement* const& elem_pt,
280  Vector<Vector<double>>& vec,
281  Vector<DenseMatrix<double>>& matrix)
282  {
283 #ifdef PARANOID
284  // Check dimension
285  if (matrix.size() != 1)
286  {
287  throw OomphLibError("ExplicitTimeSteps should return one matrix",
288  OOMPH_CURRENT_FUNCTION,
289  OOMPH_EXCEPTION_LOCATION);
290  }
291 #endif
292  // Get the residuals and <mass matrix
293  elem_pt->get_mass_matrix(vec[0], matrix[0]);
294  }
295 
296 
297  /// ////////////////////////////////////////////////////////////////////
298  // Non-inline functions for the EigenProblemHandler class
299  /// ///////////////////////////////////////////////////////////////////
300 
301 
302  //===================================================================
303  /// Get the number of elemental degrees of freedom. Direct call
304  /// to the function in the element.
305  //===================================================================
307  {
308  return elem_pt->ndof();
309  }
310 
311  //==================================================================
312  /// Get the global equation number of the local unknown. Direct call
313  /// to the function in the element.
314  //==================================================================
316  GeneralisedElement* const& elem_pt, const unsigned& ieqn_local)
317  {
318  return elem_pt->eqn_number(ieqn_local);
319  }
320 
321  //==================================================================
322  /// Cannot call get_residuals for an eigenproblem, so throw an error
323  //=================================================================
325  Vector<double>& residuals)
326  {
327  throw OomphLibError(
328  "An eigenproblem does not have a get_residuals function",
329  OOMPH_CURRENT_FUNCTION,
330  OOMPH_EXCEPTION_LOCATION);
331  }
332 
333  //=======================================================================
334  /// Cannot call get_jacobian for an eigenproblem, so throw an error
335  //======================================================================
337  Vector<double>& residuals,
338  DenseMatrix<double>& jacobian)
339  {
340  throw OomphLibError("An eigenproblem does not have a get_jacobian function",
341  OOMPH_CURRENT_FUNCTION,
342  OOMPH_EXCEPTION_LOCATION);
343  }
344 
345 
346  //=======================================================================
347  /// Calculate all desired vectors and matrices that are required by
348  /// the problem by calling those of the underlying element.
349  //=======================================================================
351  GeneralisedElement* const& elem_pt,
352  Vector<Vector<double>>& vec,
353  Vector<DenseMatrix<double>>& matrix)
354  {
355 #ifdef PARANOID
356  // Check dimension
357  if (matrix.size() != 2)
358  {
359  throw OomphLibError("EigenProblems should return two matrices",
360  OOMPH_CURRENT_FUNCTION,
361  OOMPH_EXCEPTION_LOCATION);
362  }
363 #endif
364  // Find the number of variables
365  unsigned n_var = elem_pt->ndof();
366  // Assign a dummy residuals vector
367  Vector<double> dummy(n_var);
368  // Get the jacobian and mass matrices
369  elem_pt->get_jacobian_and_mass_matrix(dummy, matrix[0], matrix[1]);
370 
371  // If we have a non-zero shift, then shift the A matrix
372  if (Sigma_real != 0.0)
373  {
374  // Set the shifted matrix
375  for (unsigned i = 0; i < n_var; i++)
376  {
377  for (unsigned j = 0; j < n_var; j++)
378  {
379  matrix[0](i, j) -= Sigma_real * matrix[1](i, j);
380  }
381  }
382  }
383  }
384 
385 
386  //======================================================================
387  /// Clean up the memory that may have been allocated by the solver
388  //=====================================================================
390  {
391  if (Alpha_pt != 0)
392  {
393  delete Alpha_pt;
394  }
395  if (E_pt != 0)
396  {
397  delete E_pt;
398  }
399  }
400 
401  //===================================================================
402  /// Use a block factorisation to solve the augmented system
403  /// associated with a PitchFork bifurcation.
404  //===================================================================
406  DoubleVector& result)
407  {
408  // if the result is setup then it should not be distributed
409 #ifdef PARANOID
410  if (result.built())
411  {
412  if (result.distributed())
413  {
414  throw OomphLibError("The result vector must not be distributed",
415  OOMPH_CURRENT_FUNCTION,
416  OOMPH_EXCEPTION_LOCATION);
417  }
418  }
419 #endif
420 
421  // Locally cache the pointer to the handler.
422  FoldHandler* handler_pt =
423  static_cast<FoldHandler*>(problem_pt->assembly_handler_pt());
424 
425  // Switch the handler to "block solver" mode
426  handler_pt->solve_augmented_block_system();
427 
428  // We need to find out the number of dofs in the problem
429  unsigned n_dof = problem_pt->ndof();
430 
431  // create the linear algebra distribution for this solver
432  // currently only global (non-distributed) distributions are allowed
433  LinearAlgebraDistribution dist(problem_pt->communicator_pt(), n_dof, false);
434  this->build_distribution(dist);
435 
436  // if the result vector is not setup then rebuild with distribution = global
437  if (!result.built())
438  {
439  result.build(this->distribution_pt(), 0.0);
440  }
441 
442  // Setup storage for temporary vectors
443  DoubleVector a(this->distribution_pt(), 0.0),
444  b(this->distribution_pt(), 0.0);
445 
446  // Allocate storage for Alpha which can be used in the resolve
447  if (Alpha_pt != 0)
448  {
449  delete Alpha_pt;
450  }
451  Alpha_pt = new DoubleVector(this->distribution_pt(), 0.0);
452 
453  // We are going to do resolves using the underlying linear solver
455 
456  // Solve the first system Aa = R
457  Linear_solver_pt->solve(problem_pt, a);
458 
459  // The vector in the top right-hand block is the jacobian multiplied
460  // by the null vector
461 
462  // Get the present null vector from the handler
463  DoubleVector y(this->distribution_pt(), 0.0);
464  for (unsigned n = 0; n < (n_dof - 1); ++n)
465  {
466  y[n] = handler_pt->Y[n];
467  }
468  // For simplicity later, add a zero at the end
469  y[n_dof - 1] = 0.0;
470 
471  // Loop over the elements and assemble the product
472  // Local storage for the product terms
473  DoubleVector Jy(this->distribution_pt(), 0.0);
474 
475  // Calculate the product of the jacobian matrices, etc
476  unsigned long n_element = problem_pt->mesh_pt()->nelement();
477  for (unsigned long e = 0; e < n_element; e++)
478  {
479  GeneralisedElement* elem_pt = problem_pt->mesh_pt()->element_pt(e);
480  // Loop over the ndofs in each element
481  unsigned n_var = elem_pt->ndof();
482  // Get the jacobian matrix
483  DenseMatrix<double> jac(n_var);
484  // storage for the residual
485  Vector<double> res(n_var);
486  // Get unperturbed raw jacobian
487  elem_pt->get_jacobian(res, jac);
488 
489  // Multiply the dofs
490  for (unsigned n = 0; n < n_var; n++)
491  {
492  unsigned eqn_number = elem_pt->eqn_number(n);
493  for (unsigned m = 0; m < n_var; m++)
494  {
495  unsigned unknown = elem_pt->eqn_number(m);
496  Jy[eqn_number] += jac(n, m) * y[unknown];
497  }
498  }
499  }
500  // The final entry of the vector will be zero
501 
502  // Now resolve to find alpha
504 
505  // The vector that multiplie the product matrix is actually y - alpha
506  DoubleVector y_minus_alpha(this->distribution_pt(), 0.0);
507  for (unsigned n = 0; n < n_dof; n++)
508  {
509  y_minus_alpha[n] = y[n] - (*Alpha_pt)[n];
510  }
511 
512  // We can now construct our multipliers
513  // Prepare to scale
514  double dof_length = 0.0, a_length = 0.0, alpha_length = 0.0;
515  for (unsigned n = 0; n < n_dof; n++)
516  {
517  if (std::fabs(problem_pt->dof(n)) > dof_length)
518  {
519  dof_length = std::fabs(problem_pt->dof(n));
520  }
521  if (std::fabs(a[n]) > a_length)
522  {
523  a_length = std::fabs(a[n]);
524  }
525  if (std::fabs(y_minus_alpha[n]) > alpha_length)
526  {
527  alpha_length = std::fabs(y_minus_alpha[n]);
528  }
529  }
530 
531  double a_mult = dof_length / a_length;
532  double alpha_mult = dof_length / alpha_length;
533  const double FD_step = 1.0e-8;
534  a_mult += FD_step;
535  alpha_mult += FD_step;
536  a_mult *= FD_step;
537  alpha_mult *= FD_step;
538 
539  // Local storage for the product terms
540  DoubleVector Jprod_a(this->distribution_pt(), 0.0),
541  Jprod_alpha(this->distribution_pt(), 0.0);
542 
543  // Calculate the product of the jacobian matrices, etc
544  for (unsigned long e = 0; e < n_element; e++)
545  {
546  GeneralisedElement* elem_pt = problem_pt->mesh_pt()->element_pt(e);
547  // Loop over the ndofs in each element
548  unsigned n_var = handler_pt->ndof(elem_pt);
549  // Get the jacobian matrices
550  DenseMatrix<double> jac(n_var), jac_a(n_var), jac_alpha(n_var);
551  // elemental residual storage
552  Vector<double> res_elemental(n_var);
553  // Get unperturbed jacobian
554  handler_pt->get_jacobian(elem_pt, res_elemental, jac);
555 
556  // Backup the dofs
557  Vector<double> dof_bac(n_var);
558  // Perturb the dofs
559  for (unsigned n = 0; n < n_var; n++)
560  {
561  unsigned eqn_number = handler_pt->eqn_number(elem_pt, n);
562  dof_bac[n] = problem_pt->dof(eqn_number);
563  // Pertub by vector a
564  problem_pt->dof(eqn_number) += a_mult * a[eqn_number];
565  }
566 
568 
569  // Now get the new jacobian
570  handler_pt->get_jacobian(elem_pt, res_elemental, jac_a);
571 
572  // Perturb the dofs
573  for (unsigned n = 0; n < n_var; n++)
574  {
575  unsigned eqn_number = handler_pt->eqn_number(elem_pt, n);
576  problem_pt->dof(eqn_number) = dof_bac[n];
577  // Pertub by vector a
578  problem_pt->dof(eqn_number) += alpha_mult * y_minus_alpha[eqn_number];
579  }
580 
582 
583  // Now get the new jacobian
584  handler_pt->get_jacobian(elem_pt, res_elemental, jac_alpha);
585 
586  // Reset the dofs
587  for (unsigned n = 0; n < n_var; n++)
588  {
589  unsigned eqn_number = handler_pt->eqn_number(elem_pt, n);
590  problem_pt->dof(eqn_number) = dof_bac[n];
591  }
592 
594 
595  // OK, now work out the products
596  // Note the (n_var-1), we are only interested in the non-augmented
597  // jacobian
598  for (unsigned n = 0; n < (n_var - 1); n++)
599  {
600  unsigned eqn_number = handler_pt->eqn_number(elem_pt, n);
601  double prod_a = 0.0, prod_alpha = 0.0;
602  for (unsigned m = 0; m < (n_var - 1); m++)
603  {
604  unsigned unknown = handler_pt->eqn_number(elem_pt, m);
605  prod_a += (jac_a(n, m) - jac(n, m)) * y[unknown];
606  prod_alpha += (jac_alpha(n, m) - jac(n, m)) * y[unknown];
607  }
608  Jprod_a[eqn_number] += prod_a / a_mult;
609  Jprod_alpha[eqn_number] += prod_alpha / alpha_mult;
610  }
611  }
612 
613  Jprod_alpha[n_dof - 1] = 0.0;
614  Jprod_a[n_dof - 1] = 0.0;
615 
616  // OK, now we can formulate the next vectors
617  // The assumption here is that the result has been set to the
618  // residuals.
619  for (unsigned n = 0; n < n_dof - 1; n++)
620  {
621  b[n] = result[n_dof + n] - Jprod_a[n];
622  }
623  // The final residual is the entry corresponding to the original parameter
624  b[n_dof - 1] = result[n_dof - 1];
625 
626  // Allocate storage for E which can be used in the resolve
627  if (E_pt != 0)
628  {
629  delete E_pt;
630  }
631  E_pt = new DoubleVector(this->distribution_pt(), 0.0);
632  DoubleVector f(this->distribution_pt(), 0.0);
633  Linear_solver_pt->resolve(b, f);
634  Linear_solver_pt->resolve(Jprod_alpha, *E_pt);
635 
636  // Calculate the final entry in the vector e
637  const double e_final = (*E_pt)[n_dof - 1];
638  // Calculate the final entry in the vector d
639  const double d_final = f[n_dof - 1] / e_final;
640  // Assemble the final corrections
641  for (unsigned n = 0; n < n_dof - 1; n++)
642  {
643  result[n] = a[n] - (*Alpha_pt)[n] * d_final + d_final * y[n];
644  result[n_dof + n] = f[n] - (*E_pt)[n] * d_final;
645  }
646  // The result corresponding to the parameter
647  result[n_dof - 1] = a[n_dof - 1] - (*Alpha_pt)[n_dof - 1] * d_final;
648 
649  // The sign of the jacobian is the sign of the final entry in e
650  problem_pt->sign_of_jacobian() =
651  static_cast<int>(std::fabs(e_final) / e_final);
652 
653  // Switch things to our block solver
654  handler_pt->solve_full_system();
655 
656  // If we are not storing things, clear the results
657  if (!Enable_resolve)
658  {
659  // We no longer need to store the matrix
661  delete Alpha_pt;
662  Alpha_pt = 0;
663  delete E_pt;
664  E_pt = 0;
665  }
666  // Otherwise, also store the problem pointer
667  else
668  {
669  Problem_pt = problem_pt;
670  }
671  }
672 
673 
674  //======================================================================
675  // Hack the re-solve to use the block factorisation
676  //======================================================================
678  DoubleVector& result)
679  {
680  // Check that the factors have been stored
681  if (Alpha_pt == 0)
682  {
683  throw OomphLibError("The required vectors have not been stored",
684  OOMPH_CURRENT_FUNCTION,
685  OOMPH_EXCEPTION_LOCATION);
686  }
687 
688  // Get the pointer to the problem
689  Problem* const problem_pt = Problem_pt;
690 
691  FoldHandler* handler_pt =
692  static_cast<FoldHandler*>(problem_pt->assembly_handler_pt());
693 
694  // Switch things to our block solver
695  handler_pt->solve_augmented_block_system();
696 
697  // We need to find out the number of dofs in the problem
698  unsigned n_dof = problem_pt->ndof();
699 
700 #ifdef PARANOID
701  // if the result is setup then it should not be distributed
702  if (result.built())
703  {
704  if (result.distributed())
705  {
706  throw OomphLibError("The result vector must not be distributed",
707  OOMPH_CURRENT_FUNCTION,
708  OOMPH_EXCEPTION_LOCATION);
709  }
710  }
711  // the rhs must be setup
712  if (!rhs.built())
713  {
714  throw OomphLibError("The rhs vector must be setup",
715  OOMPH_CURRENT_FUNCTION,
716  OOMPH_EXCEPTION_LOCATION);
717  }
718 #endif
719 
720  // if the result vector is not setup then rebuild with distribution = global
721  if (!result.built())
722  {
723  result.build(rhs.distribution_pt(), 0.0);
724  }
725 
726  // Setup storage
727  DoubleVector a(this->distribution_pt(), 0.0),
728  b(this->distribution_pt(), 0.0);
729 
730  // Set the values of the a vector
731  for (unsigned n = 0; n < (n_dof - 1); n++)
732  {
733  a[n] = rhs[n];
734  }
735  // The entry associated with the additional parameter is zero
736  a[n_dof - 1] = 0.0;
737 
739 
740  // Copy rhs vector into local storage so it doesn't get overwritten
741  // if the linear solver decides to initialise the solution vector, say,
742  // which it's quite entitled to do!
743  DoubleVector input_a(a);
744 
745  Linear_solver_pt->resolve(input_a, a);
746 
747  // We can now construct our multipliers
748  // Prepare to scale
749  double dof_length = 0.0, a_length = 0.0;
750  for (unsigned n = 0; n < n_dof; n++)
751  {
752  if (std::fabs(problem_pt->dof(n)) > dof_length)
753  {
754  dof_length = std::fabs(problem_pt->dof(n));
755  }
756 
757  if (std::fabs(a[n]) > a_length)
758  {
759  a_length = std::fabs(a[n]);
760  }
761  }
762  double a_mult = dof_length / a_length;
763  const double FD_step = 1.0e-8;
764  a_mult += FD_step;
765  a_mult *= FD_step;
766 
767  DoubleVector Jprod_a(this->distribution_pt(), 0.0);
768 
769  unsigned long n_element = problem_pt->mesh_pt()->nelement();
770  for (unsigned long e = 0; e < n_element; e++)
771  {
772  GeneralisedElement* elem_pt = problem_pt->mesh_pt()->element_pt(e);
773  // Loop over the ndofs in each element
774  unsigned n_var = handler_pt->ndof(elem_pt);
775  // Get some jacobian matrices
776  DenseMatrix<double> jac(n_var), jac_a(n_var);
777  // the elemental residual
778  Vector<double> res_elemental(n_var);
779  // Get unperturbed jacobian
780  handler_pt->get_jacobian(elem_pt, res_elemental, jac);
781 
782  // Backup the dofs
783  Vector<double> dof_bac(n_var);
784  // Perturb the dofs
785  for (unsigned n = 0; n < n_var; n++)
786  {
787  unsigned eqn_number = handler_pt->eqn_number(elem_pt, n);
788  dof_bac[n] = problem_pt->dof(eqn_number);
789  // Pertub by vector a
790  problem_pt->dof(eqn_number) += a_mult * a[eqn_number];
791  }
792 
794 
795  // Now get the new jacobian
796  handler_pt->get_jacobian(elem_pt, res_elemental, jac_a);
797 
798  // Reset the dofs
799  for (unsigned n = 0; n < n_var; n++)
800  {
801  unsigned eqn_number = handler_pt->eqn_number(elem_pt, n);
802  problem_pt->dof(eqn_number) = dof_bac[n];
803  }
804 
806 
807  // OK, now work out the products
808  for (unsigned n = 0; n < (n_var - 1); n++)
809  {
810  unsigned eqn_number = handler_pt->eqn_number(elem_pt, n);
811  double prod_a = 0.0;
812  for (unsigned m = 0; m < (n_var - 1); m++)
813  {
814  unsigned unknown = handler_pt->eqn_number(elem_pt, m);
815  prod_a += (jac_a(n, m) - jac(n, m)) * handler_pt->Y[unknown];
816  }
817  Jprod_a[eqn_number] += prod_a / a_mult;
818  }
819  }
820 
821  Jprod_a[n_dof - 1] = 0.0;
822 
823  // OK, now we can formulate the next vectors
824  for (unsigned n = 0; n < n_dof - 1; n++)
825  {
826  b[n] = rhs[n_dof + n] - Jprod_a[n];
827  }
828  // The residuals for the final entry should be those associated
829  // with the parameter
830  b[n_dof - 1] = rhs[n_dof - 1];
831 
832  DoubleVector f(this->distribution_pt(), 0.0);
833 
834  Linear_solver_pt->resolve(b, f);
835 
836  // Calculate the final entry in the vector d
837  const double d_final = f[n_dof - 1] / (*E_pt)[n_dof - 1];
838  // Assemble the final corrections
839  for (unsigned n = 0; n < n_dof - 1; n++)
840  {
841  result[n] = a[n] - (*Alpha_pt)[n] * d_final + d_final * handler_pt->Y[n];
842  result[n_dof + n] = f[n] - (*E_pt)[n] * d_final;
843  }
844  // The result corresponding to the paramater
845  result[n_dof - 1] = a[n_dof - 1] - (*Alpha_pt)[n_dof - 1] * d_final;
846 
848 
849  // Switch things to our block solver
850  handler_pt->solve_full_system();
851  }
852 
853 
854  /// ////////////////////////////////////////////////////////////////////
855  // Non-inline functions for the FoldHandler class
856  /// ///////////////////////////////////////////////////////////////////
857 
858 
859  //========================================================================
860  /// Constructor: Initialise the fold handler,
861  /// by setting initial guesses for Y, Phi and calculating Count.
862  /// If the system changes, a new handler must be constructed.
863  //========================================================================
864  FoldHandler::FoldHandler(Problem* const& problem_pt,
865  double* const& parameter_pt)
866  : Solve_which_system(Full_augmented), Parameter_pt(parameter_pt)
867  {
868  // Set the problem pointer
869  Problem_pt = problem_pt;
870  // Set the number of degrees of freedom
871  Ndof = problem_pt->ndof();
872 
873  // create the linear algebra distribution for this solver
874  // currently only global (non-distributed) distributions are allowed
875  LinearAlgebraDistribution* dist_pt =
876  new LinearAlgebraDistribution(problem_pt->communicator_pt(), Ndof, false);
877 
878  // Resize the vectors of additional dofs and constants
879  Phi.resize(Ndof);
880  Y.resize(Ndof);
881  Count.resize(Ndof, 0);
882 
883  // Loop over all the elements in the problem
884  unsigned n_element = problem_pt->mesh_pt()->nelement();
885  for (unsigned e = 0; e < n_element; e++)
886  {
887  GeneralisedElement* elem_pt = problem_pt->mesh_pt()->element_pt(e);
888  // Loop over the local freedoms in the element
889  unsigned n_var = elem_pt->ndof();
890  for (unsigned n = 0; n < n_var; n++)
891  {
892  // Increase the associated global equation number counter
893  ++Count[elem_pt->eqn_number(n)];
894  }
895  }
896 
897  // Calculate the value Phi by
898  // solving the system JPhi = dF/dlambda
899 
900  // Locally cache the linear solver
901  LinearSolver* const linear_solver_pt = problem_pt->linear_solver_pt();
902 
903  // Save the status before entry to this routine
904  bool enable_resolve = linear_solver_pt->is_resolve_enabled();
905 
906  // We need to do a resolve
907  linear_solver_pt->enable_resolve();
908 
909  // Storage for the solution
910  DoubleVector x(dist_pt, 0.0);
911 
912  // Solve the standard problem, we only want to make sure that
913  // we factorise the matrix, if it has not been factorised. We shall
914  // ignore the return value of x.
915  linear_solver_pt->solve(problem_pt, x);
916 
917  // Get the vector dresiduals/dparameter
918  problem_pt->get_derivative_wrt_global_parameter(parameter_pt, x);
919 
920  // Copy rhs vector into local storage so it doesn't get overwritten
921  // if the linear solver decides to initialise the solution vector, say,
922  // which it's quite entitled to do!
923  DoubleVector input_x(x);
924 
925  // Now resolve the system with the new RHS and overwrite the solution
926  linear_solver_pt->resolve(input_x, x);
927 
928  // Restore the storage status of the linear solver
929  if (enable_resolve)
930  {
931  linear_solver_pt->enable_resolve();
932  }
933  else
934  {
935  linear_solver_pt->disable_resolve();
936  }
937 
938  // Add the global parameter as an unknown to the problem
939  problem_pt->Dof_pt.push_back(parameter_pt);
940 
941 
942  // Normalise the initial guesses for phi
943  double length = 0.0;
944  for (unsigned n = 0; n < Ndof; n++)
945  {
946  length += x[n] * x[n];
947  }
948  length = sqrt(length);
949 
950  // Now add the null space components to the problem unknowns
951  // and initialise them and Phi to the same normalised values
952  for (unsigned n = 0; n < Ndof; n++)
953  {
954  problem_pt->Dof_pt.push_back(&Y[n]);
955  Y[n] = Phi[n] = -x[n] / length;
956  }
957 
958  // delete the dist_pt
959  problem_pt->Dof_distribution_pt->build(
960  problem_pt->communicator_pt(), Ndof * 2 + 1, true);
961  // Remove all previous sparse storage used during Jacobian assembly
963 
964  delete dist_pt;
965  }
966 
967 
968  /// Constructor in which the eigenvector is passed as an initial
969  /// guess
970  FoldHandler::FoldHandler(Problem* const& problem_pt,
971  double* const& parameter_pt,
972  const DoubleVector& eigenvector)
973  : Solve_which_system(Full_augmented), Parameter_pt(parameter_pt)
974  {
975  // Set the problem pointer
976  Problem_pt = problem_pt;
977  // Set the number of degrees of freedom
978  Ndof = problem_pt->ndof();
979 
980  // create the linear algebra distribution for this solver
981  // currently only global (non-distributed) distributions are allowed
982  LinearAlgebraDistribution* dist_pt =
983  new LinearAlgebraDistribution(problem_pt->communicator_pt(), Ndof, false);
984 
985  // Resize the vectors of additional dofs and constants
986  Phi.resize(Ndof);
987  Y.resize(Ndof);
988  Count.resize(Ndof, 0);
989 
990  // Loop over all the elements in the problem
991  unsigned n_element = problem_pt->mesh_pt()->nelement();
992  for (unsigned e = 0; e < n_element; e++)
993  {
994  GeneralisedElement* elem_pt = problem_pt->mesh_pt()->element_pt(e);
995  // Loop over the local freedoms in the element
996  unsigned n_var = elem_pt->ndof();
997  for (unsigned n = 0; n < n_var; n++)
998  {
999  // Increase the associated global equation number counter
1000  ++Count[elem_pt->eqn_number(n)];
1001  }
1002  }
1003 
1004  // Add the global parameter as an unknown to the problem
1005  problem_pt->Dof_pt.push_back(parameter_pt);
1006 
1007 
1008  // Normalise the initial guesses for the eigenvecor
1009  double length = 0.0;
1010  for (unsigned n = 0; n < Ndof; n++)
1011  {
1012  length += eigenvector[n] * eigenvector[n];
1013  }
1014  length = sqrt(length);
1015 
1016  // Now add the null space components to the problem unknowns
1017  // and initialise them and Phi to the same normalised values
1018  for (unsigned n = 0; n < Ndof; n++)
1019  {
1020  problem_pt->Dof_pt.push_back(&Y[n]);
1021  Y[n] = Phi[n] = eigenvector[n] / length;
1022  }
1023 
1024  // delete the dist_pt
1025  problem_pt->Dof_distribution_pt->build(
1026  problem_pt->communicator_pt(), Ndof * 2 + 1, true);
1027  // Remove all previous sparse storage used during Jacobian assembly
1029 
1030  delete dist_pt;
1031  }
1032 
1033 
1034  /// Constructor in which the eigenvector and normalisation
1035  /// vector are passed as an initial guess
1036  FoldHandler::FoldHandler(Problem* const& problem_pt,
1037  double* const& parameter_pt,
1038  const DoubleVector& eigenvector,
1039  const DoubleVector& normalisation)
1040  : Solve_which_system(Full_augmented), Parameter_pt(parameter_pt)
1041  {
1042  // Set the problem pointer
1043  Problem_pt = problem_pt;
1044  // Set the number of degrees of freedom
1045  Ndof = problem_pt->ndof();
1046 
1047  // create the linear algebra distribution for this solver
1048  // currently only global (non-distributed) distributions are allowed
1049  LinearAlgebraDistribution* dist_pt =
1050  new LinearAlgebraDistribution(problem_pt->communicator_pt(), Ndof, false);
1051 
1052  // Resize the vectors of additional dofs and constants
1053  Phi.resize(Ndof);
1054  Y.resize(Ndof);
1055  Count.resize(Ndof, 0);
1056 
1057  // Loop over all the elements in the problem
1058  unsigned n_element = problem_pt->mesh_pt()->nelement();
1059  for (unsigned e = 0; e < n_element; e++)
1060  {
1061  GeneralisedElement* elem_pt = problem_pt->mesh_pt()->element_pt(e);
1062  // Loop over the local freedoms in the element
1063  unsigned n_var = elem_pt->ndof();
1064  for (unsigned n = 0; n < n_var; n++)
1065  {
1066  // Increase the associated global equation number counter
1067  ++Count[elem_pt->eqn_number(n)];
1068  }
1069  }
1070 
1071  // Add the global parameter as an unknown to the problem
1072  problem_pt->Dof_pt.push_back(parameter_pt);
1073 
1074 
1075  // Normalise the initial guesses for the eigenvecor
1076  double length = 0.0;
1077  for (unsigned n = 0; n < Ndof; n++)
1078  {
1079  length += eigenvector[n] * normalisation[n];
1080  }
1081  length = sqrt(length);
1082 
1083  // Now add the null space components to the problem unknowns
1084  // and initialise them and Phi to the same normalised values
1085  for (unsigned n = 0; n < Ndof; n++)
1086  {
1087  problem_pt->Dof_pt.push_back(&Y[n]);
1088  Y[n] = eigenvector[n] / length;
1089  Phi[n] = normalisation[n];
1090  }
1091 
1092  // delete the dist_pt
1093  problem_pt->Dof_distribution_pt->build(
1094  problem_pt->communicator_pt(), Ndof * 2 + 1, true);
1095  // Remove all previous sparse storage used during Jacobian assembly
1097 
1098  delete dist_pt;
1099  }
1100 
1101 
1102  //=================================================================
1103  /// The number of unknowns is 2n+1
1104  //================================================================
1105  unsigned FoldHandler::ndof(GeneralisedElement* const& elem_pt)
1106  {
1107  unsigned raw_ndof = elem_pt->ndof();
1108  // Return different values depending on the type of block decomposition
1109  switch (Solve_which_system)
1110  {
1111  case Full_augmented:
1112  return (2 * raw_ndof + 1);
1113  break;
1114 
1115  case Block_augmented_J:
1116  return (raw_ndof + 1);
1117  break;
1118 
1119  case Block_J:
1120  return raw_ndof;
1121  break;
1122 
1123  default:
1124  std::ostringstream error_stream;
1125  error_stream
1126  << "The Solve_which_system flag can only take values 0, 1, 2"
1127  << " not " << Solve_which_system << "\n";
1128  throw OomphLibError(
1129  error_stream.str(), OOMPH_CURRENT_FUNCTION, OOMPH_EXCEPTION_LOCATION);
1130  }
1131  }
1132 
1133  //=====================================================================
1134  /// Return the global equation number associated with local equation
1135  /// number ieqn_local. We choose to number the unknowns according
1136  /// to the augmented system.
1137  //=======================================================================
1138  unsigned long FoldHandler::eqn_number(GeneralisedElement* const& elem_pt,
1139  const unsigned& ieqn_local)
1140  {
1141  // Find the number of non-augmented dofs in the element
1142  unsigned raw_ndof = elem_pt->ndof();
1143  // Storage for the global eqn number
1144  unsigned long global_eqn = 0;
1145  // If we are a "standard" unknown, just return the standard equation number
1146  if (ieqn_local < raw_ndof)
1147  {
1148  global_eqn = elem_pt->eqn_number(ieqn_local);
1149  }
1150  // Otherwise if we are at an unknown corresponding to the bifurcation
1151  // parameter return the global equation number of the parameter
1152  else if (ieqn_local == raw_ndof)
1153  {
1154  global_eqn = Ndof;
1155  }
1156  // Otherwise we are in the unknown corresponding to a null vector
1157  // return the global unknown Ndof + 1 + global unknown of "standard"
1158  // unknown.
1159  else
1160  {
1161  global_eqn = Ndof + 1 + elem_pt->eqn_number(ieqn_local - 1 - raw_ndof);
1162  }
1163 
1164  // Return the global equation number
1165  return global_eqn;
1166  }
1167 
1168  //====================================================================
1169  /// Formulate the augmented system
1170  //====================================================================
1172  Vector<double>& residuals)
1173  {
1174  // Need to get raw residuals and jacobian
1175  unsigned raw_ndof = elem_pt->ndof();
1176 
1177  // Find out which system we are solving
1178  switch (Solve_which_system)
1179  {
1180  // If we are solving the standard system
1181  case Block_J:
1182  {
1183  // Get the basic residuals
1184  elem_pt->get_residuals(residuals);
1185  }
1186  break;
1187 
1188  // If we are solving the augmented-by-one system
1189  case Block_augmented_J:
1190  {
1191  // Get the basic residuals
1192  elem_pt->get_residuals(residuals);
1193 
1194  // Zero the final residual
1195  residuals[raw_ndof] = 0.0;
1196  }
1197  break;
1198 
1199  // If we are solving the full augmented system
1200  case Full_augmented:
1201  {
1202  DenseMatrix<double> jacobian(raw_ndof);
1203  // Get the basic residuals and jacobian initially
1204  elem_pt->get_jacobian(residuals, jacobian);
1205 
1206  // The normalisation equation must be initialised to -1.0/number of
1207  // elements
1208  residuals[raw_ndof] = -1.0 / Problem_pt->mesh_pt()->nelement();
1209 
1210  // Now assemble the equations Jy = 0
1211  for (unsigned i = 0; i < raw_ndof; i++)
1212  {
1213  residuals[raw_ndof + 1 + i] = 0.0;
1214  for (unsigned j = 0; j < raw_ndof; j++)
1215  {
1216  residuals[raw_ndof + 1 + i] +=
1217  jacobian(i, j) * Y[elem_pt->eqn_number(j)];
1218  }
1219  // Add the contribution to phi.y=1
1220  // Need to divide by the number of elements that contribute to this
1221  // unknown so that we do get phi.y exactly.
1222  unsigned global_eqn = elem_pt->eqn_number(i);
1223  residuals[raw_ndof] +=
1224  (Phi[global_eqn] * Y[global_eqn]) / Count[global_eqn];
1225  }
1226  }
1227  break;
1228 
1229  default:
1230  std::ostringstream error_stream;
1231  error_stream
1232  << "The Solve_which_system flag can only take values 0, 1, 2"
1233  << " not " << Solve_which_system << "\n";
1234  throw OomphLibError(
1235  error_stream.str(), OOMPH_CURRENT_FUNCTION, OOMPH_EXCEPTION_LOCATION);
1236  }
1237  }
1238 
1239 
1240  //=================================================================
1241  /// Calculate the elemental Jacobian matrix "d equation
1242  /// / d variable" for the augmented system
1243  //=================================================================
1245  Vector<double>& residuals,
1246  DenseMatrix<double>& jacobian)
1247  {
1248  // Find the number of augmented dofs
1249  unsigned augmented_ndof = ndof(elem_pt);
1250  // Find the non-augmented dofs
1251  unsigned raw_ndof = elem_pt->ndof();
1252 
1253  // Which system are we solving
1254  switch (Solve_which_system)
1255  {
1256  // If we are solving the original system
1257  case Block_J:
1258  {
1259  // Just get the raw jacobian and residuals
1260  elem_pt->get_jacobian(residuals, jacobian);
1261  }
1262  break;
1263 
1264  // If we are solving the augmented-by-one system
1265  case Block_augmented_J:
1266  {
1267  // Get the full residuals, we need them
1268  get_residuals(elem_pt, residuals);
1269 
1270  // Need to get the raw jacobian (and raw residuals)
1271  Vector<double> newres(augmented_ndof);
1272  elem_pt->get_jacobian(newres, jacobian);
1273 
1274  // Now do finite differencing stuff
1275  const double FD_step = 1.0e-8;
1276  // Fill in the first lot of finite differences
1277  {
1278  // increase the global parameter
1279  double* unknown_pt = Problem_pt->Dof_pt[Ndof];
1280  double init = *unknown_pt;
1281  *unknown_pt += FD_step;
1282 
1283  // Now do any possible updates
1285 
1286  // Get the new (modified) residuals
1287  get_residuals(elem_pt, newres);
1288 
1289  // The final column is given by the difference
1290  // between the residuals
1291  for (unsigned n = 0; n < raw_ndof; n++)
1292  {
1293  jacobian(n, augmented_ndof - 1) =
1294  (newres[n] - residuals[n]) / FD_step;
1295  }
1296  // Reset the global parameter
1297  *unknown_pt = init;
1298 
1299  // Now do any possible updates
1301  }
1302 
1303  // Fill in the bottom row
1304  for (unsigned n = 0; n < raw_ndof; n++)
1305  {
1306  unsigned local_eqn = elem_pt->eqn_number(n);
1307  jacobian(augmented_ndof - 1, n) = Phi[local_eqn] / Count[local_eqn];
1308  }
1309  }
1310  break;
1311 
1312  // Otherwise solving the full system
1313  case Full_augmented:
1314  {
1315  // Get the residuals for the augmented system
1316  get_residuals(elem_pt, residuals);
1317 
1318  // Need to get the raw residuals and jacobian
1319  Vector<double> newres(raw_ndof);
1320  DenseMatrix<double> newjac(raw_ndof);
1321  elem_pt->get_jacobian(newres, jacobian);
1322 
1323  // Fill in the jacobian on the diagonal sub-block of
1324  // the null-space equations
1325  for (unsigned n = 0; n < raw_ndof; n++)
1326  {
1327  for (unsigned m = 0; m < raw_ndof; m++)
1328  {
1329  jacobian(raw_ndof + 1 + n, raw_ndof + 1 + m) = jacobian(n, m);
1330  }
1331  }
1332 
1333  // Now finite difference wrt the global unknown
1334  const double FD_step = 1.0e-8;
1335  // Fill in the first lot of finite differences
1336  {
1337  // increase the global parameter
1338  double* unknown_pt = Problem_pt->Dof_pt[Ndof];
1339  double init = *unknown_pt;
1340  *unknown_pt += FD_step;
1341  // Need to update the function
1343 
1344  // Get the new raw residuals and jacobian
1345  elem_pt->get_jacobian(newres, newjac);
1346 
1347  // The end of the first row is given by the difference
1348  // between the residuals
1349  for (unsigned n = 0; n < raw_ndof; n++)
1350  {
1351  jacobian(n, raw_ndof) = (newres[n] - residuals[n]) / FD_step;
1352  // The end of the second row is given by the difference multiplied
1353  // by the product
1354  for (unsigned l = 0; l < raw_ndof; l++)
1355  {
1356  jacobian(raw_ndof + 1 + n, raw_ndof) +=
1357  (newjac(n, l) - jacobian(n, l)) * Y[elem_pt->eqn_number(l)] /
1358  FD_step;
1359  }
1360  }
1361  // Reset the global parameter
1362  *unknown_pt = init;
1363 
1364  // Need to update the function
1366  }
1367 
1368  // Now fill in the first column of the second rows
1369  {
1370  for (unsigned n = 0; n < raw_ndof; n++)
1371  {
1372  unsigned long global_eqn = eqn_number(elem_pt, n);
1373  // Increase the first lot
1374  double* unknown_pt = Problem_pt->Dof_pt[global_eqn];
1375  double init = *unknown_pt;
1376  *unknown_pt += FD_step;
1378 
1379  // Get the new jacobian
1380  elem_pt->get_jacobian(newres, newjac);
1381 
1382  // Work out the differences
1383  for (unsigned k = 0; k < raw_ndof; k++)
1384  {
1385  // jacobian(raw_ndof+k,n) = 0.0;
1386  for (unsigned l = 0; l < raw_ndof; l++)
1387  {
1388  jacobian(raw_ndof + 1 + k, n) +=
1389  (newjac(k, l) - jacobian(k, l)) * Y[elem_pt->eqn_number(l)] /
1390  FD_step;
1391  }
1392  }
1393  *unknown_pt = init;
1395  }
1396  }
1397 
1398  // Fill in the row corresponding to the parameter
1399  for (unsigned n = 0; n < raw_ndof; n++)
1400  {
1401  unsigned global_eqn = elem_pt->eqn_number(n);
1402  jacobian(raw_ndof, raw_ndof + 1 + n) =
1403  Phi[global_eqn] / Count[global_eqn];
1404  }
1405 
1406  // //Loop over the dofs
1407  // for(unsigned n=0;n<augmented_ndof;n++)
1408  // {
1409  // unsigned long global_eqn = eqn_number(elem_pt,n);
1410  // double* unknown_pt = Problem_pt->Dof_pt[global_eqn];
1411  // double init = *unknown_pt;
1412  // *unknown_pt += FD_step;
1413 
1414  // //Get the new residuals
1415  // get_residuals(elem_pt,newres);
1416 
1417  // for(unsigned m=0;m<augmented_ndof;m++)
1418  // {
1419  // jacobian(m,n) = (newres[m] - residuals[m])/FD_step;
1420  // }
1421  // //Reset the unknown
1422  // *unknown_pt = init;
1423  // }
1424  }
1425  break;
1426 
1427  default:
1428  std::ostringstream error_stream;
1429  error_stream
1430  << "The Solve_which_system flag can only take values 0, 1, 2"
1431  << " not " << Solve_which_system << "\n";
1432  throw OomphLibError(
1433  error_stream.str(), OOMPH_CURRENT_FUNCTION, OOMPH_EXCEPTION_LOCATION);
1434  }
1435  }
1436 
1437 
1438  //====================================================================
1439  /// Formulate the derivatives of the augmented system with respect
1440  /// to a parameter
1441  //====================================================================
1443  GeneralisedElement* const& elem_pt,
1444  double* const& parameter_pt,
1445  Vector<double>& dres_dparam)
1446  {
1447  // Need to get raw residuals and jacobian
1448  unsigned raw_ndof = elem_pt->ndof();
1449 
1450  // Find out which system we are solving
1451  switch (Solve_which_system)
1452  {
1453  // If we are solving the standard system
1454  case Block_J:
1455  {
1456  // Get the basic residual derivatives
1457  elem_pt->get_dresiduals_dparameter(parameter_pt, dres_dparam);
1458  }
1459  break;
1460 
1461  // If we are solving the augmented-by-one system
1462  case Block_augmented_J:
1463  {
1464  // Get the basic residual derivatives
1465  elem_pt->get_dresiduals_dparameter(parameter_pt, dres_dparam);
1466 
1467  // Zero the final derivative
1468  dres_dparam[raw_ndof] = 0.0;
1469  }
1470  break;
1471 
1472  // If we are solving the full augmented system
1473  case Full_augmented:
1474  {
1475  DenseMatrix<double> djac_dparam(raw_ndof);
1476  // Get the basic residuals and jacobian derivatives initially
1477  elem_pt->get_djacobian_dparameter(
1478  parameter_pt, dres_dparam, djac_dparam);
1479 
1480  // The normalisation equation does not depend on the parameter
1481  dres_dparam[raw_ndof] = 0.0;
1482 
1483  // Now assemble the equations dJy/dparameter = 0
1484  for (unsigned i = 0; i < raw_ndof; i++)
1485  {
1486  dres_dparam[raw_ndof + 1 + i] = 0.0;
1487  for (unsigned j = 0; j < raw_ndof; j++)
1488  {
1489  dres_dparam[raw_ndof + 1 + i] +=
1490  djac_dparam(i, j) * Y[elem_pt->eqn_number(j)];
1491  }
1492  }
1493  }
1494  break;
1495 
1496  default:
1497  std::ostringstream error_stream;
1498  error_stream
1499  << "The Solve_which_system flag can only take values 0, 1, 2"
1500  << " not " << Solve_which_system << "\n";
1501  throw OomphLibError(
1502  error_stream.str(), OOMPH_CURRENT_FUNCTION, OOMPH_EXCEPTION_LOCATION);
1503  }
1504  }
1505 
1506 
1507  //========================================================================
1508  /// Overload the derivative of the residuals and jacobian
1509  /// with respect to a parameter so that it breaks because it should not
1510  /// be required
1511  //========================================================================
1513  double* const& parameter_pt,
1514  Vector<double>& dres_dparam,
1515  DenseMatrix<double>& djac_dparam)
1516  {
1517  std::ostringstream error_stream;
1518  error_stream
1519  << "This function has not been implemented because it is not required\n";
1520  error_stream << "in standard problems.\n";
1521  error_stream
1522  << "If you find that you need it, you will have to implement it!\n\n";
1523 
1524  throw OomphLibError(
1525  error_stream.str(), OOMPH_CURRENT_FUNCTION, OOMPH_EXCEPTION_LOCATION);
1526  }
1527 
1528 
1529  //=====================================================================
1530  /// Overload the hessian vector product function so that
1531  /// it breaks because it should not be required
1532  //========================================================================
1534  GeneralisedElement* const& elem_pt,
1535  Vector<double> const& Y,
1536  DenseMatrix<double> const& C,
1537  DenseMatrix<double>& product)
1538  {
1539  std::ostringstream error_stream;
1540  error_stream
1541  << "This function has not been implemented because it is not required\n";
1542  error_stream << "in standard problems.\n";
1543  error_stream
1544  << "If you find that you need it, you will have to implement it!\n\n";
1545 
1546  throw OomphLibError(
1547  error_stream.str(), OOMPH_CURRENT_FUNCTION, OOMPH_EXCEPTION_LOCATION);
1548  }
1549 
1550 
1551  //==========================================================================
1552  /// Return the eigenfunction(s) associated with the bifurcation that
1553  /// has been detected in bifurcation tracking problems
1554  //==========================================================================
1556  {
1557  // There is only one (real) null vector
1558  eigenfunction.resize(1);
1560  // Rebuild the vector
1561  eigenfunction[0].build(&dist, 0.0);
1562  // Set the value to be the null vector
1563  for (unsigned n = 0; n < Ndof; n++)
1564  {
1565  eigenfunction[0][n] = Y[n];
1566  }
1567  }
1568 
1569 
1570  //=======================================================================
1571  /// Destructor return the problem to its original (non-augmented) state
1572  //=======================================================================
1574  {
1575  // If we are using the block solver reset the problem's linear solver
1576  // to the original one
1577  AugmentedBlockFoldLinearSolver* block_fold_solver_pt =
1578  dynamic_cast<AugmentedBlockFoldLinearSolver*>(
1580 
1581  if (block_fold_solver_pt)
1582  {
1583  // Reset the problem's linear solver
1584  Problem_pt->linear_solver_pt() = block_fold_solver_pt->linear_solver_pt();
1585  // Delete the block solver
1586  delete block_fold_solver_pt;
1587  }
1588 
1589  // Resize the number of dofs
1590  Problem_pt->Dof_pt.resize(Ndof);
1592  Problem_pt->communicator_pt(), Ndof, false);
1593  // Remove all previous sparse storage used during Jacobian assembly
1595  }
1596 
1597  //====================================================================
1598  /// Set to solve the augmented-by-one block system.
1599  //===================================================================
1601  {
1602  // Only bother to do anything if we haven't already set the flag
1604  {
1605  // If we were solving the system with the original jacobian add the
1606  // parameter
1607  if (Solve_which_system == Block_J)
1608  {
1609  Problem_pt->Dof_pt.push_back(Parameter_pt);
1610  }
1611 
1612  // Restrict the problem to the standard variables and
1613  // the bifurcation parameter only
1614  Problem_pt->Dof_pt.resize(Ndof + 1);
1616  Problem_pt->communicator_pt(), Ndof + 1, false);
1617  // Remove all previous sparse storage used during Jacobian assembly
1619  // Set the solve flag
1621  }
1622  }
1623 
1624 
1625  //====================================================================
1626  /// Set to solve the block system. The boolean flag specifies
1627  /// whether the block decomposition should use exactly the same jacobian
1628  //===================================================================
1630  {
1631  // Only bother to do anything if we haven't already set the flag
1632  if (Solve_which_system != Block_J)
1633  {
1634  // Restrict the problem to the standard variables
1635  Problem_pt->Dof_pt.resize(Ndof);
1637  Problem_pt->communicator_pt(), Ndof, false);
1638  // Remove all previous sparse storage used during Jacobian assembly
1640 
1641  // Set the solve flag
1643  }
1644  }
1645 
1646  //=================================================================
1647  /// Set to Solve non-block system
1648  //=================================================================
1650  {
1651  // Only do something if we are not solving the full system
1653  {
1654  // If we were solving the problem without any augmentation,
1655  // add the parameter again
1656  if (Solve_which_system == Block_J)
1657  {
1658  Problem_pt->Dof_pt.push_back(Parameter_pt);
1659  }
1660 
1661  // Always add the additional unknowns back into the problem
1662  for (unsigned n = 0; n < Ndof; n++)
1663  {
1664  Problem_pt->Dof_pt.push_back(&Y[n]);
1665  }
1666 
1667  // update the Dof distribution pt
1669  Problem_pt->communicator_pt(), Ndof * 2 + 1, false);
1670  // Remove all previous sparse storage used during Jacobian assembly
1672 
1674  }
1675  }
1676 
1677 
1678  //======================================================================
1679  /// Clean up the memory that may have been allocated by the solver
1680  //=====================================================================
1682  {
1683  if (B_pt != 0)
1684  {
1685  delete B_pt;
1686  }
1687  if (C_pt != 0)
1688  {
1689  delete C_pt;
1690  }
1691  if (D_pt != 0)
1692  {
1693  delete D_pt;
1694  }
1695  if (dJy_dparam_pt != 0)
1696  {
1697  delete dJy_dparam_pt;
1698  }
1699  }
1700 
1701  //===================================================================
1702  /// Use a block factorisation to solve the augmented system
1703  /// associated with a PitchFork bifurcation.
1704  //===================================================================
1706  DoubleVector& result)
1707  {
1708  std::cout << "Block pitchfork solve" << std::endl;
1709  // Locally cache the pointer to the handler.
1710  PitchForkHandler* handler_pt =
1711  static_cast<PitchForkHandler*>(problem_pt->assembly_handler_pt());
1712 
1713  // Get the augmented distribution from the handler and use it as
1714  // the distribution of the linear solver
1715  LinearAlgebraDistribution aug_dist =
1716  handler_pt->Augmented_dof_distribution_pt;
1717  this->build_distribution(aug_dist);
1718 
1719  // If the result vector is not setup then die
1720  if (!result.built())
1721  {
1722  throw OomphLibError("Result vector must be built\n",
1723  OOMPH_CURRENT_FUNCTION,
1724  OOMPH_EXCEPTION_LOCATION);
1725  }
1726 
1727  // Store the distribution of the result, which is probably not in
1728  // the natural distribution of the augmented solver
1729  LinearAlgebraDistribution result_dist(result.distribution_pt());
1730 
1731  // Locally cache a pointer to the parameter
1732  double* const parameter_pt = handler_pt->Parameter_pt;
1733 
1734  // Firstly get the derivatives of the full augmented system with
1735  // respect to the parameter
1736 
1737  // Allocate storage for the derivatives of the residuals with respect
1738  // to the global parameter using the augmented distribution
1739  DoubleVector dRdparam;
1740  // Then get the appropriate derivatives which will come back in
1741  // some distribution
1742  problem_pt->get_derivative_wrt_global_parameter(parameter_pt, dRdparam);
1743  // Redistribute into the augmented distribution
1744  dRdparam.redistribute(&aug_dist);
1745 
1746  // Switch the handler to "block solver" mode (sort out distribution)
1747  handler_pt->solve_block_system();
1748 
1749  // Temporary vector for the result (I shouldn't have to set this up)
1750  DoubleVector x1;
1751 
1752  // We are going to do resolves using the underlying linear solver
1754  // Solve the first (standard) system Jx1 = R
1755  Linear_solver_pt->solve(problem_pt, x1);
1756 
1757  // Allocate storage for B, C and D which can be used in the resolve
1758  // and the derivatives of the jacobian/eigenvector product with
1759  // respect to the parameter
1760  if (B_pt != 0)
1761  {
1762  delete B_pt;
1763  }
1765  if (C_pt != 0)
1766  {
1767  delete C_pt;
1768  }
1770  if (D_pt != 0)
1771  {
1772  delete D_pt;
1773  }
1775  // Need this to be in the distribution of the dofs
1776  if (dJy_dparam_pt != 0)
1777  {
1778  delete dJy_dparam_pt;
1779  }
1780  dJy_dparam_pt = new DoubleVector(handler_pt->Dof_distribution_pt, 0.0);
1781 
1782  // Get the symmetry vector from the handler should have the
1783  // Dof distribution
1784  DoubleVector psi = handler_pt->Psi;
1785 
1786  // Temporary vector for the rhs that is dR/dparam (augmented distribution)
1787  // DoubleVector F(Linear_solver_pt->distribution_pt(),0.0);
1788  DoubleVector F(handler_pt->Dof_distribution_pt);
1789  const unsigned n_dof_local = F.nrow_local();
1790 
1791  // f.nrow local copied from dRdparam
1792  for (unsigned n = 0; n < n_dof_local; n++)
1793  {
1794  F[n] = dRdparam[n];
1795  }
1796  // Fill in the rhs that is dJy/dparam //dJy_dparam nrow local
1797 
1798  // In standard cases the offset here will be one
1799  unsigned offset = 1;
1800 #ifdef OOMPH_HAS_MPI
1801  // If we are distributed and not on the first processor
1802  // then there is no offset and the eigenfunction is
1803  // directly after the standard dofs
1804  int my_rank = problem_pt->communicator_pt()->my_rank();
1805  if ((problem_pt->distributed()) && (my_rank != 0))
1806  {
1807  offset = 0;
1808  }
1809 #endif
1810  for (unsigned n = 0; n < n_dof_local; n++)
1811  {
1812  (*dJy_dparam_pt)[n] = dRdparam[n_dof_local + offset + n];
1813  }
1814 
1815  // Now resolve to find c and d
1816  // First, redistribute F and psi into the linear algebra distribution
1817  F.redistribute(Linear_solver_pt->distribution_pt());
1819 
1821  Linear_solver_pt->resolve(psi, *D_pt);
1822 
1823  // We can now construct various dot products
1824  double psi_d = psi.dot(*D_pt);
1825  double psi_c = psi.dot(*C_pt);
1826  double psi_x1 = psi.dot(x1);
1827 
1828  // Calculate another intermediate constant
1829  const double Psi = psi_d / psi_c;
1830 
1831  // Construct the second intermediate value,
1832  // assumption is that result has been
1833  // set to the current value of the residuals
1834  // First, redistribute into the Natural distribution of the augmented system
1835  result.redistribute(&aug_dist);
1836  // The required parameter is that corresponding to the dof, which
1837  // is only stored on the root processor
1838  double parameter_residual = result[n_dof_local];
1839 #ifdef OOMPH_HAS_MPI
1840  // Broadcast to all others, if we have a distributed problem
1841  if (problem_pt->distributed())
1842  {
1843  MPI_Bcast(&parameter_residual,
1844  1,
1845  MPI_DOUBLE,
1846  0,
1847  problem_pt->communicator_pt()->mpi_comm());
1848  }
1849 #endif
1850  // Now construct the value
1851  double x2 = (psi_x1 - parameter_residual) / psi_c;
1852 
1853  // Now construct the vectors that multiply the jacobian terms
1855  D_and_X1[0].build(Linear_solver_pt->distribution_pt(), 0.0);
1856  D_and_X1[1].build(Linear_solver_pt->distribution_pt(), 0.0);
1857  // Fill in the appropriate terms
1858  // Get the number of local dofs from the Linear_solver_pt distribution
1859  const unsigned n_dof_local_linear_solver =
1861  for (unsigned n = 0; n < n_dof_local_linear_solver; n++)
1862  {
1863  const double C_ = (*C_pt)[n];
1864  D_and_X1[0][n] = (*D_pt)[n] - Psi * C_;
1865  D_and_X1[1][n] = x1[n] - x2 * C_;
1866  }
1867 
1868  // Local storage for the result of the product terms
1869  Vector<DoubleVectorWithHaloEntries> Jprod_D_and_X1(2);
1870 
1871  // Redistribute the inputs to have the Dof distribution pt
1872  D_and_X1[0].redistribute(handler_pt->Dof_distribution_pt);
1873  D_and_X1[1].redistribute(handler_pt->Dof_distribution_pt);
1874 
1875  // Set up the halo scheme
1876 #ifdef OOMPH_HAS_MPI
1877  D_and_X1[0].build_halo_scheme(problem_pt->Halo_scheme_pt);
1878  D_and_X1[1].build_halo_scheme(problem_pt->Halo_scheme_pt);
1879 #endif
1880 
1881  // Get the products from the new problem function
1882  problem_pt->get_hessian_vector_products(
1883  handler_pt->Y, D_and_X1, Jprod_D_and_X1);
1884 
1885  // OK, now we can formulate the next vectors
1886  //(again assuming result contains residuals)
1887  // Need to redistribute F to the dof distribution
1888  // F.redistribute(handler_pt->Dof_distribution_pt);
1889  DoubleVector G(handler_pt->Dof_distribution_pt);
1890 
1891  for (unsigned n = 0; n < n_dof_local; n++)
1892  {
1893  G[n] = result[n_dof_local + offset + n] - Jprod_D_and_X1[1][n] -
1894  x2 * dRdparam[n_dof_local + offset + n];
1895  Jprod_D_and_X1[0][n] *= -1.0;
1896  Jprod_D_and_X1[0][n] -= Psi * dRdparam[n_dof_local + offset + n];
1897  }
1898 
1899 
1900  // Then redistribute back to the linear solver distribution
1902  Jprod_D_and_X1[0].redistribute(Linear_solver_pt->distribution_pt());
1903  Jprod_D_and_X1[1].redistribute(Linear_solver_pt->distribution_pt());
1904 
1905  // Linear solve to get B
1906  Linear_solver_pt->resolve(Jprod_D_and_X1[0], *B_pt);
1907  // Liner solve to get x3
1909  Linear_solver_pt->resolve(G, x3);
1910 
1911  // Construst a couple of additional products
1912  double l_x3 = psi.dot(x3);
1913  double l_b = psi.dot(*B_pt);
1914 
1915  // get the last intermediate variable
1916  // The required parameter is that corresponding to the dof, which
1917  // is only stored on the root processor
1918  double sigma_residual = result[2 * (n_dof_local + offset) - 1];
1919 #ifdef OOMPH_HAS_MPI
1920  // Broadcast to all others, if we have a distributed problem
1921  if (problem_pt->distributed())
1922  {
1923  MPI_Bcast(&sigma_residual,
1924  1,
1925  MPI_DOUBLE,
1926  0,
1927  problem_pt->communicator_pt()->mpi_comm());
1928  }
1929 #endif
1930 
1931 
1932  const double delta_sigma = (l_x3 - sigma_residual) / l_b;
1933  const double delta_lambda = x2 - delta_sigma * Psi;
1934 
1935  // Need to do some more rearrangements here because result is global
1936  // but the other vectors are not!
1937 
1938  // Create temporary DoubleVectors to hold the results
1941 
1942  for (unsigned n = 0; n < n_dof_local_linear_solver; n++)
1943  {
1944  res1[n] = x1[n] - delta_lambda * (*C_pt)[n] - delta_sigma * (*D_pt)[n];
1945  res2[n] = x3[n] - delta_sigma * (*B_pt)[n];
1946  }
1947 
1948  // Now redistribute these into the Dof distribution pointer
1949  res1.redistribute(handler_pt->Dof_distribution_pt);
1950  res2.redistribute(handler_pt->Dof_distribution_pt);
1951 
1952  // Now can copy over into results into the result vector
1953  for (unsigned n = 0; n < n_dof_local; n++)
1954  {
1955  result[n] = res1[n];
1956  result[n_dof_local + offset + n] = res2[n];
1957  }
1958 
1959  // Add the final contributions to the residuals
1960  // only on the root processor if we have a distributed problem
1961 #ifdef OOMPH_HAS_MPI
1962  if ((!problem_pt->distributed()) || (my_rank == 0))
1963 #endif
1964  {
1965  result[n_dof_local] = delta_lambda;
1966  result[2 * n_dof_local + 1] = delta_sigma;
1967  }
1968 
1969 
1970  // The sign of the determinant is given by the sign of
1971  // the product psi_c and l_b
1972  // NOT CHECKED YET!
1973  problem_pt->sign_of_jacobian() =
1974  static_cast<int>(std::fabs(psi_c * l_b) / (psi_c * l_b));
1975 
1976  // Redistribute the result into its incoming distribution
1977  result.redistribute(&result_dist);
1978 
1979  // Switch things to our block solver
1980  handler_pt->solve_full_system();
1981 
1982  // If we are not storing things, clear the results
1983  if (!Enable_resolve)
1984  {
1985  // We no longer need to store the matrix
1987  delete B_pt;
1988  B_pt = 0;
1989  delete C_pt;
1990  C_pt = 0;
1991  delete D_pt;
1992  D_pt = 0;
1993  delete dJy_dparam_pt;
1994  dJy_dparam_pt = 0;
1995  }
1996  // Otherwise also store the pointer to the problem
1997  else
1998  {
1999  Problem_pt = problem_pt;
2000  }
2001  }
2002 
2003 
2004  //==============================================================
2005  // Hack the re-solve to use the block factorisation
2006  //==============================================================
2008  DoubleVector& result)
2009  {
2010  std::cout << "Block pitchfork resolve" << std::endl;
2011  // Check that the factors have been stored
2012  if (B_pt == 0)
2013  {
2014  throw OomphLibError("The required vectors have not been stored",
2015  OOMPH_CURRENT_FUNCTION,
2016  OOMPH_EXCEPTION_LOCATION);
2017  }
2018 
2019 
2020  // Cache pointer to the problem
2021  Problem* const problem_pt = Problem_pt;
2022 
2023  // Locally cache pointer to the handler
2024  PitchForkHandler* handler_pt =
2025  static_cast<PitchForkHandler*>(problem_pt->assembly_handler_pt());
2026 
2027  // Get the augmented distribution from the handler
2028  LinearAlgebraDistribution aug_dist =
2029  handler_pt->Augmented_dof_distribution_pt;
2030  // this->build_distribution(aug_dist);
2031 
2032  // Find the number of dofs of the augmented system
2033  // const unsigned n_aug_dof = problem_pt->ndof();
2034 
2035  // Storage for the result distribution
2036  LinearAlgebraDistribution result_dist;
2037 
2038  // if the result vector is not setup then rebuild with distribution
2039  // = natural distribution of augmented solver
2040  if (!result.built())
2041  {
2042  result.build(&aug_dist, 0.0);
2043  }
2044  // Otherwise store the incoming distribution and redistribute
2045  else
2046  {
2047  result_dist.build(result.distribution_pt());
2048  result.redistribute(&aug_dist);
2049  }
2050 
2051 
2052  // Locally cache a pointer to the parameter
2053  // double* const parameter_pt = handler_pt->Parameter_pt;
2054 
2055  // Switch things to our block solver
2056  handler_pt->solve_block_system();
2057  // We need to find out the number of dofs
2058  // unsigned n_dof = problem_pt->ndof();
2059 
2060  // create the linear algebra distribution for this solver
2061  // currently only global (non-distributed) distributions are allowed
2062  // LinearAlgebraDistribution
2063  // dist(problem_pt->communicator_pt(),n_dof,false);
2064  // this->build_distribution(dist);
2065 
2066  // if the result vector is not setup then rebuild with distribution = global
2067  // if (!result.built())
2068  // {
2069  // result.build(this->distribution_pt(),0.0);
2070  // }
2071 
2072 
2073  // Copy the rhs into local storage
2074  DoubleVector rhs_local = rhs;
2075  // and redistribute into the augmented distribution
2076  rhs_local.redistribute(&aug_dist);
2077 
2078  // Setup storage for output
2081 
2082  // Create input for RHS with the natural distribution
2083  DoubleVector input_x1(handler_pt->Dof_distribution_pt);
2084  const unsigned n_dof_local = input_x1.nrow_local();
2085 
2086  // Set the values of the a vector
2087  for (unsigned n = 0; n < n_dof_local; n++)
2088  {
2089  input_x1[n] = rhs_local[n];
2090  }
2091  // Need to redistribute into the linear algebra distribution
2093 
2094  // We want to resolve, of course
2096  // Now solve for the first vector
2097  Linear_solver_pt->resolve(input_x1, x1);
2098 
2099  // Get the symmetry vector from the handler
2100  DoubleVector psi = handler_pt->Psi;
2101  // redistribute local copy
2103 
2104  // We can now construct various dot products
2105  double psi_d = psi.dot(*D_pt);
2106  double psi_c = psi.dot(*C_pt);
2107  double psi_x1 = psi.dot(x1);
2108 
2109  // Calculate another intermediate constant
2110  const double Psi = psi_d / psi_c;
2111 
2112  // Construct the second intermediate value,
2113  // assumption is that rhs has been set to the current value of the residuals
2114  double parameter_residual = rhs_local[n_dof_local];
2115 #ifdef OOMPH_HAS_MPI
2116  // Broadcast to all others, if we have a distributed problem
2117  if (problem_pt->distributed())
2118  {
2119  MPI_Bcast(&parameter_residual,
2120  1,
2121  MPI_DOUBLE,
2122  0,
2123  problem_pt->communicator_pt()->mpi_comm());
2124  }
2125 #endif
2126 
2127  double x2 = (psi_x1 - parameter_residual) / psi_c;
2128 
2129  // Now construct the vectors that multiply the jacobian terms
2130  // Vector<double> X1(n_dof/*+1*/);
2132  X1[0].build(Linear_solver_pt->distribution_pt(), 0.0);
2133 
2134  const unsigned n_dof_local_linear_solver =
2136  for (unsigned n = 0; n < n_dof_local_linear_solver; n++)
2137  {
2138  X1[0][n] = x1[n] - x2 * (*C_pt)[n];
2139  }
2140 
2141  // Local storage for the product term
2143 
2144  // Redistribute the inputs to have the Dof distribution pt
2145  X1[0].redistribute(handler_pt->Dof_distribution_pt);
2146 
2147  // Set up the halo scheme
2148 #ifdef OOMPH_HAS_MPI
2149  X1[0].build_halo_scheme(problem_pt->Halo_scheme_pt);
2150 #endif
2151 
2152  // Get the product from the problem
2153  problem_pt->get_hessian_vector_products(handler_pt->Y, X1, Jprod_X1);
2154 
2155  // In standard cases the offset here will be one
2156  unsigned offset = 1;
2157 #ifdef OOMPH_HAS_MPI
2158  // If we are distributed and not on the first processor
2159  // then there is no offset and the eigenfunction is
2160  // directly after the standard dofs
2161  int my_rank = problem_pt->communicator_pt()->my_rank();
2162  if ((problem_pt->distributed()) && (my_rank != 0))
2163  {
2164  offset = 0;
2165  }
2166 #endif
2167 
2168  // OK, now we can formulate the next vectors
2169  //(again assuming result contains residuals)
2170  // Local storage for the product terms
2171  DoubleVector Mod_Jprod_X1(handler_pt->Dof_distribution_pt, 0.0);
2172 
2173  for (unsigned n = 0; n < n_dof_local; n++)
2174  {
2175  Mod_Jprod_X1[n] = rhs_local[n_dof_local + offset + n] - Jprod_X1[0][n] -
2176  x2 * (*dJy_dparam_pt)[n];
2177  }
2178 
2179  // Redistribute back to the linear solver distribution
2181 
2182  // Liner solve to get x3
2183  Linear_solver_pt->resolve(Mod_Jprod_X1, x3);
2184 
2185  // Construst a couple of additional products
2186  double l_x3 = psi.dot(x3);
2187  double l_b = psi.dot(*B_pt);
2188 
2189  // get the last intermediate variable
2190  // The required parameter is that corresponding to the dof, which
2191  // is only stored on the root processor
2192  double sigma_residual = rhs_local[2 * (n_dof_local + offset) - 1];
2193 #ifdef OOMPH_HAS_MPI
2194  // Broadcast to all others, if we have a distributed problem
2195  if (problem_pt->distributed())
2196  {
2197  MPI_Bcast(&sigma_residual,
2198  1,
2199  MPI_DOUBLE,
2200  0,
2201  problem_pt->communicator_pt()->mpi_comm());
2202  }
2203 #endif
2204 
2205  // get the last intermediate variable
2206  const double delta_sigma = (l_x3 - sigma_residual) / l_b;
2207  const double delta_lambda = x2 - delta_sigma * Psi;
2208 
2209  // Create temporary DoubleVectors to hold the results
2212 
2213  for (unsigned n = 0; n < n_dof_local_linear_solver; n++)
2214  {
2215  res1[n] = x1[n] - delta_lambda * (*C_pt)[n] - delta_sigma * (*D_pt)[n];
2216  res2[n] = x3[n] - delta_sigma * (*B_pt)[n];
2217  }
2218 
2219  // Now redistribute these into the Dof distribution pointer
2220  res1.redistribute(handler_pt->Dof_distribution_pt);
2221  res2.redistribute(handler_pt->Dof_distribution_pt);
2222 
2223  // Now can copy over into results into the result vector
2224  for (unsigned n = 0; n < n_dof_local; n++)
2225  {
2226  result[n] = res1[n];
2227  result[n_dof_local + offset + n] = res2[n];
2228  }
2229 
2230  // Add the final contributions to the residuals
2231  // only on the root processor if we have a distributed problem
2232 #ifdef OOMPH_HAS_MPI
2233  if ((!problem_pt->distributed()) || (my_rank == 0))
2234 #endif
2235  {
2236  result[n_dof_local] = delta_lambda;
2237  result[2 * n_dof_local + 1] = delta_sigma;
2238  }
2239 
2240  // Redistribute the result into its incoming distribution (if it had one)
2241  if (result_dist.built())
2242  {
2243  result.redistribute(&result_dist);
2244  }
2245 
2247 
2248  // Switch things to our block solver
2249  handler_pt->solve_full_system();
2250  }
2251 
2252 
2253  //--------------------------------------------------------------
2254 
2255 
2256  //======================================================================
2257  /// Clean up the memory that may have been allocated by the solver
2258  //=====================================================================
2260  {
2261  if (Alpha_pt != 0)
2262  {
2263  delete Alpha_pt;
2264  }
2265  if (E_pt != 0)
2266  {
2267  delete E_pt;
2268  }
2269  }
2270 
2271  //===================================================================
2272  /// Use a block factorisation to solve the augmented system
2273  /// associated with a PitchFork bifurcation.
2274  //===================================================================
2276  DoubleVector& result)
2277  {
2278  std::cout << "Augmented pitchfork solve" << std::endl;
2279  // if the result is setup then it should not be distributed
2280 #ifdef PARANOID
2281  if (result.built())
2282  {
2283  if (result.distributed())
2284  {
2285  throw OomphLibError("The result vector must not be distributed",
2286  OOMPH_CURRENT_FUNCTION,
2287  OOMPH_EXCEPTION_LOCATION);
2288  }
2289  }
2290 #endif
2291 
2292 
2293  // Locally cache the pointer to the handler.
2294  PitchForkHandler* handler_pt =
2295  static_cast<PitchForkHandler*>(problem_pt->assembly_handler_pt());
2296 
2297  // Switch the handler to "block solver" mode
2298  handler_pt->solve_augmented_block_system();
2299 
2300  // We need to find out the number of dofs in the problem
2301  unsigned n_dof = problem_pt->ndof();
2302 
2303  // create the linear algebra distribution for this solver
2304  // currently only global (non-distributed) distributions are allowed
2305  LinearAlgebraDistribution dist(problem_pt->communicator_pt(), n_dof, false);
2306  this->build_distribution(dist);
2307 
2308  // if the result vector is not setup then rebuild with distribution = global
2309  if (!result.built())
2310  {
2311  result.build(this->distribution_pt(), 0.0);
2312  }
2313 
2314  // Setup storage for temporary vectors
2315  DoubleVector a(this->distribution_pt(), 0.0),
2316  b(this->distribution_pt(), 0.0);
2317 
2318  // Allocate storage for Alpha which can be used in the resolve
2319  if (Alpha_pt != 0)
2320  {
2321  delete Alpha_pt;
2322  }
2323  Alpha_pt = new DoubleVector(this->distribution_pt(), 0.0);
2324 
2325  // We are going to do resolves using the underlying linear solver
2327  // Solve the first system Aa = R
2328  Linear_solver_pt->solve(problem_pt, a);
2329 
2330  // Get the symmetry vector from the handler
2331  DoubleVector psi(this->distribution_pt(), 0.0);
2332  for (unsigned n = 0; n < (n_dof - 1); ++n)
2333  {
2334  psi[n] = handler_pt->Psi[n];
2335  }
2336  // Set the final entry to zero
2337  psi[n_dof - 1] = 0.0;
2338 
2339  // Now resolve to find alpha
2341 
2342  // We can now construct our multipliers
2343  // Prepare to scale
2344  double dof_length = 0.0, a_length = 0.0, alpha_length = 0.0;
2345  for (unsigned n = 0; n < n_dof; n++)
2346  {
2347  if (std::fabs(problem_pt->dof(n)) > dof_length)
2348  {
2349  dof_length = std::fabs(problem_pt->dof(n));
2350  }
2351  if (std::fabs(a[n]) > a_length)
2352  {
2353  a_length = std::fabs(a[n]);
2354  }
2355  if (std::fabs((*Alpha_pt)[n]) > alpha_length)
2356  {
2357  alpha_length = std::fabs((*Alpha_pt)[n]);
2358  }
2359  }
2360 
2361  double a_mult = dof_length / a_length;
2362  double alpha_mult = dof_length / alpha_length;
2363  const double FD_step = 1.0e-8;
2364  a_mult += FD_step;
2365  alpha_mult += FD_step;
2366  a_mult *= FD_step;
2367  alpha_mult *= FD_step;
2368 
2369  // Local storage for the product terms
2370  DoubleVector Jprod_a(this->distribution_pt(), 0.0),
2371  Jprod_alpha(this->distribution_pt(), 0.0);
2372 
2373  // Calculate the product of the jacobian matrices, etc
2374  unsigned long n_element = problem_pt->mesh_pt()->nelement();
2375  for (unsigned long e = 0; e < n_element; e++)
2376  {
2377  GeneralisedElement* elem_pt = problem_pt->mesh_pt()->element_pt(e);
2378  // Loop over the ndofs in each element
2379  unsigned n_var = handler_pt->ndof(elem_pt);
2380  // Get the jacobian matrices
2381  DenseMatrix<double> jac(n_var), jac_a(n_var), jac_alpha(n_var);
2382  // the elemental residual
2383  Vector<double> res_elemental(n_var);
2384  // Get unperturbed jacobian
2385  handler_pt->get_jacobian(elem_pt, res_elemental, jac);
2386 
2387  // Backup the dofs
2388  Vector<double> dof_bac(n_var);
2389  // Perturb the dofs
2390  for (unsigned n = 0; n < n_var; n++)
2391  {
2392  unsigned eqn_number = handler_pt->eqn_number(elem_pt, n);
2393  dof_bac[n] = problem_pt->dof(eqn_number);
2394  // Pertub by vector a
2395  problem_pt->dof(eqn_number) += a_mult * a[eqn_number];
2396  }
2397 
2399 
2400  // Now get the new jacobian
2401  handler_pt->get_jacobian(elem_pt, res_elemental, jac_a);
2402 
2403  // Perturb the dofs
2404  for (unsigned n = 0; n < n_var; n++)
2405  {
2406  unsigned eqn_number = handler_pt->eqn_number(elem_pt, n);
2407  problem_pt->dof(eqn_number) = dof_bac[n];
2408  // Pertub by vector a
2409  problem_pt->dof(eqn_number) += alpha_mult * (*Alpha_pt)[eqn_number];
2410  }
2411 
2413 
2414  // Now get the new jacobian
2415  handler_pt->get_jacobian(elem_pt, res_elemental, jac_alpha);
2416 
2417  // Reset the dofs
2418  for (unsigned n = 0; n < n_var; n++)
2419  {
2420  unsigned eqn_number = handler_pt->eqn_number(elem_pt, n);
2421  problem_pt->dof(eqn_number) = dof_bac[n];
2422  }
2423 
2425 
2426  // OK, now work out the products
2427  for (unsigned n = 0; n < (n_var - 1); n++)
2428  {
2429  unsigned eqn_number = handler_pt->eqn_number(elem_pt, n);
2430  double prod_a = 0.0, prod_alpha = 0.0;
2431  for (unsigned m = 0; m < (n_var - 1); m++)
2432  {
2433  unsigned unknown = handler_pt->eqn_number(elem_pt, m);
2434  prod_a += (jac_a(n, m) - jac(n, m)) * handler_pt->Y[unknown];
2435  prod_alpha += (jac_alpha(n, m) - jac(n, m)) * handler_pt->Y[unknown];
2436  }
2437  Jprod_a[eqn_number] += prod_a / a_mult;
2438  Jprod_alpha[eqn_number] += prod_alpha / alpha_mult;
2439  }
2440  }
2441 
2442  Jprod_alpha[n_dof - 1] = 0.0;
2443  Jprod_a[n_dof - 1] = 0.0;
2444 
2445  // OK, now we can formulate the next vectors
2446  // The assumption here is that the result has been set to the
2447  // residuals.
2448  for (unsigned n = 0; n < n_dof - 1; n++)
2449  {
2450  b[n] = result[n_dof + n] - Jprod_a[n];
2451  }
2452  b[n_dof - 1] = result[2 * n_dof - 1];
2453 
2454 
2455  // Allocate storage for E which can be used in the resolve
2456  if (E_pt != 0)
2457  {
2458  delete E_pt;
2459  }
2460  E_pt = new DoubleVector(this->distribution_pt(), 0.0);
2461 
2462  DoubleVector f(this->distribution_pt(), 0.0);
2463 
2464  Linear_solver_pt->resolve(b, f);
2465  Linear_solver_pt->resolve(Jprod_alpha, *E_pt);
2466 
2467  // Calculate the final entry in the vector e
2468  const double e_final = (*E_pt)[n_dof - 1];
2469  // Calculate the final entry in the vector d
2470  const double d_final = -f[n_dof - 1] / e_final;
2471  // Assemble the final corrections
2472  for (unsigned n = 0; n < n_dof - 1; n++)
2473  {
2474  result[n] = a[n] - (*Alpha_pt)[n] * d_final;
2475  result[n_dof + n] = f[n] + (*E_pt)[n] * d_final;
2476  }
2477 
2478  result[n_dof - 1] = a[n_dof - 1] - (*Alpha_pt)[n_dof - 1] * d_final;
2479  result[2 * n_dof - 1] = d_final;
2480 
2481  // The sign of the jacobian is the sign of the final entry in e
2482  problem_pt->sign_of_jacobian() =
2483  static_cast<int>(std::fabs(e_final) / e_final);
2484 
2485 
2486  // Switch things to our block solver
2487  handler_pt->solve_full_system();
2488 
2489  // If we are not storing things, clear the results
2490  if (!Enable_resolve)
2491  {
2492  // We no longer need to store the matrix
2494  delete Alpha_pt;
2495  Alpha_pt = 0;
2496  delete E_pt;
2497  E_pt = 0;
2498  }
2499  // Otherwise also store the pointer to the problem
2500  else
2501  {
2502  Problem_pt = problem_pt;
2503  }
2504  }
2505 
2506 
2507  //==============================================================
2508  // Hack the re-solve to use the block factorisation
2509  //==============================================================
2511  DoubleVector& result)
2512  {
2513  std::cout << "Augmented pitchfork resolve" << std::endl;
2514  // Check that the factors have been stored
2515  if (Alpha_pt == 0)
2516  {
2517  throw OomphLibError("The required vectors have not been stored",
2518  OOMPH_CURRENT_FUNCTION,
2519  OOMPH_EXCEPTION_LOCATION);
2520  }
2521 
2522  // Get the pointer to the problem
2523  Problem* const problem_pt = Problem_pt;
2524 
2525  PitchForkHandler* handler_pt =
2526  static_cast<PitchForkHandler*>(problem_pt->assembly_handler_pt());
2527 
2528  // Switch things to our block solver
2529  handler_pt->solve_augmented_block_system();
2530  // We need to find out the number of dofs
2531  unsigned n_dof = problem_pt->ndof();
2532 
2533  // create the linear algebra distribution for this solver
2534  // currently only global (non-distributed) distributions are allowed
2535  LinearAlgebraDistribution dist(problem_pt->communicator_pt(), n_dof, false);
2536  this->build_distribution(dist);
2537 
2538  // if the result vector is not setup then rebuild with distribution = global
2539  if (!result.built())
2540  {
2541  result.build(this->distribution_pt(), 0.0);
2542  }
2543 
2544 
2545  // Setup storage
2546  DoubleVector a(this->distribution_pt(), 0.0),
2547  b(this->distribution_pt(), 0.0);
2548 
2549  // Set the values of the a vector
2550  for (unsigned n = 0; n < n_dof; n++)
2551  {
2552  a[n] = rhs[n];
2553  }
2554 
2556 
2557  // Copy rhs vector into local storage so it doesn't get overwritten
2558  // if the linear solver decides to initialise the solution vector, say,
2559  // which it's quite entitled to do!
2560  DoubleVector input_a(a);
2561 
2562  Linear_solver_pt->resolve(input_a, a);
2563 
2564  // We can now construct our multipliers
2565  // Prepare to scale
2566  double dof_length = 0.0, a_length = 0.0;
2567  for (unsigned n = 0; n < n_dof; n++)
2568  {
2569  if (std::fabs(problem_pt->dof(n)) > dof_length)
2570  {
2571  dof_length = std::fabs(problem_pt->dof(n));
2572  }
2573 
2574  if (std::fabs(a[n]) > a_length)
2575  {
2576  a_length = std::fabs(a[n]);
2577  }
2578  }
2579  double a_mult = dof_length / a_length;
2580  const double FD_step = 1.0e-8;
2581  a_mult += FD_step;
2582  a_mult *= FD_step;
2583 
2584  DoubleVector Jprod_a(this->distribution_pt(), 0.0);
2585 
2586  unsigned long n_element = problem_pt->mesh_pt()->nelement();
2587  for (unsigned long e = 0; e < n_element; e++)
2588  {
2589  GeneralisedElement* elem_pt = problem_pt->mesh_pt()->element_pt(e);
2590  // Loop over the ndofs in each element
2591  unsigned n_var = handler_pt->ndof(elem_pt);
2592  // Get some jacobian matrices
2593  DenseMatrix<double> jac(n_var), jac_a(n_var);
2594  // the elemental residual
2595  Vector<double> res_elemental(n_var);
2596  // Get unperturbed jacobian
2597  handler_pt->get_jacobian(elem_pt, res_elemental, jac);
2598 
2599  // Backup the dofs
2600  DoubleVector dof_bac(this->distribution_pt(), 0.0);
2601  // Perturb the dofs
2602  for (unsigned n = 0; n < n_var; n++)
2603  {
2604  unsigned eqn_number = handler_pt->eqn_number(elem_pt, n);
2605  dof_bac[n] = problem_pt->dof(eqn_number);
2606  // Pertub by vector a
2607  problem_pt->dof(eqn_number) += a_mult * a[eqn_number];
2608  }
2609 
2611 
2612  // Now get the new jacobian
2613  handler_pt->get_jacobian(elem_pt, res_elemental, jac_a);
2614 
2615  // Reset the dofs
2616  for (unsigned n = 0; n < n_var; n++)
2617  {
2618  unsigned eqn_number = handler_pt->eqn_number(elem_pt, n);
2619  problem_pt->dof(eqn_number) = dof_bac[n];
2620  }
2621 
2623 
2624  // OK, now work out the products
2625  for (unsigned n = 0; n < (n_var - 1); n++)
2626  {
2627  unsigned eqn_number = handler_pt->eqn_number(elem_pt, n);
2628  double prod_a = 0.0;
2629  for (unsigned m = 0; m < (n_var - 1); m++)
2630  {
2631  unsigned unknown = handler_pt->eqn_number(elem_pt, m);
2632  prod_a += (jac_a(n, m) - jac(n, m)) * handler_pt->Y[unknown];
2633  }
2634  Jprod_a[eqn_number] += prod_a / a_mult;
2635  }
2636  }
2637 
2638  Jprod_a[n_dof - 1] = 0.0;
2639 
2640  // OK, now we can formulate the next vectors
2641  for (unsigned n = 0; n < n_dof - 1; n++)
2642  {
2643  b[n] = rhs[n_dof + n] - Jprod_a[n];
2644  }
2645  b[n_dof - 1] = rhs[2 * n_dof - 1];
2646 
2647  DoubleVector f(this->distribution_pt(), 0.0);
2648 
2649  Linear_solver_pt->resolve(b, f);
2650 
2651  // Calculate the final entry in the vector d
2652  const double d_final = -f[n_dof - 1] / (*E_pt)[n_dof - 1];
2653  // Assemble the final corrections
2654  for (unsigned n = 0; n < n_dof - 1; n++)
2655  {
2656  result[n] = a[n] - (*Alpha_pt)[n] * d_final;
2657  result[n_dof + n] = f[n] + (*E_pt)[n] * d_final;
2658  }
2659 
2660  result[n_dof - 1] = a[n_dof - 1] - (*Alpha_pt)[n_dof - 1] * d_final;
2661  result[2 * n_dof - 1] = d_final;
2662 
2664 
2665  // Switch things to our block solver
2666  handler_pt->solve_full_system();
2667  }
2668 
2669  /// ////////////////////////////////////////////////////////////////////
2670  // Non-inline functions for the PitchForkHandler class
2671  /// ///////////////////////////////////////////////////////////////////
2672 
2673  //==================================================================
2674  /// Constructor: Initialise the PitchForkHandler by setting intial
2675  /// guesses for Sigma, Y, specifying C and Psi and calculating count.
2676  //==================================================================
2678  Problem* const& problem_pt,
2679  AssemblyHandler* const& assembly_handler_pt,
2680  double* const& parameter_pt,
2681  const DoubleVector& symmetry_vector)
2682  : Solve_which_system(Full_augmented), Sigma(0.0), Parameter_pt(parameter_pt)
2683  {
2684  // Set the problem pointer
2685  Problem_pt = problem_pt;
2686  // Set the assembly handler
2687  Assembly_handler_pt = assembly_handler_pt;
2688  // Set the number of degrees of freedom
2689  Ndof = Problem_pt->ndof();
2690  // Backup the distribution
2692 #ifdef OOMPH_HAS_MPI
2693  // Set the distribution flag
2695 #endif
2696 
2697  // Find the elements in the problem
2698  unsigned n_element = Problem_pt->mesh_pt()->nelement();
2699 
2700 #ifdef OOMPH_HAS_MPI
2701 
2702  // Work out all the global equations to which this processor
2703  // contributes and store the halo data in the problem
2705 
2706 #endif
2707 
2708 
2709  // Now use the dof distribution for all double vectors
2714 #ifdef OOMPH_HAS_MPI
2716 #endif
2717 
2718  // Loop over the elements and count the entries
2719  // and number of (non-halo) elements
2720  unsigned n_non_halo_element_local = 0;
2721  for (unsigned e = 0; e < n_element; e++)
2722  {
2724 #ifdef OOMPH_HAS_MPI
2725  // Ignore halo elements
2726  if (!elem_pt->is_halo())
2727  {
2728 #endif
2729  // Increment the number of non halo elements
2730  ++n_non_halo_element_local;
2731  // Now count the number of times the element contributes to a value
2732  unsigned n_var = assembly_handler_pt->ndof(elem_pt);
2733  for (unsigned n = 0; n < n_var; n++)
2734  {
2735  ++Count.global_value(assembly_handler_pt->eqn_number(elem_pt, n));
2736  }
2737 #ifdef OOMPH_HAS_MPI
2738  }
2739 #endif
2740  }
2741 
2742  // Add together all the counts
2743 #ifdef OOMPH_HAS_MPI
2745 
2746  // If distributed, find the total number of elements in the problem
2747  if (Distributed)
2748  {
2749  // Need to gather the total number of non halo elements
2750  MPI_Allreduce(&n_non_halo_element_local,
2751  &Nelement,
2752  1,
2753  MPI_UNSIGNED,
2754  MPI_SUM,
2755  Problem_pt->communicator_pt()->mpi_comm());
2756  }
2757  // Otherwise the total number is the same on each processor
2758  else
2759 #endif
2760  {
2761  Nelement = n_non_halo_element_local;
2762  }
2763 
2764 #ifdef OOMPH_HAS_MPI
2765  // Only add the parameter to the first processor, if distributed
2766  int my_rank = Problem_pt->communicator_pt()->my_rank();
2767  if ((!Distributed) || (my_rank == 0))
2768 #endif
2769  {
2770  // Add the parameter to the problem
2771  Problem_pt->Dof_pt.push_back(parameter_pt);
2772  }
2773 
2774  // Find length of the symmetry vector
2775  double length = symmetry_vector.norm();
2776 
2777  // Add the unknowns for the null vector to the problem
2778  // Normalise the symmetry vector and initialise the null vector to the
2779  // symmetry vector and set the constant vector, c, to the
2780  // normalised symmetry vector.
2781 
2782  // Need to redistribute the symmetry vector into the (natural)
2783  // distribution of the Dofs
2784 #ifdef OOMPH_HAS_MPI
2785  // Check that the symmetry vector has the correct distribution
2786  if (!(*symmetry_vector.distribution_pt() == *Dof_distribution_pt))
2787  {
2788  throw OomphLibError(
2789  "The symmetry vector must have the same distribution as the dofs\n",
2790  OOMPH_CURRENT_FUNCTION,
2791  OOMPH_EXCEPTION_LOCATION);
2792  }
2793 #endif
2794 
2795  // Only loop over the local unknowns
2796  const unsigned n_dof_local = Dof_distribution_pt->nrow_local();
2797  for (unsigned n = 0; n < n_dof_local; n++)
2798  {
2799  Problem_pt->Dof_pt.push_back(&Y[n]);
2800  // Psi[n] = symmetry_vector[n];
2801  Psi[n] = Y[n] = C[n] = symmetry_vector[n] / length;
2802  }
2803 
2804 
2805 #ifdef OOMPH_HAS_MPI
2806  // Set up the required halo schemes (which also synchronises)
2810 
2811 
2812  if ((!Distributed) || (my_rank == 0))
2813 #endif
2814  // Add the slack parameter to the problem on the first processor
2815  // if distributed
2816  {
2817  Problem_pt->Dof_pt.push_back(&Sigma);
2818  }
2819 
2820 #ifdef OOMPH_HAS_MPI
2821  if (Distributed)
2822  {
2823  unsigned augmented_first_row = 0;
2824  unsigned augmented_n_row_local = 0;
2825 
2826  // Set up the translation scheme on every processor
2827  Global_eqn_number.resize(2 * Ndof + 2);
2828  int n_proc = Problem_pt->communicator_pt()->nproc();
2829  unsigned global_eqn_count = 0;
2830  for (int d = 0; d < n_proc; d++)
2831  {
2832  // Find out the first row of the current processor
2833  if (my_rank == d)
2834  {
2835  augmented_first_row = global_eqn_count;
2836  }
2837 
2838  const unsigned n_row_local = Dof_distribution_pt->nrow_local(d);
2839  const unsigned first_row = Dof_distribution_pt->first_row(d);
2840  // Add the basic equations
2841  for (unsigned n = 0; n < n_row_local; n++)
2842  {
2843  Global_eqn_number[first_row + n] = global_eqn_count;
2844  ++global_eqn_count;
2845  }
2846  // If on the first processor add the pointer to the parameter
2847  if (d == 0)
2848  {
2849  Global_eqn_number[Ndof] = global_eqn_count;
2850  ++global_eqn_count;
2851  }
2852  // Add the eigenfunction
2853  for (unsigned n = 0; n < n_row_local; n++)
2854  {
2855  Global_eqn_number[Ndof + 1 + first_row + n] = global_eqn_count;
2856  ++global_eqn_count;
2857  }
2858  // Finally add the slack parameter
2859  if (d == 0)
2860  {
2861  Global_eqn_number[2 * Ndof + 1] = global_eqn_count;
2862  ++global_eqn_count;
2863  }
2864  // Find out the number of rows of the current processor
2865  if (my_rank == d)
2866  {
2867  augmented_n_row_local = global_eqn_count - augmented_first_row;
2868  }
2869  }
2870 
2871  // Make a new linear algebra distribution
2874  augmented_first_row,
2875  augmented_n_row_local);
2876  }
2877  else
2878 #endif
2879  {
2881  Problem_pt->communicator_pt(), 2 * Ndof + 2, false);
2882  }
2883 
2884  // resize
2885  // Problem_pt->Dof_distribution_pt->build(Problem_pt->communicator_pt(),
2886  // 2*Ndof+2,false);
2887 
2889 
2890  // Remove all previous sparse storage used during Jacobian assembly
2892  }
2893 
2894  //=====================================================================
2895  /// Destructor return the problem to its original (non-augmented) state
2896  //=====================================================================
2898  {
2899  // If we are using the block solver reset the problem's linear solver
2900  // to the original one
2901  BlockPitchForkLinearSolver* block_pitchfork_solver_pt =
2903 
2904  if (block_pitchfork_solver_pt)
2905  {
2906  // Reset the problem's linear solver
2908  block_pitchfork_solver_pt->linear_solver_pt();
2909  // Delete the block solver
2910  delete block_pitchfork_solver_pt;
2911  }
2912 
2913  // If we are using the augmented
2914  // block solver reset the problem's linear solver
2915  // to the original one
2916  AugmentedBlockPitchForkLinearSolver* augmented_block_pitchfork_solver_pt =
2917  dynamic_cast<AugmentedBlockPitchForkLinearSolver*>(
2919 
2920  if (augmented_block_pitchfork_solver_pt)
2921  {
2922  // Reset the problem's linear solver
2924  augmented_block_pitchfork_solver_pt->linear_solver_pt();
2925  // Delete the block solver
2926  delete augmented_block_pitchfork_solver_pt;
2927  }
2928 
2929  // Now return the problem to its original size
2930  Problem_pt->Dof_pt.resize(this->Dof_distribution_pt->nrow_local());
2931 
2932  // Problem_pt->Dof_pt.resize(Ndof);
2933  // Problem_pt->Dof_distribution_pt->build(Problem_pt->communicator_pt(),
2934  // Ndof,false);
2935 
2937  // Remove all previous sparse storage used during Jacobian assembly
2939  }
2940 
2941  //================================================================
2942  /// Get the number of elemental degrees of freedom
2943  //================================================================
2944  unsigned PitchForkHandler::ndof(GeneralisedElement* const& elem_pt)
2945  {
2946  unsigned raw_ndof = elem_pt->ndof();
2947 
2948  // Return different values depending on the type of block decomposition
2949  switch (Solve_which_system)
2950  {
2951  case Full_augmented:
2952  return (2 * raw_ndof + 2);
2953  break;
2954 
2955  case Block_augmented_J:
2956  return (raw_ndof + 1);
2957  break;
2958 
2959  case Block_J:
2960  return raw_ndof;
2961  break;
2962 
2963  default:
2964  std::ostringstream error_stream;
2965  error_stream
2966  << "The Solve_which_system flag can only take values 0, 1, 2"
2967  << " not " << Solve_which_system << "\n";
2968  throw OomphLibError(
2969  error_stream.str(), OOMPH_CURRENT_FUNCTION, OOMPH_EXCEPTION_LOCATION);
2970  }
2971  }
2972 
2973  /// Get the global equation number of the local unknown
2974  unsigned long PitchForkHandler::eqn_number(GeneralisedElement* const& elem_pt,
2975  const unsigned& ieqn_local)
2976  {
2977  // Get the raw value
2978  unsigned raw_ndof = elem_pt->ndof();
2979  unsigned long global_eqn = 0;
2980 
2981  // Which system are we solving
2982  switch (Solve_which_system)
2983  {
2984  // In the block case, it's just the standard numbering
2985  case Block_J:
2986  global_eqn = elem_pt->eqn_number(ieqn_local);
2987  break;
2988 
2989  // Block augmented not done properly yet
2990  case Block_augmented_J:
2991  // Not done the distributed case
2992 #ifdef OOMPH_HAS_MPI
2993  if (Distributed)
2994  {
2995  throw OomphLibError(
2996  "Block Augmented solver not implemented for distributed case\n",
2997  OOMPH_CURRENT_FUNCTION,
2998  OOMPH_EXCEPTION_LOCATION);
2999  }
3000 #endif
3001 
3002  // Full case
3003  case Full_augmented:
3004  // The usual equations
3005  if (ieqn_local < raw_ndof)
3006  {
3007  global_eqn = this->global_eqn_number(elem_pt->eqn_number(ieqn_local));
3008  }
3009  // The bifurcation parameter equation
3010  else if (ieqn_local == raw_ndof)
3011  {
3012  global_eqn = this->global_eqn_number(Ndof);
3013  }
3014  // If we are assembling the full system we also have
3015  // The components of the null vector
3016  else if (ieqn_local < (2 * raw_ndof + 1))
3017  {
3018  global_eqn = this->global_eqn_number(
3019  Ndof + 1 + elem_pt->eqn_number(ieqn_local - 1 - raw_ndof));
3020  }
3021  // The slack parameter
3022  else
3023  {
3024  global_eqn = this->global_eqn_number(2 * Ndof + 1);
3025  }
3026  break;
3027  } // End of switch
3028  return global_eqn;
3029  }
3030 
3031  //==============================================================
3032  /// Get the residuals
3033  //==============================================================
3035  Vector<double>& residuals)
3036  {
3037  // Need to get raw residuals and jacobian
3038  unsigned raw_ndof = elem_pt->ndof();
3039 
3040  // Find out which system we are solving
3041  switch (Solve_which_system)
3042  {
3043  // If we are solving the original system
3044  case Block_J:
3045  {
3046  // get the basic residuals
3047  elem_pt->get_residuals(residuals);
3048  // Now multiply to fill in the residuals for the final term
3049  for (unsigned i = 0; i < raw_ndof; i++)
3050  {
3051  unsigned local_eqn = elem_pt->eqn_number(i);
3052  // Add the slack parameter to the final residuals
3053  residuals[i] +=
3054  Sigma * Psi.global_value(local_eqn) / Count.global_value(local_eqn);
3055  }
3056  }
3057  break;
3058 
3059  // If we are solving the augmented-by-one system
3060  case Block_augmented_J:
3061  {
3062  // Get the basic residuals
3063  elem_pt->get_residuals(residuals);
3064 
3065  // Zero the final residual
3066  residuals[raw_ndof] = 0.0;
3067  // Now multiply to fill in the residuals for the final term
3068  for (unsigned i = 0; i < raw_ndof; i++)
3069  {
3070  unsigned local_eqn = elem_pt->eqn_number(i);
3071  // Add the slack parameter to the final residuals
3072  residuals[i] +=
3073  Sigma * Psi.global_value(local_eqn) / Count.global_value(local_eqn);
3074  // Final term that specifies the symmetry
3075  residuals[raw_ndof] += ((*Problem_pt->global_dof_pt(local_eqn)) *
3076  Psi.global_value(local_eqn)) /
3077  Count.global_value(local_eqn);
3078  }
3079  }
3080  break;
3081 
3082  // Otherwise we are solving the fully augemented system
3083  case Full_augmented:
3084  {
3085  DenseMatrix<double> jacobian(raw_ndof);
3086 
3087  // Get the basic residuals and jacobian
3088  elem_pt->get_jacobian(residuals, jacobian);
3089 
3090  // Initialise the final residuals
3091  residuals[raw_ndof] = 0.0;
3092  residuals[2 * raw_ndof + 1] = -1.0 / Nelement;
3093 
3094  // Now multiply to fill in the residuals associated
3095  // with the null vector condition
3096  for (unsigned i = 0; i < raw_ndof; i++)
3097  {
3098  unsigned local_eqn = elem_pt->eqn_number(i);
3099  residuals[raw_ndof + 1 + i] = 0.0;
3100  for (unsigned j = 0; j < raw_ndof; j++)
3101  {
3102  unsigned local_unknown = elem_pt->eqn_number(j);
3103  residuals[raw_ndof + 1 + i] +=
3104  jacobian(i, j) * Y.global_value(local_unknown);
3105  }
3106 
3107  // Add the slack parameter to the governing equations
3108  residuals[i] +=
3109  Sigma * Psi.global_value(local_eqn) / Count.global_value(local_eqn);
3110 
3111  // Specify the symmetry
3112  residuals[raw_ndof] += ((*Problem_pt->global_dof_pt(local_eqn)) *
3113  Psi.global_value(local_eqn)) /
3114  Count.global_value(local_eqn);
3115  // Specify the normalisation
3116  residuals[2 * raw_ndof + 1] +=
3117  (Y.global_value(local_eqn) * C.global_value(local_eqn)) /
3118  Count.global_value(local_eqn);
3119  }
3120  }
3121  break;
3122 
3123  default:
3124  std::ostringstream error_stream;
3125  error_stream
3126  << "The Solve_which_system flag can only take values 0, 1, 2"
3127  << " not " << Solve_which_system << "\n";
3128  throw OomphLibError(
3129  error_stream.str(), OOMPH_CURRENT_FUNCTION, OOMPH_EXCEPTION_LOCATION);
3130  }
3131  }
3132 
3133  //======================================================================
3134  /// Calculate the elemental Jacobian matrix "d equation
3135  /// / d variable".
3136  //======================================================================
3138  Vector<double>& residuals,
3139  DenseMatrix<double>& jacobian)
3140  {
3141  unsigned augmented_ndof = ndof(elem_pt);
3142  unsigned raw_ndof = elem_pt->ndof();
3143 
3144  // Which system are we solving
3145  switch (Solve_which_system)
3146  {
3147  // If we are solving the original system
3148  case Block_J:
3149  {
3150  // get the raw residuals and jacobian
3151  elem_pt->get_jacobian(residuals, jacobian);
3152 
3153  // Now multiply to fill in the residuals for the final term
3154  for (unsigned i = 0; i < raw_ndof; i++)
3155  {
3156  unsigned local_eqn = elem_pt->eqn_number(i);
3157  // Add the slack parameter to the final residuals
3158  residuals[i] +=
3159  Sigma * Psi.global_value(local_eqn) / Count.global_value(local_eqn);
3160  }
3161  }
3162  break;
3163 
3164  // If we are solving the augmented-by-one system
3165  case Block_augmented_J:
3166  {
3167  // Get the full residuals, we need them
3168  get_residuals(elem_pt, residuals);
3169 
3170  // Need to get the raw jacobian (and raw residuals)
3171  Vector<double> newres(augmented_ndof);
3172  elem_pt->get_jacobian(newres, jacobian);
3173 
3174  // Now do finite differencing stuff
3175  const double FD_step = 1.0e-8;
3176  // Fill in the first lot of finite differences
3177  {
3178  // increase the global parameter
3179  double* unknown_pt = Parameter_pt;
3180  double init = *unknown_pt;
3181  *unknown_pt += FD_step;
3182 
3183  // Not do any possible updates
3185 
3186  // Get the new (modified) residuals
3187  get_residuals(elem_pt, newres);
3188 
3189  // The final column is given by the difference
3190  // between the residuals
3191  for (unsigned n = 0; n < raw_ndof; n++)
3192  {
3193  jacobian(n, augmented_ndof - 1) =
3194  (newres[n] - residuals[n]) / FD_step;
3195  }
3196  // Reset the global parameter
3197  *unknown_pt = init;
3198 
3199  // Now do any possible updates
3201  }
3202 
3203  // Fill in the bottom row
3204  for (unsigned n = 0; n < raw_ndof; n++)
3205  {
3206  unsigned local_eqn = elem_pt->eqn_number(n);
3207  jacobian(augmented_ndof - 1, n) =
3208  Psi.global_value(local_eqn) / Count.global_value(local_eqn);
3209  }
3210  }
3211  break;
3212 
3213  // Otherwise solving the full system
3214  case Full_augmented:
3215  {
3216  /// ALICE:
3218  // Get the basic jacobian and residuals
3219  elem_pt->get_jacobian(residuals, jacobian);
3220  // get the proper residuals
3221  get_residuals(elem_pt, residuals);
3222 
3223  // Now fill in the next diagonal jacobian entry
3224  for (unsigned n = 0; n < raw_ndof; n++)
3225  {
3226  for (unsigned m = 0; m < raw_ndof; m++)
3227  {
3228  jacobian(raw_ndof + 1 + n, raw_ndof + 1 + m) = jacobian(n, m);
3229  }
3230  unsigned local_eqn = elem_pt->eqn_number(n);
3231  // Add in the sigma contribution
3232  jacobian(n, 2 * raw_ndof + 1) =
3233  Psi.global_value(local_eqn) / Count.global_value(local_eqn);
3234  // Symmetry constraint
3235  jacobian(raw_ndof, n) =
3236  Psi.global_value(local_eqn) / Count.global_value(local_eqn);
3237  // Non-zero constraint
3238  jacobian(2 * raw_ndof + 1, raw_ndof + 1 + n) =
3239  C.global_value(local_eqn) / Count.global_value(local_eqn);
3240  }
3241 
3242  // Finite difference the remaining blocks
3243  const double FD_step = 1.0e-8;
3244 
3245  Vector<double> newres_p(augmented_ndof);
3246 
3247  // Loop over the ndofs only
3248  for (unsigned n = 0; n < raw_ndof; ++n)
3249  {
3250  // Get the original (unaugmented) global equation number
3251  unsigned long global_eqn =
3252  Assembly_handler_pt->eqn_number(elem_pt, n);
3253  double* unknown_pt = Problem_pt->global_dof_pt(global_eqn);
3254  double init = *unknown_pt;
3255  *unknown_pt += FD_step;
3257  // Get the new residuals
3258  get_residuals(elem_pt, newres_p);
3259  // Fill in the entries in the block d(Jy)/dx
3260  for (unsigned m = 0; m < raw_ndof; m++)
3261  {
3262  jacobian(raw_ndof + 1 + m, n) =
3263  (newres_p[raw_ndof + 1 + m] - residuals[raw_ndof + 1 + m]) /
3264  (FD_step);
3265  }
3266 
3267  // Reset the unknown
3268  *unknown_pt = init;
3270  }
3271 
3272  {
3273  // Now increase the global parameter
3274  double* unknown_pt = Parameter_pt;
3275  double init = *unknown_pt;
3276  *unknown_pt += FD_step;
3277 
3279  // Get the new residuals
3280  get_residuals(elem_pt, newres_p);
3281 
3282  // Add in the first block d/dx
3283  for (unsigned m = 0; m < raw_ndof; m++)
3284  {
3285  jacobian(m, raw_ndof) = (newres_p[m] - residuals[m]) / FD_step;
3286  }
3287  // Add in the second block d/dy
3288  for (unsigned m = raw_ndof + 1; m < augmented_ndof - 1; m++)
3289  {
3290  jacobian(m, raw_ndof) = (newres_p[m] - residuals[m]) / FD_step;
3291  }
3292 
3293  // Reset the unknown
3294  *unknown_pt = init;
3296  }
3297  }
3298  break;
3299 
3300  default:
3301  std::ostringstream error_stream;
3302  error_stream
3303  << "The Solve_which_system flag can only take values 0, 1, 2"
3304  << " not " << Solve_which_system << "\n";
3305  throw OomphLibError(
3306  error_stream.str(), OOMPH_CURRENT_FUNCTION, OOMPH_EXCEPTION_LOCATION);
3307  }
3308  /// ALICE
3310  }
3311 
3312 
3313  //==============================================================
3314  /// Get the derivatives of the residuals with respect to a parameter
3315  //==============================================================
3317  GeneralisedElement* const& elem_pt,
3318  double* const& parameter_pt,
3319  Vector<double>& dres_dparam)
3320  {
3321  // Need to get raw residuals and jacobian
3322  unsigned raw_ndof = elem_pt->ndof();
3324  // Find out which system we are solving
3325  switch (Solve_which_system)
3326  {
3327  // If we are solving the original system
3328  case Block_J:
3329  {
3330  // get the basic residual derivatives
3331  elem_pt->get_dresiduals_dparameter(parameter_pt, dres_dparam);
3332  // Slack parameter term does not depened explicitly on the parameter
3333  // so is not added
3334  }
3335  break;
3336 
3337  // If we are solving the augmented-by-one system
3338  case Block_augmented_J:
3339  {
3340  // Get the basic residual derivatives
3341  elem_pt->get_dresiduals_dparameter(parameter_pt, dres_dparam);
3342 
3343  // Zero the final residuals derivative
3344  dres_dparam[raw_ndof] = 0.0;
3345 
3346  // Other terms must not depend on the parameter
3347  }
3348  break;
3349 
3350  // Otherwise we are solving the fully augemented system
3351  case Full_augmented:
3352  {
3353  DenseMatrix<double> djac_dparam(raw_ndof);
3354 
3355  // Get the basic residuals and jacobian derivatives
3356  elem_pt->get_djacobian_dparameter(
3357  parameter_pt, dres_dparam, djac_dparam);
3358 
3359  // The "final" residual derivatives do not depend on the parameter
3360  dres_dparam[raw_ndof] = 0.0;
3361  dres_dparam[2 * raw_ndof + 1] = 0.0;
3362 
3363  // Now multiply to fill in the residuals associated
3364  // with the null vector condition
3365  for (unsigned i = 0; i < raw_ndof; i++)
3366  {
3367  dres_dparam[raw_ndof + 1 + i] = 0.0;
3368  for (unsigned j = 0; j < raw_ndof; j++)
3369  {
3370  unsigned local_unknown = elem_pt->eqn_number(j);
3371  dres_dparam[raw_ndof + 1 + i] +=
3372  djac_dparam(i, j) * Y.global_value(local_unknown);
3373  }
3374  }
3375  }
3376  break;
3377 
3378  default:
3379  std::ostringstream error_stream;
3380  error_stream
3381  << "The Solve_which_system flag can only take values 0, 1, 2"
3382  << " not " << Solve_which_system << "\n";
3383  throw OomphLibError(
3384  error_stream.str(), OOMPH_CURRENT_FUNCTION, OOMPH_EXCEPTION_LOCATION);
3385  }
3386  }
3387 
3388 
3389  //========================================================================
3390  /// Overload the derivative of the residuals and jacobian
3391  /// with respect to a parameter so that it breaks because it should not
3392  /// be required
3393  //========================================================================
3395  GeneralisedElement* const& elem_pt,
3396  double* const& parameter_pt,
3397  Vector<double>& dres_dparam,
3398  DenseMatrix<double>& djac_dparam)
3399  {
3400  std::ostringstream error_stream;
3401  error_stream
3402  << "This function has not been implemented because it is not required\n";
3403  error_stream << "in standard problems.\n";
3404  error_stream
3405  << "If you find that you need it, you will have to implement it!\n\n";
3406 
3407  throw OomphLibError(
3408  error_stream.str(), OOMPH_CURRENT_FUNCTION, OOMPH_EXCEPTION_LOCATION);
3409  }
3410 
3411 
3412  //=====================================================================
3413  /// Overload the hessian vector product function so that
3414  /// it calls the underlying element's hessian function.
3415  //========================================================================
3417  GeneralisedElement* const& elem_pt,
3418  Vector<double> const& Y,
3419  DenseMatrix<double> const& C,
3420  DenseMatrix<double>& product)
3421  {
3422  elem_pt->get_hessian_vector_products(Y, C, product);
3423  }
3424 
3425 
3426  //==========================================================================
3427  /// Return the eigenfunction(s) associated with the bifurcation that
3428  /// has been detected in bifurcation tracking problems
3429  //==========================================================================
3431  {
3432  // There is only one (real) null vector
3433  eigenfunction.resize(1);
3434  // Rebuild the vector
3435  eigenfunction[0].build(this->Dof_distribution_pt, 0.0);
3436  // Set the value to be the null vector
3437  const unsigned n_row_local = eigenfunction[0].nrow_local();
3438  for (unsigned n = 0; n < n_row_local; n++)
3439  {
3440  eigenfunction[0][n] = Y[n];
3441  }
3442  }
3443 
3444 #ifdef OOMPH_HAS_MPI
3445  //=====================================================================
3446  // Synchronise the required data
3447  //====================================================================
3449  {
3450  // Only need to bother if the problem is distributed
3451  if (Distributed)
3452  {
3453  // Need only to synchronise the eigenfunction
3454  Y.synchronise();
3455  // Also need to synchronise the parameter and the slack parameter
3456  double broadcast_data[2];
3457  broadcast_data[0] = *Parameter_pt;
3458  broadcast_data[1] = Sigma;
3459  // Broadcast from the root to all processors
3460  MPI_Bcast(broadcast_data,
3461  2,
3462  MPI_DOUBLE,
3463  0,
3464  Problem_pt->communicator_pt()->mpi_comm());
3465 
3466  // Now copy received the values back
3467  *Parameter_pt = broadcast_data[0];
3468  Sigma = broadcast_data[1];
3469  }
3470  }
3471 #endif
3472 
3473  //====================================================================
3474  /// Set to solve the augmented-by-one block system.
3475  //===================================================================
3477  {
3478  // Only bother to do anything if we haven't already set the flag
3480  {
3481  // If we were solving the system with the original jacobian add the
3482  // parameter back
3483  if (Solve_which_system == Block_J)
3484  {
3485  Problem_pt->Dof_pt.push_back(Parameter_pt);
3486  }
3487 
3488  // Restrict the problem to the standard variables and
3489  // the bifurcation parameter only
3491  Problem_pt->communicator_pt(), Ndof + 1, false);
3492  Problem_pt->Dof_pt.resize(Ndof + 1);
3493 
3494  // Problem_pt->Dof_pt.resize(Ndof+1);
3495  // Problem_pt->Dof_distribution_pt->build(Problem_pt->communicator_pt(),
3496  // Ndof+1,false);
3497 
3498  // Remove all previous sparse storage used during Jacobian assembly
3500 
3501  // Set the solve flag
3503  }
3504  }
3505 
3506 
3507  //==============================================================
3508  /// Set to solve the block system. The boolean flag is used
3509  /// to specify whether the block decomposition should use exactly
3510  /// the same jacobian as the original system.
3511  //==============================================================
3513  {
3514  // Only bother to do anything if we haven't already set the flag
3515  if (Solve_which_system != Block_J)
3516  {
3517  // Restrict the problem to the standard variables
3518  Problem_pt->Dof_pt.resize(this->Dof_distribution_pt->nrow_local());
3520 
3521  // Problem_pt->Dof_distribution_pt->build(Problem_pt->communicator_pt(),
3522  // Ndof,false);
3523 
3524  // Remove all previous sparse storage used during Jacobian assembly
3526 
3527  // Set the solve flag
3529  }
3530  }
3531 
3532  //==============================================================
3533  /// Solve non-block system
3534  //==============================================================
3536  {
3537  // Only do something if we are not solving the full system
3539  {
3540 #ifdef OOMPH_HAS_MPI
3541  int my_rank = Problem_pt->communicator_pt()->my_rank();
3542 #endif
3543  // If we were solving the problem without any augementation
3544  // add the parameter again
3545  if (Solve_which_system == Block_J)
3546  {
3547 #ifdef OOMPH_HAS_MPI
3548 
3549  if ((!Distributed) || (my_rank == 0))
3550 #endif
3551  {
3552  Problem_pt->Dof_pt.push_back(Parameter_pt);
3553  }
3554  }
3555 
3556  // Always add the additional unknowns back into the problem
3557  const unsigned n_dof_local = Dof_distribution_pt->nrow_local();
3558  for (unsigned n = 0; n < n_dof_local; n++)
3559  {
3560  Problem_pt->Dof_pt.push_back(&Y[n]);
3561  }
3562 
3563 
3564 #ifdef OOMPH_HAS_MPI
3565  if ((!Distributed) || (my_rank == 0))
3566 #endif
3567  // Add the slack parameter to the problem on the first processor
3568  // if distributed
3569  {
3570  Problem_pt->Dof_pt.push_back(&Sigma);
3571  }
3572 
3573 
3574  // Delete the distribtion created in the augmented block solve
3575  if (Problem_pt->Dof_distribution_pt != this->Dof_distribution_pt)
3576  {
3578  }
3579 
3580  // update the Dof distribution
3582  // Problem_pt->Dof_distribution_pt->build(Problem_pt->communicator_pt(),
3583  // Ndof*2+2,false);
3584  // Remove all previous sparse storage used during Jacobian assembly
3586 
3587  // Set the solve flag
3589  }
3590  }
3591 
3592 
3593  /// ////////////////////////////////////////////////////////////////////
3594  // Non-inline functions for the BlockHopfLinearSolver class
3595  /// ///////////////////////////////////////////////////////////////////
3596 
3597 
3598  //======================================================================
3599  /// Clean up the memory that may have been allocated by the solver
3600  //=====================================================================
3602  {
3603  if (A_pt != 0)
3604  {
3605  delete A_pt;
3606  }
3607  if (E_pt != 0)
3608  {
3609  delete E_pt;
3610  }
3611  if (G_pt != 0)
3612  {
3613  delete G_pt;
3614  }
3615  }
3616 
3617  //===================================================================
3618  /// Use a block factorisation to solve the augmented system
3619  /// associated with a Hopf bifurcation.
3620  //===================================================================
3621  void BlockHopfLinearSolver::solve(Problem* const& problem_pt,
3622  DoubleVector& result)
3623  {
3624  // if the result is setup then it should not be distributed
3625 #ifdef PARANOID
3626  if (result.built())
3627  {
3628  if (result.distributed())
3629  {
3630  throw OomphLibError("The result vector must not be distributed",
3631  OOMPH_CURRENT_FUNCTION,
3632  OOMPH_EXCEPTION_LOCATION);
3633  }
3634  }
3635 #endif
3636 
3637  // Locally cache the pointer to the handler.
3638  HopfHandler* handler_pt =
3639  static_cast<HopfHandler*>(problem_pt->assembly_handler_pt());
3640 
3641  // Find the number of dofs in the augmented problem
3642  unsigned n_dof = problem_pt->ndof();
3643 
3644  // create the linear algebra distribution for this solver
3645  // currently only global (non-distributed) distributions are allowed
3646  LinearAlgebraDistribution dist(problem_pt->communicator_pt(), n_dof, false);
3647  this->build_distribution(dist);
3648 
3649  // Firstly, let's calculate the derivative of the residuals wrt
3650  // the parameter
3651  DoubleVector dRdparam(this->distribution_pt(), 0.0);
3652 
3653  const double FD_step = 1.0e-8;
3654  {
3655  // Cache pointer to the parameter (second last entry in the vector
3656  double* param_pt = &problem_pt->dof(n_dof - 2);
3657  // Backup the parameter
3658  double old_var = *param_pt;
3659  ;
3660  // Increment the parameter
3661  *param_pt += FD_step;
3663 
3664  // Now calculate the new residuals
3665  problem_pt->get_residuals(dRdparam);
3666 
3667  // Now calculate the difference assume original residuals in resul
3668  for (unsigned n = 0; n < n_dof; n++)
3669  {
3670  dRdparam[n] = (dRdparam[n] - result[n]) / FD_step;
3671  }
3672 
3673  // Reset the parameter
3674  *param_pt = old_var;
3676  }
3677 
3678  // Switch the handler to "standard" mode
3679  handler_pt->solve_standard_system();
3680 
3681  // Find out the number of dofs in the non-standard problem
3682  n_dof = problem_pt->ndof();
3683 
3684  // update the distribution pt
3685  dist.build(problem_pt->communicator_pt(), n_dof, false);
3686  this->build_distribution(dist);
3687 
3688  // Setup storage for temporary vector
3689  DoubleVector y1(this->distribution_pt(), 0.0),
3690  alpha(this->distribution_pt(), 0.0);
3691 
3692  // Allocate storage for A which can be used in the resolve
3693  if (A_pt != 0)
3694  {
3695  delete A_pt;
3696  }
3697  A_pt = new DoubleVector(this->distribution_pt(), 0.0);
3698 
3699  // We are going to do resolves using the underlying linear solver
3701 
3702  // Solve the first system Jy1 = R
3703  Linear_solver_pt->solve(problem_pt, y1);
3704 
3705  // This should have set the sign of the jacobian, store it
3706  int sign_of_jacobian = problem_pt->sign_of_jacobian();
3707 
3708  // Now let's get the appropriate bit of alpha
3709  for (unsigned n = 0; n < n_dof; n++)
3710  {
3711  alpha[n] = dRdparam[n];
3712  }
3713 
3714  // Resolve to find A
3715  Linear_solver_pt->resolve(alpha, *A_pt);
3716 
3717  // Now set to the complex system
3718  handler_pt->solve_complex_system();
3719 
3720  // update the distribution
3721  dist.build(problem_pt->communicator_pt(), n_dof * 2, false);
3722  this->build_distribution(dist);
3723 
3724  // Resize the stored vector G
3725  if (G_pt != 0)
3726  {
3727  delete G_pt;
3728  }
3729  G_pt = new DoubleVector(this->distribution_pt(), 0.0);
3730 
3731  // Solve the first Zg = (Mz -My)
3732  Linear_solver_pt->solve(problem_pt, *G_pt);
3733 
3734  // This should have set the sign of the complex matrix's determinant,
3735  // multiply
3736  sign_of_jacobian *= problem_pt->sign_of_jacobian();
3737 
3738  // We can now construct our multipliers
3739  // Prepare to scale
3740  double dof_length = 0.0, a_length = 0.0, y1_length = 0.0;
3741  // Loop over the standard number of dofs
3742  for (unsigned n = 0; n < n_dof; n++)
3743  {
3744  if (std::fabs(problem_pt->dof(n)) > dof_length)
3745  {
3746  dof_length = std::fabs(problem_pt->dof(n));
3747  }
3748  if (std::fabs((*A_pt)[n]) > a_length)
3749  {
3750  a_length = std::fabs((*A_pt)[n]);
3751  }
3752  if (std::fabs(y1[n]) > y1_length)
3753  {
3754  y1_length = std::fabs(y1[n]);
3755  }
3756  }
3757 
3758  double a_mult = dof_length / a_length;
3759  double y1_mult = dof_length / y1_length;
3760  a_mult += FD_step;
3761  y1_mult += FD_step;
3762  a_mult *= FD_step;
3763  y1_mult *= FD_step;
3764 
3765  // Local storage for the product terms
3766  Vector<double> Jprod_a(2 * n_dof, 0.0), Jprod_y1(2 * n_dof, 0.0);
3767 
3768  // Temporary storage
3769  Vector<double> rhs(2 * n_dof);
3770 
3771  // find the number of elements
3772  unsigned long n_element = problem_pt->mesh_pt()->nelement();
3773 
3774  // Calculate the product of the jacobian matrices, etc
3775  for (unsigned long e = 0; e < n_element; e++)
3776  {
3777  GeneralisedElement* elem_pt = problem_pt->mesh_pt()->element_pt(e);
3778  // Loop over the ndofs in each element
3779  unsigned n_var = elem_pt->ndof();
3780  // Get the jacobian matrices
3781  DenseMatrix<double> jac(n_var), jac_a(n_var), jac_y1(n_var);
3782  DenseMatrix<double> M(n_var), M_a(n_var), M_y1(n_var);
3783  // Get unperturbed jacobian
3784  elem_pt->get_jacobian_and_mass_matrix(rhs, jac, M);
3785 
3786  // Backup the dofs
3787  Vector<double> dof_bac(n_var);
3788  // Perturb the original dofs
3789  for (unsigned n = 0; n < n_var; n++)
3790  {
3791  unsigned eqn_number = elem_pt->eqn_number(n);
3792  dof_bac[n] = problem_pt->dof(eqn_number);
3793  // Pertub by vector A
3794  problem_pt->dof(eqn_number) += a_mult * (*A_pt)[eqn_number];
3795  }
3796 
3797  // Now get the new jacobian and mass matrix
3798  elem_pt->get_jacobian_and_mass_matrix(rhs, jac_a, M_a);
3799 
3800  // Perturb the dofs
3801  for (unsigned n = 0; n < n_var; n++)
3802  {
3803  unsigned eqn_number = elem_pt->eqn_number(n);
3804  problem_pt->dof(eqn_number) = dof_bac[n];
3805  // Pertub by vector y1
3806  problem_pt->dof(eqn_number) += y1_mult * y1[eqn_number];
3807  }
3808 
3809  // Now get the new jacobian and mass matrix
3810  elem_pt->get_jacobian_and_mass_matrix(rhs, jac_y1, M_y1);
3811 
3812  // Reset the dofs
3813  for (unsigned n = 0; n < n_var; n++)
3814  {
3815  unsigned eqn_number = elem_pt->eqn_number(n);
3816  problem_pt->dof(eqn_number) = dof_bac[n];
3817  }
3818 
3819  // OK, now work out the products
3820  for (unsigned n = 0; n < n_var; n++)
3821  {
3822  unsigned eqn_number = elem_pt->eqn_number(n);
3823  double prod_a1 = 0.0, prod_y11 = 0.0;
3824  double prod_a2 = 0.0, prod_y12 = 0.0;
3825  for (unsigned m = 0; m < n_var; m++)
3826  {
3827  const unsigned unknown = elem_pt->eqn_number(m);
3828  const double y = handler_pt->Phi[unknown];
3829  const double z = handler_pt->Psi[unknown];
3830  const double omega = handler_pt->Omega;
3831  // Real part (first line)
3832  prod_a1 +=
3833  (jac_a(n, m) - jac(n, m)) * y + omega * (M_a(n, m) - M(n, m)) * z;
3834  prod_y11 +=
3835  (jac_y1(n, m) - jac(n, m)) * y + omega * (M_y1(n, m) - M(n, m)) * z;
3836  // Imag par (second line)
3837  prod_a2 +=
3838  (jac_a(n, m) - jac(n, m)) * z - omega * (M_a(n, m) - M(n, m)) * y;
3839  prod_y12 +=
3840  (jac_y1(n, m) - jac(n, m)) * z - omega * (M_y1(n, m) - M(n, m)) * y;
3841  }
3842  Jprod_a[eqn_number] += prod_a1 / a_mult;
3843  Jprod_y1[eqn_number] += prod_y11 / y1_mult;
3844  Jprod_a[n_dof + eqn_number] += prod_a2 / a_mult;
3845  Jprod_y1[n_dof + eqn_number] += prod_y12 / y1_mult;
3846  }
3847  }
3848 
3849  // The assumption here is still that the result has been set to the
3850  // residuals.
3851  for (unsigned n = 0; n < 2 * n_dof; n++)
3852  {
3853  rhs[n] = result[n_dof + n] - Jprod_y1[n];
3854  }
3855 
3856  // Temporary storage
3857  DoubleVector y2(this->distribution_pt(), 0.0);
3858 
3859  // DoubleVector for rhs
3860  DoubleVector rhs2(this->distribution_pt(), 0.0);
3861  for (unsigned i = 0; i < 2 * n_dof; i++)
3862  {
3863  rhs2[i] = rhs[i];
3864  }
3865 
3866  // Solve it
3867  Linear_solver_pt->resolve(rhs2, y2);
3868 
3869  // Assemble the next RHS
3870  for (unsigned n = 0; n < 2 * n_dof; n++)
3871  {
3872  rhs[n] = dRdparam[n_dof + n] - Jprod_a[n];
3873  }
3874 
3875  // Resive the storage
3876  if (E_pt != 0)
3877  {
3878  delete E_pt;
3879  }
3880  E_pt = new DoubleVector(this->distribution_pt(), 0.0);
3881 
3882  // Solve for the next RHS
3883  for (unsigned i = 0; i < 2 * n_dof; i++)
3884  {
3885  rhs2[i] = rhs[i];
3886  }
3887  Linear_solver_pt->resolve(rhs2, *E_pt);
3888 
3889  // We can now calculate the final corrections
3890  // We need to work out a large number of dot products
3891  double dot_c = 0.0, dot_d = 0.0, dot_e = 0.0, dot_f = 0.0, dot_g = 0.0;
3892  double dot_h = 0.0;
3893 
3894  for (unsigned n = 0; n < n_dof; n++)
3895  {
3896  // Get the appopriate entry
3897  const double Cn = handler_pt->C[n];
3898  dot_c += Cn * y2[n];
3899  dot_d += Cn * y2[n_dof + n];
3900  dot_e += Cn * (*E_pt)[n];
3901  dot_f += Cn * (*E_pt)[n_dof + n];
3902  dot_g += Cn * (*G_pt)[n];
3903  dot_h += Cn * (*G_pt)[n_dof + n];
3904  }
3905 
3906  // Now we should be able to work out the corrections
3907  double denom = dot_e * dot_h - dot_g * dot_f;
3908 
3909  // Copy the previous residuals
3910  double R31 = result[3 * n_dof], R32 = result[3 * n_dof + 1];
3911  // Delta parameter
3912  const double delta_param =
3913  ((R32 - dot_d) * dot_g - (R31 - dot_c) * dot_h) / denom;
3914  // Delta frequency
3915  const double delta_w = -((R32 - dot_d) + dot_f * delta_param) / (dot_h);
3916 
3917  // Load into the result vector
3918  result[3 * n_dof] = delta_param;
3919  result[3 * n_dof + 1] = delta_w;
3920 
3921  // The corrections to the null vector
3922  for (unsigned n = 0; n < 2 * n_dof; n++)
3923  {
3924  result[n_dof + n] =
3925  y2[n] - (*E_pt)[n] * delta_param - (*G_pt)[n] * delta_w;
3926  }
3927 
3928  // Finally add the corrections to the unknowns
3929  for (unsigned n = 0; n < n_dof; n++)
3930  {
3931  result[n] = y1[n] - (*A_pt)[n] * delta_param;
3932  }
3933 
3934  // The sign of the jacobian is the previous signs multiplied by the
3935  // sign of the denominator
3936  problem_pt->sign_of_jacobian() =
3937  sign_of_jacobian * static_cast<int>(std::fabs(denom) / denom);
3938 
3939  // Switch things to our full solver
3940  handler_pt->solve_full_system();
3941 
3942  // If we are not storing things, clear the results
3943  if (!Enable_resolve)
3944  {
3945  // We no longer need to store the matrix
3947  delete A_pt;
3948  A_pt = 0;
3949  delete E_pt;
3950  E_pt = 0;
3951  delete G_pt;
3952  G_pt = 0;
3953  }
3954  // Otherwise, also store the problem pointer
3955  else
3956  {
3957  Problem_pt = problem_pt;
3958  }
3959  }
3960 
3961  //=====================================================================
3962  /// Solve for two right hand sides, required for (efficient) continuation
3963  /// because otherwise we have to store the inverse of the jacobian
3964  /// and the complex equivalent ... nasty.
3965  //=====================================================================
3967  DoubleVector& result,
3968  const DoubleVector& rhs2,
3969  DoubleVector& result2)
3970  {
3971  // if the result is setup then it should not be distributed
3972 #ifdef PARANOID
3973  if (result.built())
3974  {
3975  if (result.distributed())
3976  {
3977  throw OomphLibError("The result vector must not be distributed",
3978  OOMPH_CURRENT_FUNCTION,
3979  OOMPH_EXCEPTION_LOCATION);
3980  }
3981  }
3982  if (result2.built())
3983  {
3984  if (result2.distributed())
3985  {
3986  throw OomphLibError("The result2 vector must not be distributed",
3987  OOMPH_CURRENT_FUNCTION,
3988  OOMPH_EXCEPTION_LOCATION);
3989  }
3990  }
3991 #endif
3992 
3993  // Locally cache the pointer to the handler.
3994  HopfHandler* handler_pt =
3995  static_cast<HopfHandler*>(problem_pt->assembly_handler_pt());
3996 
3997  // Find the number of dofs in the augmented problem
3998  unsigned n_dof = problem_pt->ndof();
3999 
4000  // create the linear algebra distribution for this solver
4001  // currently only global (non-distributed) distributions are allowed
4002  LinearAlgebraDistribution dist(problem_pt->communicator_pt(), n_dof, false);
4003  this->build_distribution(dist);
4004 
4005  // if the result vector is not setup then rebuild with distribution = global
4006  if (!result.built())
4007  {
4008  result.build(this->distribution_pt(), 0.0);
4009  }
4010  if (!result2.built())
4011  {
4012  result2.build(this->distribution_pt(), 0.0);
4013  }
4014 
4015  // Firstly, let's calculate the derivative of the residuals wrt
4016  // the parameter
4017  DoubleVector dRdparam(this->distribution_pt(), 0.0);
4018 
4019  const double FD_step = 1.0e-8;
4020  {
4021  // Cache pointer to the parameter (second last entry in the vector
4022  double* param_pt = &problem_pt->dof(n_dof - 2);
4023  // Backup the parameter
4024  double old_var = *param_pt;
4025  ;
4026  // Increment the parameter
4027  *param_pt += FD_step;
4029 
4030  // Now calculate the new residuals
4031  problem_pt->get_residuals(dRdparam);
4032 
4033  // Now calculate the difference assume original residuals in resul
4034  for (unsigned n = 0; n < n_dof; n++)
4035  {
4036  dRdparam[n] = (dRdparam[n] - result[n]) / FD_step;
4037  }
4038 
4039  // Reset the parameter
4040  *param_pt = old_var;
4042  }
4043 
4044  // Switch the handler to "standard" mode
4045  handler_pt->solve_standard_system();
4046 
4047  // Find out the number of dofs in the non-standard problem
4048  n_dof = problem_pt->ndof();
4049 
4050  //
4051  dist.build(problem_pt->communicator_pt(), n_dof, false);
4052  this->build_distribution(dist);
4053 
4054  // Setup storage for temporary vector
4055  DoubleVector y1(this->distribution_pt(), 0.0),
4056  alpha(this->distribution_pt(), 0.0),
4057  y1_resolve(this->distribution_pt(), 0.0);
4058 
4059  // Allocate storage for A which can be used in the resolve
4060  if (A_pt != 0)
4061  {
4062  delete A_pt;
4063  }
4064  A_pt = new DoubleVector(this->distribution_pt(), 0.0);
4065 
4066  // We are going to do resolves using the underlying linear solver
4068 
4069  // Solve the first system Jy1 =
4070  Linear_solver_pt->solve(problem_pt, y1);
4071 
4072  // This should have set the sign of the jacobian, store it
4073  int sign_of_jacobian = problem_pt->sign_of_jacobian();
4074 
4075  // Now let's get the appropriate bit of alpha
4076  for (unsigned n = 0; n < n_dof; n++)
4077  {
4078  alpha[n] = dRdparam[n];
4079  }
4080 
4081  // Resolve to find A
4082  Linear_solver_pt->resolve(alpha, *A_pt);
4083 
4084  // Get the solution for the second rhs
4085  for (unsigned n = 0; n < n_dof; n++)
4086  {
4087  alpha[n] = rhs2[n];
4088  }
4089 
4090  // Resolve to find y1_resolve
4091  Linear_solver_pt->resolve(alpha, y1_resolve);
4092 
4093  // Now set to the complex system
4094  handler_pt->solve_complex_system();
4095 
4096  // rebuild the Distribution
4097  dist.build(problem_pt->communicator_pt(), n_dof * 2, false);
4098  this->build_distribution(dist);
4099 
4100  // Resize the stored vector G
4101  if (G_pt != 0)
4102  {
4103  delete G_pt;
4104  }
4105  G_pt = new DoubleVector(this->distribution_pt(), 0.0);
4106 
4107  // Solve the first Zg = (Mz -My)
4108  Linear_solver_pt->solve(problem_pt, *G_pt);
4109 
4110  // This should have set the sign of the complex matrix's determinant,
4111  // multiply
4112  sign_of_jacobian *= problem_pt->sign_of_jacobian();
4113 
4114  // We can now construct our multipliers
4115  // Prepare to scale
4116  double dof_length = 0.0, a_length = 0.0, y1_length = 0.0,
4117  y1_resolve_length = 0.0;
4118  // Loop over the standard number of dofs
4119  for (unsigned n = 0; n < n_dof; n++)
4120  {
4121  if (std::fabs(problem_pt->dof(n)) > dof_length)
4122  {
4123  dof_length = std::fabs(problem_pt->dof(n));
4124  }
4125  if (std::fabs((*A_pt)[n]) > a_length)
4126  {
4127  a_length = std::fabs((*A_pt)[n]);
4128  }
4129  if (std::fabs(y1[n]) > y1_length)
4130  {
4131  y1_length = std::fabs(y1[n]);
4132  }
4133  if (std::fabs(y1_resolve[n]) > y1_resolve_length)
4134  {
4135  y1_resolve_length = std::fabs(y1[n]);
4136  }
4137  }
4138 
4139 
4140  double a_mult = dof_length / a_length;
4141  double y1_mult = dof_length / y1_length;
4142  double y1_resolve_mult = dof_length / y1_resolve_length;
4143  a_mult += FD_step;
4144  y1_mult += FD_step;
4145  y1_resolve_mult += FD_step;
4146  a_mult *= FD_step;
4147  y1_mult *= FD_step;
4148  y1_resolve_mult *= FD_step;
4149 
4150  // Local storage for the product terms
4151  Vector<double> Jprod_a(2 * n_dof, 0.0), Jprod_y1(2 * n_dof, 0.0);
4152  Vector<double> Jprod_y1_resolve(2 * n_dof, 0.0);
4153 
4154  // Temporary storage
4155  Vector<double> rhs(2 * n_dof);
4156 
4157  // find the number of elements
4158  unsigned long n_element = problem_pt->mesh_pt()->nelement();
4159 
4160  // Calculate the product of the jacobian matrices, etc
4161  for (unsigned long e = 0; e < n_element; e++)
4162  {
4163  GeneralisedElement* elem_pt = problem_pt->mesh_pt()->element_pt(e);
4164  // Loop over the ndofs in each element
4165  unsigned n_var = elem_pt->ndof();
4166  // Get the jacobian matrices
4167  DenseMatrix<double> jac(n_var), jac_a(n_var), jac_y1(n_var),
4168  jac_y1_resolve(n_var);
4169  DenseMatrix<double> M(n_var), M_a(n_var), M_y1(n_var),
4170  M_y1_resolve(n_var);
4171  // Get unperturbed jacobian
4172  elem_pt->get_jacobian_and_mass_matrix(rhs, jac, M);
4173 
4174  // Backup the dofs
4175  Vector<double> dof_bac(n_var);
4176  // Perturb the original dofs
4177  for (unsigned n = 0; n < n_var; n++)
4178  {
4179  unsigned eqn_number = elem_pt->eqn_number(n);
4180  dof_bac[n] = problem_pt->dof(eqn_number);
4181  // Pertub by vector A
4182  problem_pt->dof(eqn_number) += a_mult * (*A_pt)[eqn_number];
4183  }
4184 
4185  // Now get the new jacobian and mass matrix
4186  elem_pt->get_jacobian_and_mass_matrix(rhs, jac_a, M_a);
4187 
4188  // Perturb the dofs
4189  for (unsigned n = 0; n < n_var; n++)
4190  {
4191  unsigned eqn_number = elem_pt->eqn_number(n);
4192  problem_pt->dof(eqn_number) = dof_bac[n];
4193  // Pertub by vector y1
4194  problem_pt->dof(eqn_number) += y1_mult * y1[eqn_number];
4195  }
4196 
4197  // Now get the new jacobian and mass matrix
4198  elem_pt->get_jacobian_and_mass_matrix(rhs, jac_y1, M_y1);
4199 
4200  // Perturb the dofs
4201  for (unsigned n = 0; n < n_var; n++)
4202  {
4203  unsigned eqn_number = elem_pt->eqn_number(n);
4204  problem_pt->dof(eqn_number) = dof_bac[n];
4205  // Pertub by vector y1
4206  problem_pt->dof(eqn_number) += y1_resolve_mult * y1_resolve[eqn_number];
4207  }
4208 
4209  // Now get the new jacobian and mass matrix
4210  elem_pt->get_jacobian_and_mass_matrix(rhs, jac_y1_resolve, M_y1_resolve);
4211 
4212  // Reset the dofs
4213  for (unsigned n = 0; n < n_var; n++)
4214  {
4215  unsigned eqn_number = elem_pt->eqn_number(n);
4216  problem_pt->dof(eqn_number) = dof_bac[n];
4217  }
4218 
4219  // OK, now work out the products
4220  for (unsigned n = 0; n < n_var; n++)
4221  {
4222  unsigned eqn_number = elem_pt->eqn_number(n);
4223  double prod_a1 = 0.0, prod_y11 = 0.0, prod_y1_resolve1 = 0.0;
4224  double prod_a2 = 0.0, prod_y12 = 0.0, prod_y1_resolve2 = 0.0;
4225  for (unsigned m = 0; m < n_var; m++)
4226  {
4227  const unsigned unknown = elem_pt->eqn_number(m);
4228  const double y = handler_pt->Phi[unknown];
4229  const double z = handler_pt->Psi[unknown];
4230  const double omega = handler_pt->Omega;
4231  // Real part (first line)
4232  prod_a1 +=
4233  (jac_a(n, m) - jac(n, m)) * y + omega * (M_a(n, m) - M(n, m)) * z;
4234  prod_y11 +=
4235  (jac_y1(n, m) - jac(n, m)) * y + omega * (M_y1(n, m) - M(n, m)) * z;
4236  prod_y1_resolve1 += (jac_y1_resolve(n, m) - jac(n, m)) * y +
4237  omega * (M_y1_resolve(n, m) - M(n, m)) * z;
4238  // Imag par (second line)
4239  prod_a2 +=
4240  (jac_a(n, m) - jac(n, m)) * z - omega * (M_a(n, m) - M(n, m)) * y;
4241  prod_y12 +=
4242  (jac_y1(n, m) - jac(n, m)) * z - omega * (M_y1(n, m) - M(n, m)) * y;
4243  prod_y1_resolve2 += (jac_y1_resolve(n, m) - jac(n, m)) * z -
4244  omega * (M_y1_resolve(n, m) - M(n, m)) * y;
4245  }
4246  Jprod_a[eqn_number] += prod_a1 / a_mult;
4247  Jprod_y1[eqn_number] += prod_y11 / y1_mult;
4248  Jprod_y1_resolve[eqn_number] += prod_y1_resolve1 / y1_resolve_mult;
4249  Jprod_a[n_dof + eqn_number] += prod_a2 / a_mult;
4250  Jprod_y1[n_dof + eqn_number] += prod_y12 / y1_mult;
4251  Jprod_y1_resolve[n_dof + eqn_number] +=
4252  prod_y1_resolve2 / y1_resolve_mult;
4253  }
4254  }
4255 
4256  // The assumption here is still that the result has been set to the
4257  // residuals.
4258  for (unsigned n = 0; n < 2 * n_dof; n++)
4259  {
4260  rhs[n] = result[n_dof + n] - Jprod_y1[n];
4261  }
4262 
4263  // Temporary storage
4264  DoubleVector y2(this->distribution_pt(), 0.0);
4265 
4266  // Solve it
4267  DoubleVector temp_rhs(this->distribution_pt(), 0.0);
4268  for (unsigned i = 0; i < 2 * n_dof; i++)
4269  {
4270  temp_rhs[i] = rhs[i];
4271  }
4272  Linear_solver_pt->resolve(temp_rhs, y2);
4273 
4274  // Assemble the next RHS
4275  for (unsigned n = 0; n < 2 * n_dof; n++)
4276  {
4277  rhs[n] = dRdparam[n_dof + n] - Jprod_a[n];
4278  }
4279 
4280  // Resive the storage
4281  if (E_pt != 0)
4282  {
4283  delete E_pt;
4284  }
4285  E_pt = new DoubleVector(this->distribution_pt(), 0.0);
4286 
4287  // Solve for the next RHS
4288  for (unsigned i = 0; i < 2 * n_dof; i++)
4289  {
4290  temp_rhs[i] = rhs[i];
4291  }
4292  Linear_solver_pt->resolve(temp_rhs, *E_pt);
4293 
4294  // Assemble the next RHS
4295  for (unsigned n = 0; n < 2 * n_dof; n++)
4296  {
4297  rhs[n] = rhs2[n_dof + n] - Jprod_y1_resolve[n];
4298  }
4299 
4300  DoubleVector y2_resolve(this->distribution_pt(), 0.0);
4301  for (unsigned i = 0; i < 2 * n_dof; i++)
4302  {
4303  temp_rhs[i] = rhs[i];
4304  }
4305  Linear_solver_pt->resolve(temp_rhs, y2_resolve);
4306 
4307 
4308  // We can now calculate the final corrections
4309  // We need to work out a large number of dot products
4310  double dot_c = 0.0, dot_d = 0.0, dot_e = 0.0, dot_f = 0.0, dot_g = 0.0;
4311  double dot_h = 0.0;
4312 
4313  double dot_c_resolve = 0.0, dot_d_resolve = 0.0;
4314 
4315  for (unsigned n = 0; n < n_dof; n++)
4316  {
4317  // Get the appopriate entry
4318  const double Cn = handler_pt->C[n];
4319  dot_c += Cn * y2[n];
4320  dot_d += Cn * y2[n_dof + n];
4321  dot_c_resolve += Cn * y2_resolve[n];
4322  dot_d_resolve += Cn * y2_resolve[n_dof + n];
4323  dot_e += Cn * (*E_pt)[n];
4324  dot_f += Cn * (*E_pt)[n_dof + n];
4325  dot_g += Cn * (*G_pt)[n];
4326  dot_h += Cn * (*G_pt)[n_dof + n];
4327  }
4328 
4329  // Now we should be able to work out the corrections
4330  double denom = dot_e * dot_h - dot_g * dot_f;
4331 
4332  // Copy the previous residuals
4333  double R31 = result[3 * n_dof], R32 = result[3 * n_dof + 1];
4334  // Delta parameter
4335  const double delta_param =
4336  ((R32 - dot_d) * dot_g - (R31 - dot_c) * dot_h) / denom;
4337  // Delta frequency
4338  const double delta_w = -((R32 - dot_d) + dot_f * delta_param) / (dot_h);
4339 
4340  // Corrections
4341  double R31_resolve = rhs2[3 * n_dof], R32_resolve = rhs2[3 * n_dof + 1];
4342  // Delta parameter
4343  const double delta_param_resolve = ((R32_resolve - dot_d_resolve) * dot_g -
4344  (R31_resolve - dot_c_resolve) * dot_h) /
4345  denom;
4346  // Delta frequency
4347  const double delta_w_resolve =
4348  -((R32_resolve - dot_d_resolve) + dot_f * delta_param_resolve) / (dot_h);
4349 
4350 
4351  // Load into the result vector
4352  result[3 * n_dof] = delta_param;
4353  result[3 * n_dof + 1] = delta_w;
4354 
4355  // The corrections to the null vector
4356  for (unsigned n = 0; n < 2 * n_dof; n++)
4357  {
4358  result[n_dof + n] =
4359  y2[n] - (*E_pt)[n] * delta_param - (*G_pt)[n] * delta_w;
4360  }
4361 
4362  // Finally add the corrections to the unknowns
4363  for (unsigned n = 0; n < n_dof; n++)
4364  {
4365  result[n] = y1[n] - (*A_pt)[n] * delta_param;
4366  }
4367 
4368  // Load into the result vector
4369  result2[3 * n_dof] = delta_param_resolve;
4370  result2[3 * n_dof + 1] = delta_w_resolve;
4371 
4372  // The corrections to the null vector
4373  for (unsigned n = 0; n < 2 * n_dof; n++)
4374  {
4375  result2[n_dof + n] = y2_resolve[n] - (*E_pt)[n] * delta_param_resolve -
4376  (*G_pt)[n] * delta_w_resolve;
4377  }
4378 
4379  // Finally add the corrections to the unknowns
4380  for (unsigned n = 0; n < n_dof; n++)
4381  {
4382  result2[n] = y1_resolve[n] - (*A_pt)[n] * delta_param_resolve;
4383  }
4384 
4385 
4386  // The sign of the jacobian is the previous signs multiplied by the
4387  // sign of the denominator
4388  problem_pt->sign_of_jacobian() =
4389  sign_of_jacobian * static_cast<int>(std::fabs(denom) / denom);
4390 
4391  // Switch things to our full solver
4392  handler_pt->solve_full_system();
4393 
4394  // If we are not storing things, clear the results
4395  if (!Enable_resolve)
4396  {
4397  // We no longer need to store the matrix
4399  delete A_pt;
4400  A_pt = 0;
4401  delete E_pt;
4402  E_pt = 0;
4403  delete G_pt;
4404  G_pt = 0;
4405  }
4406  // Otherwise, also store the problem pointer
4407  else
4408  {
4409  Problem_pt = problem_pt;
4410  }
4411  }
4412 
4413 
4414  //======================================================================
4415  // Hack the re-solve to use the block factorisation
4416  //======================================================================
4418  DoubleVector& result)
4419  {
4420  throw OomphLibError("resolve() is not implemented for this solver",
4421  OOMPH_CURRENT_FUNCTION,
4422  OOMPH_EXCEPTION_LOCATION);
4423  }
4424 
4425 
4426  /// ////////////////////////////////////////////////////////////////////
4427  // Non-inline functions for the HopfHandler class
4428  /// ///////////////////////////////////////////////////////////////////
4429 
4430  //====================================================================
4431  /// Constructor: Initialise the hopf handler,
4432  /// by setting initial guesses for Phi, Psi and calculating Count.
4433  /// If the system changes, a new handler must be constructed.
4434  //===================================================================
4435  HopfHandler::HopfHandler(Problem* const& problem_pt,
4436  double* const& parameter_pt)
4437  : Solve_which_system(0), Parameter_pt(parameter_pt), Omega(0.0)
4438  {
4439  // Set the problem pointer
4440  Problem_pt = problem_pt;
4441  // Set the number of non-augmented degrees of freedom
4442  Ndof = problem_pt->ndof();
4443 
4444  // create the linear algebra distribution for this solver
4445  // currently only global (non-distributed) distributions are allowed
4446  LinearAlgebraDistribution* dist_pt =
4447  new LinearAlgebraDistribution(problem_pt->communicator_pt(), Ndof, false);
4448 
4449  // Resize the vectors of additional dofs
4450  Phi.resize(Ndof);
4451  Psi.resize(Ndof);
4452  C.resize(Ndof);
4453  Count.resize(Ndof, 0);
4454 
4455  // Loop over all the elements in the problem
4456  unsigned n_element = problem_pt->mesh_pt()->nelement();
4457  for (unsigned e = 0; e < n_element; e++)
4458  {
4459  GeneralisedElement* elem_pt = problem_pt->mesh_pt()->element_pt(e);
4460  // Loop over the local freedoms in an element
4461  unsigned n_var = elem_pt->ndof();
4462  for (unsigned n = 0; n < n_var; n++)
4463  {
4464  // Increase the associated global equation number counter
4465  ++Count[elem_pt->eqn_number(n)];
4466  }
4467  }
4468 
4469  // Calculate the value Phi by
4470  // solving the system JPhi = dF/dlambda
4471 
4472  // Locally cache the linear solver
4473  LinearSolver* const linear_solver_pt = problem_pt->linear_solver_pt();
4474 
4475  // Save the status before entry to this routine
4476  bool enable_resolve = linear_solver_pt->is_resolve_enabled();
4477 
4478  // We need to do a resolve
4479  linear_solver_pt->enable_resolve();
4480 
4481  // Storage for the solution
4482  DoubleVector x(dist_pt, 0.0);
4483 
4484  // Solve the standard problem, we only want to make sure that
4485  // we factorise the matrix, if it has not been factorised. We shall
4486  // ignore the return value of x.
4487  linear_solver_pt->solve(problem_pt, x);
4488 
4489  // Get the vector dresiduals/dparameter
4490  problem_pt->get_derivative_wrt_global_parameter(parameter_pt, x);
4491 
4492  // Copy rhs vector into local storage so it doesn't get overwritten
4493  // if the linear solver decides to initialise the solution vector, say,
4494  // which it's quite entitled to do!
4495  DoubleVector input_x(x);
4496 
4497  // Now resolve the system with the new RHS and overwrite the solution
4498  linear_solver_pt->resolve(input_x, x);
4499 
4500  // Restore the storage status of the linear solver
4501  if (enable_resolve)
4502  {
4503  linear_solver_pt->enable_resolve();
4504  }
4505  else
4506  {
4507  linear_solver_pt->disable_resolve();
4508  }
4509 
4510  // Normalise the solution x
4511  double length = 0.0;
4512  for (unsigned n = 0; n < Ndof; n++)
4513  {
4514  length += x[n] * x[n];
4515  }
4516  length = sqrt(length);
4517 
4518  // Now add the real part of the null space components to the problem
4519  // unknowns and initialise it all
4520  // This is dumb at the moment ... fix with eigensolver?
4521  for (unsigned n = 0; n < Ndof; n++)
4522  {
4523  problem_pt->Dof_pt.push_back(&Phi[n]);
4524  C[n] = Phi[n] = -x[n] / length;
4525  }
4526 
4527  // Set the imaginary part so that the appropriate residual is
4528  // zero initially (eigensolvers)
4529  for (unsigned n = 0; n < Ndof; n += 2)
4530  {
4531  // Make sure that we are not at the end of an array of odd length
4532  if (n != Ndof - 1)
4533  {
4534  Psi[n] = C[n + 1];
4535  Psi[n + 1] = -C[n];
4536  }
4537  // If it's odd set the final entry to zero
4538  else
4539  {
4540  Psi[n] = 0.0;
4541  }
4542  }
4543 
4544  // Next add the imaginary parts of the null space components to the problem
4545  for (unsigned n = 0; n < Ndof; n++)
4546  {
4547  problem_pt->Dof_pt.push_back(&Psi[n]);
4548  }
4549  // Now add the parameter
4550  problem_pt->Dof_pt.push_back(parameter_pt);
4551  // Finally add the frequency
4552  problem_pt->Dof_pt.push_back(&Omega);
4553 
4554  // rebuild the dof dist
4556  Problem_pt->communicator_pt(), Ndof * 3 + 2, false);
4557  // Remove all previous sparse storage used during Jacobian assembly
4559 
4560  // delete the dist_pt
4561  delete dist_pt;
4562  }
4563 
4564  //====================================================================
4565  /// Constructor: Initialise the hopf handler,
4566  /// by setting initial guesses for Phi, Psi, Omega and calculating Count.
4567  /// If the system changes, a new handler must be constructed.
4568  //===================================================================
4569  HopfHandler::HopfHandler(Problem* const& problem_pt,
4570  double* const& parameter_pt,
4571  const double& omega,
4572  const DoubleVector& phi,
4573  const DoubleVector& psi)
4574  : Solve_which_system(0), Parameter_pt(parameter_pt), Omega(omega)
4575  {
4576  // Set the problem pointer
4577  Problem_pt = problem_pt;
4578  // Set the number of non-augmented degrees of freedom
4579  Ndof = problem_pt->ndof();
4580 
4581  // Resize the vectors of additional dofs
4582  Phi.resize(Ndof);
4583  Psi.resize(Ndof);
4584  C.resize(Ndof);
4585  Count.resize(Ndof, 0);
4586 
4587  // Loop over all the elements in the problem
4588  unsigned n_element = problem_pt->mesh_pt()->nelement();
4589  for (unsigned e = 0; e < n_element; e++)
4590  {
4591  GeneralisedElement* elem_pt = problem_pt->mesh_pt()->element_pt(e);
4592  // Loop over the local freedoms in an element
4593  unsigned n_var = elem_pt->ndof();
4594  for (unsigned n = 0; n < n_var; n++)
4595  {
4596  // Increase the associated global equation number counter
4597  ++Count[elem_pt->eqn_number(n)];
4598  }
4599  }
4600 
4601  // Normalise the guess for phi
4602  double length = 0.0;
4603  for (unsigned n = 0; n < Ndof; n++)
4604  {
4605  length += phi[n] * phi[n];
4606  }
4607  length = sqrt(length);
4608 
4609  // Now add the real part of the null space components to the problem
4610  // unknowns and initialise it all
4611  for (unsigned n = 0; n < Ndof; n++)
4612  {
4613  problem_pt->Dof_pt.push_back(&Phi[n]);
4614  C[n] = Phi[n] = phi[n] / length;
4615  Psi[n] = psi[n] / length;
4616  }
4617 
4618  // Next add the imaginary parts of the null space components to the problem
4619  for (unsigned n = 0; n < Ndof; n++)
4620  {
4621  problem_pt->Dof_pt.push_back(&Psi[n]);
4622  }
4623 
4624  // Now add the parameter
4625  problem_pt->Dof_pt.push_back(parameter_pt);
4626  // Finally add the frequency
4627  problem_pt->Dof_pt.push_back(&Omega);
4628 
4629  // rebuild the Dof_distribution_pt
4631  Problem_pt->communicator_pt(), Ndof * 3 + 2, false);
4632  // Remove all previous sparse storage used during Jacobian assembly
4634  }
4635 
4636 
4637  //=======================================================================
4638  /// Destructor return the problem to its original (non-augmented) state
4639  //=======================================================================
4641  {
4642  // If we are using the block solver reset the problem's linear solver
4643  // to the original one
4644  BlockHopfLinearSolver* block_hopf_solver_pt =
4646  if (block_hopf_solver_pt)
4647  {
4648  // Reset the problem's linear solver
4649  Problem_pt->linear_solver_pt() = block_hopf_solver_pt->linear_solver_pt();
4650  // Delete the block solver
4651  delete block_hopf_solver_pt;
4652  }
4653  // Now return the problem to its original size
4654  Problem_pt->Dof_pt.resize(Ndof);
4656  Problem_pt->communicator_pt(), Ndof, false);
4657  // Remove all previous sparse storage used during Jacobian assembly
4659  }
4660 
4661 
4662  //=============================================================
4663  /// Get the number of elemental degrees of freedom
4664  //=============================================================
4665  unsigned HopfHandler::ndof(GeneralisedElement* const& elem_pt)
4666  {
4667  unsigned raw_ndof = elem_pt->ndof();
4668  switch (Solve_which_system)
4669  {
4670  // Full augmented system
4671  case 0:
4672  return (3 * raw_ndof + 2);
4673  break;
4674  // Standard non-augmented system
4675  case 1:
4676  return raw_ndof;
4677  break;
4678  // Complex system
4679  case 2:
4680  return (2 * raw_ndof);
4681  break;
4682 
4683  default:
4684  throw OomphLibError("Solve_which_system can only be 0,1 or 2",
4685  OOMPH_CURRENT_FUNCTION,
4686  OOMPH_EXCEPTION_LOCATION);
4687  }
4688  }
4689 
4690  //=============================================================
4691  /// Get the global equation number of the local unknown
4692  //============================================================
4693  unsigned long HopfHandler::eqn_number(GeneralisedElement* const& elem_pt,
4694  const unsigned& ieqn_local)
4695  {
4696  // Get the raw value
4697  unsigned raw_ndof = elem_pt->ndof();
4698  unsigned long global_eqn;
4699  if (ieqn_local < raw_ndof)
4700  {
4701  global_eqn = elem_pt->eqn_number(ieqn_local);
4702  }
4703  else if (ieqn_local < 2 * raw_ndof)
4704  {
4705  global_eqn = Ndof + elem_pt->eqn_number(ieqn_local - raw_ndof);
4706  }
4707  else if (ieqn_local < 3 * raw_ndof)
4708  {
4709  global_eqn = 2 * Ndof + elem_pt->eqn_number(ieqn_local - 2 * raw_ndof);
4710  }
4711  else if (ieqn_local == 3 * raw_ndof)
4712  {
4713  global_eqn = 3 * Ndof;
4714  }
4715  else
4716  {
4717  global_eqn = 3 * Ndof + 1;
4718  }
4719  return global_eqn;
4720  }
4721 
4722  //==================================================================
4723  /// Get the residuals
4724  //=================================================================
4726  Vector<double>& residuals)
4727  {
4728  // Should only call get residuals for the full system
4729  if (Solve_which_system == 0)
4730  {
4731  // Need to get raw residuals and jacobian
4732  unsigned raw_ndof = elem_pt->ndof();
4733 
4734  DenseMatrix<double> jacobian(raw_ndof), M(raw_ndof);
4735  // Get the basic residuals, jacobian and mass matrix
4736  elem_pt->get_jacobian_and_mass_matrix(residuals, jacobian, M);
4737 
4738  // Initialise the pen-ultimate residual
4739  residuals[3 * raw_ndof] =
4740  -1.0 / (double)(Problem_pt->mesh_pt()->nelement());
4741  residuals[3 * raw_ndof + 1] = 0.0;
4742 
4743  // Now multiply to fill in the residuals
4744  for (unsigned i = 0; i < raw_ndof; i++)
4745  {
4746  residuals[raw_ndof + i] = 0.0;
4747  residuals[2 * raw_ndof + i] = 0.0;
4748  for (unsigned j = 0; j < raw_ndof; j++)
4749  {
4750  unsigned global_unknown = elem_pt->eqn_number(j);
4751  // Real part
4752  residuals[raw_ndof + i] += jacobian(i, j) * Phi[global_unknown] +
4753  Omega * M(i, j) * Psi[global_unknown];
4754  // Imaginary part
4755  residuals[2 * raw_ndof + i] += jacobian(i, j) * Psi[global_unknown] -
4756  Omega * M(i, j) * Phi[global_unknown];
4757  }
4758  // Get the global equation number
4759  unsigned global_eqn = elem_pt->eqn_number(i);
4760 
4761  // Real part
4762  residuals[3 * raw_ndof] +=
4763  (Phi[global_eqn] * C[global_eqn]) / Count[global_eqn];
4764  // Imaginary part
4765  residuals[3 * raw_ndof + 1] +=
4766  (Psi[global_eqn] * C[global_eqn]) / Count[global_eqn];
4767  }
4768  }
4769  else
4770  {
4771  throw OomphLibError("Solve_which_system can only be 0",
4772  OOMPH_CURRENT_FUNCTION,
4773  OOMPH_EXCEPTION_LOCATION);
4774  }
4775  }
4776 
4777 
4778  //===============================================================
4779  /// Calculate the elemental Jacobian matrix "d equation
4780  /// / d variable".
4781  //==================================================================
4783  Vector<double>& residuals,
4784  DenseMatrix<double>& jacobian)
4785  {
4786  // The standard case
4787  if (Solve_which_system == 0)
4788  {
4789  unsigned augmented_ndof = ndof(elem_pt);
4790  unsigned raw_ndof = elem_pt->ndof();
4791 
4792  // Get the basic residuals and jacobian
4793  DenseMatrix<double> M(raw_ndof);
4794  elem_pt->get_jacobian_and_mass_matrix(residuals, jacobian, M);
4795  // Now fill in the actual residuals
4796  get_residuals(elem_pt, residuals);
4797 
4798  // Now the jacobian appears in other entries
4799  for (unsigned n = 0; n < raw_ndof; ++n)
4800  {
4801  for (unsigned m = 0; m < raw_ndof; ++m)
4802  {
4803  jacobian(raw_ndof + n, raw_ndof + m) = jacobian(n, m);
4804  jacobian(raw_ndof + n, 2 * raw_ndof + m) = Omega * M(n, m);
4805  jacobian(2 * raw_ndof + n, 2 * raw_ndof + m) = jacobian(n, m);
4806  jacobian(2 * raw_ndof + n, raw_ndof + m) = -Omega * M(n, m);
4807  unsigned global_eqn = elem_pt->eqn_number(m);
4808  jacobian(raw_ndof + n, 3 * raw_ndof + 1) += M(n, m) * Psi[global_eqn];
4809  jacobian(2 * raw_ndof + n, 3 * raw_ndof + 1) -=
4810  M(n, m) * Phi[global_eqn];
4811  }
4812 
4813  unsigned local_eqn = elem_pt->eqn_number(n);
4814  jacobian(3 * raw_ndof, raw_ndof + n) = C[local_eqn] / Count[local_eqn];
4815  jacobian(3 * raw_ndof + 1, 2 * raw_ndof + n) =
4816  C[local_eqn] / Count[local_eqn];
4817  }
4818 
4819  const double FD_step = 1.0e-8;
4820 
4821  Vector<double> newres_p(augmented_ndof), newres_m(augmented_ndof);
4822 
4823  // Loop over the dofs
4824  for (unsigned n = 0; n < raw_ndof; n++)
4825  {
4826  // Just do the x's
4827  unsigned long global_eqn = eqn_number(elem_pt, n);
4828  double* unknown_pt = Problem_pt->Dof_pt[global_eqn];
4829  double init = *unknown_pt;
4830  *unknown_pt += FD_step;
4831 
4832  // Get the new residuals
4833  get_residuals(elem_pt, newres_p);
4834 
4835  // Reset
4836  *unknown_pt = init;
4837 
4838  // Subtract
4839  *unknown_pt -= FD_step;
4840  get_residuals(elem_pt, newres_m);
4841 
4842  for (unsigned m = 0; m < raw_ndof; m++)
4843  {
4844  jacobian(raw_ndof + m, n) =
4845  (newres_p[raw_ndof + m] - residuals[raw_ndof + m]) / (FD_step);
4846  jacobian(2 * raw_ndof + m, n) =
4847  (newres_p[2 * raw_ndof + m] - residuals[2 * raw_ndof + m]) /
4848  (FD_step);
4849  }
4850  // Reset the unknown
4851  *unknown_pt = init;
4852  }
4853 
4854  {
4855  // Now do the global parameter
4856  double* unknown_pt = Problem_pt->Dof_pt[3 * Ndof];
4857  double init = *unknown_pt;
4858  *unknown_pt += FD_step;
4859 
4861  // Get the new residuals
4862  get_residuals(elem_pt, newres_p);
4863 
4864  // Reset
4865  *unknown_pt = init;
4866 
4867  // Subtract
4868  *unknown_pt -= FD_step;
4869  get_residuals(elem_pt, newres_m);
4870 
4871  for (unsigned m = 0; m < augmented_ndof - 2; m++)
4872  {
4873  jacobian(m, 3 * raw_ndof) = (newres_p[m] - residuals[m]) / FD_step;
4874  }
4875  // Reset the unknown
4876  *unknown_pt = init;
4878  }
4879  } // End of standard case
4880  // Normal case
4881  else if (Solve_which_system == 1)
4882  {
4883  // Just get the normal jacobian and residuals
4884  elem_pt->get_jacobian(residuals, jacobian);
4885  }
4886  // Otherwise the augmented complex case
4887  else if (Solve_which_system == 2)
4888  {
4889  unsigned raw_ndof = elem_pt->ndof();
4890 
4891  // Get the basic residuals and jacobian
4892  DenseMatrix<double> M(raw_ndof);
4893  elem_pt->get_jacobian_and_mass_matrix(residuals, jacobian, M);
4894 
4895  // We now need to fill in the other blocks
4896  for (unsigned n = 0; n < raw_ndof; n++)
4897  {
4898  for (unsigned m = 0; m < raw_ndof; m++)
4899  {
4900  jacobian(n, raw_ndof + m) = Omega * M(n, m);
4901  jacobian(raw_ndof + n, m) = -Omega * M(n, m);
4902  jacobian(raw_ndof + n, raw_ndof + m) = jacobian(n, m);
4903  }
4904  }
4905 
4906  // Now overwrite to fill in the residuals
4907  // The decision take is to solve for the mass matrix multiplied
4908  // terms in the residuals because they require no additional
4909  // information to assemble.
4910  for (unsigned n = 0; n < raw_ndof; n++)
4911  {
4912  residuals[n] = 0.0;
4913  residuals[raw_ndof + n] = 0.0;
4914  for (unsigned m = 0; m < raw_ndof; m++)
4915  {
4916  unsigned global_unknown = elem_pt->eqn_number(m);
4917  // Real part
4918  residuals[n] += M(n, m) * Psi[global_unknown];
4919  // Imaginary part
4920  residuals[raw_ndof + n] -= M(n, m) * Phi[global_unknown];
4921  }
4922  }
4923  } // End of complex augmented case
4924  else
4925  {
4926  throw OomphLibError("Solve_which_system can only be 0,1 or 2",
4927  OOMPH_CURRENT_FUNCTION,
4928  OOMPH_EXCEPTION_LOCATION);
4929  }
4930  }
4931 
4932 
4933  //==================================================================
4934  /// Get the derivatives of the augmented residuals with respect to
4935  /// a parameter
4936  //=================================================================
4938  GeneralisedElement* const& elem_pt,
4939  double* const& parameter_pt,
4940  Vector<double>& dres_dparam)
4941  {
4942  // Should only call get residuals for the full system
4943  if (Solve_which_system == 0)
4944  {
4945  // Need to get raw residuals and jacobian
4946  unsigned raw_ndof = elem_pt->ndof();
4947 
4948  DenseMatrix<double> djac_dparam(raw_ndof), dM_dparam(raw_ndof);
4949  // Get the basic residuals, jacobian and mass matrix
4951  parameter_pt, dres_dparam, djac_dparam, dM_dparam);
4952 
4953  // Initialise the pen-ultimate residual, which does not
4954  // depend on the parameter
4955  dres_dparam[3 * raw_ndof] = 0.0;
4956  dres_dparam[3 * raw_ndof + 1] = 0.0;
4957 
4958  // Now multiply to fill in the residuals
4959  for (unsigned i = 0; i < raw_ndof; i++)
4960  {
4961  dres_dparam[raw_ndof + i] = 0.0;
4962  dres_dparam[2 * raw_ndof + i] = 0.0;
4963  for (unsigned j = 0; j < raw_ndof; j++)
4964  {
4965  unsigned global_unknown = elem_pt->eqn_number(j);
4966  // Real part
4967  dres_dparam[raw_ndof + i] +=
4968  djac_dparam(i, j) * Phi[global_unknown] +
4969  Omega * dM_dparam(i, j) * Psi[global_unknown];
4970  // Imaginary part
4971  dres_dparam[2 * raw_ndof + i] +=
4972  djac_dparam(i, j) * Psi[global_unknown] -
4973  Omega * dM_dparam(i, j) * Phi[global_unknown];
4974  }
4975  }
4976  }
4977  else
4978  {
4979  throw OomphLibError("Solve_which_system can only be 0",
4980  OOMPH_CURRENT_FUNCTION,
4981  OOMPH_EXCEPTION_LOCATION);
4982  }
4983  }
4984 
4985 
4986  //========================================================================
4987  /// Overload the derivative of the residuals and jacobian
4988  /// with respect to a parameter so that it breaks because it should not
4989  /// be required
4990  //========================================================================
4992  double* const& parameter_pt,
4993  Vector<double>& dres_dparam,
4994  DenseMatrix<double>& djac_dparam)
4995  {
4996  std::ostringstream error_stream;
4997  error_stream
4998  << "This function has not been implemented because it is not required\n";
4999  error_stream << "in standard problems.\n";
5000  error_stream
5001  << "If you find that you need it, you will have to implement it!\n\n";
5002 
5003  throw OomphLibError(
5004  error_stream.str(), OOMPH_CURRENT_FUNCTION, OOMPH_EXCEPTION_LOCATION);
5005  }
5006 
5007 
5008  //=====================================================================
5009  /// Overload the hessian vector product function so that
5010  /// it breaks because it should not be required
5011  //========================================================================
5013  GeneralisedElement* const& elem_pt,
5014  Vector<double> const& Y,
5015  DenseMatrix<double> const& C,
5016  DenseMatrix<double>& product)
5017  {
5018  std::ostringstream error_stream;
5019  error_stream
5020  << "This function has not been implemented because it is not required\n";
5021  error_stream << "in standard problems.\n";
5022  error_stream
5023  << "If you find that you need it, you will have to implement it!\n\n";
5024 
5025  throw OomphLibError(
5026  error_stream.str(), OOMPH_CURRENT_FUNCTION, OOMPH_EXCEPTION_LOCATION);
5027  }
5028 
5029 
5030  //==========================================================================
5031  /// Return the eigenfunction(s) associated with the bifurcation that
5032  /// has been detected in bifurcation tracking problems
5033  //==========================================================================
5035  {
5036  // There is a real and imaginary part of the null vector
5037  eigenfunction.resize(2);
5039  // Rebuild the vector
5040  eigenfunction[0].build(&dist, 0.0);
5041  eigenfunction[1].build(&dist, 0.0);
5042  // Set the value to be the null vector
5043  for (unsigned n = 0; n < Ndof; n++)
5044  {
5045  eigenfunction[0][n] = Phi[n];
5046  eigenfunction[1][n] = Psi[n];
5047  }
5048  }
5049 
5050 
5051  //====================================================================
5052  /// Set to solve the standard (underlying jacobian) system
5053  //===================================================================
5055  {
5056  if (Solve_which_system != 1)
5057  {
5058  Solve_which_system = 1;
5059  // Restrict the problem to the standard variables only
5060  Problem_pt->Dof_pt.resize(Ndof);
5062  Problem_pt->communicator_pt(), Ndof, false);
5063  // Remove all previous sparse storage used during Jacobian assembly
5065  }
5066  }
5067 
5068  //====================================================================
5069  /// Set to solve the complex (jacobian and mass matrix) system
5070  //===================================================================
5072  {
5073  // If we were not solving the complex system resize the unknowns
5074  // accordingly
5075  if (Solve_which_system != 2)
5076  {
5077  Solve_which_system = 2;
5078  // Resize to the first Ndofs (will work whichever system we were
5079  // solving before)
5080  Problem_pt->Dof_pt.resize(Ndof);
5081  // Add the first (real) part of the eigenfunction back into the problem
5082  for (unsigned n = 0; n < Ndof; n++)
5083  {
5084  Problem_pt->Dof_pt.push_back(&Phi[n]);
5085  }
5087  Problem_pt->communicator_pt(), Ndof * 2, false);
5088  // Remove all previous sparse storage used during Jacobian assembly
5090  }
5091  }
5092 
5093 
5094  //=================================================================
5095  /// Set to Solve full system system
5096  //=================================================================
5098  {
5099  // If we are starting from another system
5100  if (Solve_which_system)
5101  {
5102  Solve_which_system = 0;
5103 
5104  // Resize to the first Ndofs (will work whichever system we were
5105  // solving before)
5106  Problem_pt->Dof_pt.resize(Ndof);
5107  // Add the additional unknowns back into the problem
5108  for (unsigned n = 0; n < Ndof; n++)
5109  {
5110  Problem_pt->Dof_pt.push_back(&Phi[n]);
5111  }
5112  for (unsigned n = 0; n < Ndof; n++)
5113  {
5114  Problem_pt->Dof_pt.push_back(&Psi[n]);
5115  }
5116  // Now add the parameter
5117  Problem_pt->Dof_pt.push_back(Parameter_pt);
5118  // Finally add the frequency
5119  Problem_pt->Dof_pt.push_back(&Omega);
5120 
5121  //
5123  Problem_pt->communicator_pt(), 3 * Ndof + 2, false);
5124  // Remove all previous sparse storage used during Jacobian assembly
5126  }
5127  }
5128 } // namespace oomph
e
Definition: cfortran.h:571
cstr elem_len * i
Definition: cfortran.h:603
char t
Definition: cfortran.h:568
A class that is used to define the functions used to assemble the elemental contributions to the resi...
virtual unsigned ndof(GeneralisedElement *const &elem_pt)
Return the number of degrees of freedom in the element elem_pt.
virtual void get_hessian_vector_products(GeneralisedElement *const &elem_pt, Vector< double > const &Y, DenseMatrix< double > const &C, DenseMatrix< double > &product)
Calculate the product of the Hessian (derivative of Jacobian with respect to all variables) an eigenv...
virtual void get_dresiduals_dparameter(GeneralisedElement *const &elem_pt, double *const &parameter_pt, Vector< double > &dres_dparam)
Calculate the derivative of the residuals with respect to a parameter.
virtual double * bifurcation_parameter_pt() const
Return a pointer to the bifurcation parameter in bifurcation tracking problems.
virtual void get_all_vectors_and_matrices(GeneralisedElement *const &elem_pt, Vector< Vector< double >> &vec, Vector< DenseMatrix< double >> &matrix)
Calculate all desired vectors and matrices provided by the element elem_pt.
virtual void get_eigenfunction(Vector< DoubleVector > &eigenfunction)
Return the eigenfunction(s) associated with the bifurcation that has been detected in bifurcation tra...
virtual void get_residuals(GeneralisedElement *const &elem_pt, Vector< double > &residuals)
Return the contribution to the residuals of the element elem_pt.
virtual unsigned long eqn_number(GeneralisedElement *const &elem_pt, const unsigned &ieqn_local)
Return the global equation number of the local unknown ieqn_local in elem_pt.
virtual double & local_problem_dof(Problem *const &problem_pt, const unsigned &t, const unsigned &i)
Return the t-th level of storage associated with the i-th (local) dof stored in the problem.
virtual void get_inner_products(GeneralisedElement *const &elem_pt, Vector< std::pair< unsigned, unsigned >> const &history_index, Vector< double > &inner_product)
Compute the inner products of the given vector of pairs of history values over the element.
virtual void dof_vector(GeneralisedElement *const &elem_pt, const unsigned &t, Vector< double > &dof)
Return vector of dofs at time level t in the element elem_pt.
virtual void get_jacobian(GeneralisedElement *const &elem_pt, Vector< double > &residuals, DenseMatrix< double > &jacobian)
Calculate the elemental Jacobian matrix "d equation / d variable" for elem_pt.
virtual void get_djacobian_dparameter(GeneralisedElement *const &elem_pt, double *const &parameter_pt, Vector< double > &dres_dparam, DenseMatrix< double > &djac_dparam)
Calculate the derivative of the residuals and jacobian with respect to a parameter.
virtual void get_inner_product_vectors(GeneralisedElement *const &elem_pt, Vector< unsigned > const &history_index, Vector< Vector< double >> &inner_product_vector)
Compute the vectors that when taken as a dot product with other history values give the inner product...
virtual void dof_pt_vector(GeneralisedElement *const &elem_pt, Vector< double * > &dof_pt)
Return vector of pointers to dofs in the element elem_pt.
A custom linear solver class that is used to solve a block-factorised version of the Fold bifurcation...
void solve(Problem *const &problem_pt, DoubleVector &result)
The solve function uses the block factorisation.
LinearSolver * Linear_solver_pt
Pointer to the original linear solver.
LinearSolver * linear_solver_pt() const
Access function to the original linear solver.
DoubleVector * E_pt
Pointer to the storage for the vector e.
void resolve(const DoubleVector &rhs, DoubleVector &result)
The resolve function also uses the block factorisation.
~AugmentedBlockFoldLinearSolver()
Destructor: clean up the allocated memory.
DoubleVector * Alpha_pt
Pointer to the storage for the vector alpha.
A custom linear solver class that is used to solve a block-factorised version of the PitchFork bifurc...
void solve(Problem *const &problem_pt, DoubleVector &result)
The solve function uses the block factorisation.
LinearSolver * Linear_solver_pt
Pointer to the original linear solver.
void resolve(const DoubleVector &rhs, DoubleVector &result)
The resolve function also uses the block factorisation.
DoubleVector * Alpha_pt
Pointer to the storage for the vector alpha.
DoubleVector * E_pt
Pointer to the storage for the vector e.
LinearSolver * linear_solver_pt() const
Access function to the original linear solver.
~AugmentedBlockPitchForkLinearSolver()
Destructor: clean up the allocated memory.
Problem * Problem_pt
Pointer to the problem, used in the resolve.
A custom linear solver class that is used to solve a block-factorised version of the Hopf bifurcation...
LinearSolver * Linear_solver_pt
Pointer to the original linear solver.
void resolve(const DoubleVector &rhs, DoubleVector &result)
The resolve function also uses the block factorisation.
DoubleVector * A_pt
Pointer to the storage for the vector a.
void solve(Problem *const &problem_pt, DoubleVector &result)
The solve function uses the block factorisation.
Problem * Problem_pt
Pointer to the problem, used in the resolve.
~BlockHopfLinearSolver()
Destructor: clean up the allocated memory.
void solve_for_two_rhs(Problem *const &problem_pt, DoubleVector &result, const DoubleVector &rhs2, DoubleVector &result2)
Solve for two right hand sides.
DoubleVector * E_pt
Pointer to the storage for the vector e (0 to n-1)
DoubleVector * G_pt
Pointer to the storage for the vector g (0 to n-1)
LinearSolver * linear_solver_pt() const
Access function to the original linear solver.
A custom linear solver class that is used to solve a block-factorised version of the PitchFork bifurc...
DoubleVector * D_pt
Pointer to the storage for the vector d.
LinearSolver * linear_solver_pt() const
Access function to the original linear solver.
DoubleVector * dJy_dparam_pt
Pointer to the storage for the vector of derivatives with respect to the bifurcation parameter.
~BlockPitchForkLinearSolver()
Destructor: clean up the allocated memory.
DoubleVector * B_pt
Pointer to the storage for the vector b.
Problem * Problem_pt
Pointer to the problem, used in the resolve.
void resolve(const DoubleVector &rhs, DoubleVector &result)
The resolve function also uses the block factorisation.
DoubleVector * C_pt
Pointer to the storage for the vector c.
void solve(Problem *const &problem_pt, DoubleVector &result)
The solve function uses the block factorisation.
LinearSolver * Linear_solver_pt
Pointer to the original linear solver.
bool distributed() const
distribution is serial or distributed
LinearAlgebraDistribution * distribution_pt() const
access to the LinearAlgebraDistribution
unsigned nrow_local() const
access function for the num of local rows on this processor.
void build_distribution(const LinearAlgebraDistribution *const dist_pt)
setup the distribution of this distributable linear algebra object
void build_halo_scheme(DoubleVectorHaloScheme *const &halo_scheme_pt)
Construct the halo scheme and storage for the halo data.
void synchronise()
Synchronise the halo data.
void sum_all_halo_and_haloed_values()
Sum all the data, store in the master (haloed) data and then synchronise.
double & global_value(const unsigned &i)
Direct access to global entry.
A vector in the mathematical sense, initially developed for linear algebra type applications....
Definition: double_vector.h:58
void build(const DoubleVector &old_vector)
Just copys the argument DoubleVector.
void redistribute(const LinearAlgebraDistribution *const &dist_pt)
The contents of the vector are redistributed to match the new distribution. In a non-MPI rebuild this...
double norm() const
compute the 2 norm of this vector
bool built() const
double dot(const DoubleVector &vec) const
compute the dot product of this vector with the vector vec.
void get_residuals(GeneralisedElement *const &elem_pt, Vector< double > &residuals)
Return the contribution to the residuals of the element elem_pt This is deliberately broken in our ei...
double Sigma_real
Storage for the real shift.
void get_all_vectors_and_matrices(GeneralisedElement *const &elem_pt, Vector< Vector< double >> &vec, Vector< DenseMatrix< double >> &matrix)
Calculate all desired vectors and matrices provided by the element elem_pt.
void get_jacobian(GeneralisedElement *const &elem_pt, Vector< double > &residuals, DenseMatrix< double > &jacobian)
Calculate the elemental Jacobian matrix "d equation / d variable" for elem_pt. Again deliberately bro...
unsigned long eqn_number(GeneralisedElement *const &elem_pt, const unsigned &ieqn_local)
Return the global equation number of the local unknown ieqn_local in elem_pt.
unsigned ndof(GeneralisedElement *const &elem_pt)
Return the number of degrees of freedom in the element elem_pt.
unsigned long eqn_number(GeneralisedElement *const &elem_pt, const unsigned &ieqn_local)
Return the global equation number of the local unknown ieqn_local in elem_pt.
unsigned ndof(GeneralisedElement *const &elem_pt)
Return the number of degrees of freedom in the element elem_pt.
void get_all_vectors_and_matrices(GeneralisedElement *const &elem_pt, Vector< Vector< double >> &vec, Vector< DenseMatrix< double >> &matrix)
Calculate all desired vectors and matrices provided by the element elem_pt.
void get_jacobian(GeneralisedElement *const &elem_pt, Vector< double > &residuals, DenseMatrix< double > &jacobian)
Calculate the elemental Jacobian matrix "d equation / d variable" for elem_pt. Again deliberately bro...
void get_residuals(GeneralisedElement *const &elem_pt, Vector< double > &residuals)
Return the contribution to the residuals of the element elem_pt This is deliberately broken in our ei...
A class that is used to assemble the augmented system that defines a fold (saddle-node) or limit poin...
Problem * Problem_pt
Pointer to the problem.
Vector< int > Count
A vector that is used to determine how many elements contribute to a particular equation....
unsigned long eqn_number(GeneralisedElement *const &elem_pt, const unsigned &ieqn_local)
Get the global equation number of the local unknown.
void solve_full_system()
Solve non-block system.
void get_djacobian_dparameter(GeneralisedElement *const &elem_pt, double *const &parameter_pt, Vector< double > &dres_dparam, DenseMatrix< double > &djac_dparam)
Overload the derivative of the residuals and jacobian with respect to a parameter so that it breaks.
unsigned Solve_which_system
Integer flag to indicate which system should be assembled. There are three possibilities....
void solve_augmented_block_system()
Set to solve the augmented block system.
Vector< double > Phi
A constant vector used to ensure that the null vector is not trivial.
unsigned Ndof
Store the number of degrees of freedom in the non-augmented problem.
void get_hessian_vector_products(GeneralisedElement *const &elem_pt, Vector< double > const &Y, DenseMatrix< double > const &C, DenseMatrix< double > &product)
Overload the hessian vector product function so that it breaks.
~FoldHandler()
Destructor, return the problem to its original state before the augmented system was added.
void solve_block_system()
Set to solve the block system.
void get_residuals(GeneralisedElement *const &elem_pt, Vector< double > &residuals)
Get the residuals.
Vector< double > Y
Storage for the null vector.
void get_eigenfunction(Vector< DoubleVector > &eigenfunction)
Return the eigenfunction(s) associated with the bifurcation that has been detected in bifurcation tra...
void get_jacobian(GeneralisedElement *const &elem_pt, Vector< double > &residuals, DenseMatrix< double > &jacobian)
Calculate the elemental Jacobian matrix "d equation / d variable".
void get_dresiduals_dparameter(GeneralisedElement *const &elem_pt, double *const &parameter_pt, Vector< double > &dres_dparam)
Overload the derivatives of the residuals with respect to a parameter to apply to the augmented syste...
FoldHandler(Problem *const &problem_pt, double *const &parameter_pt)
Constructor: initialise the fold handler, by setting initial guesses for Y, Phi and calculating count...
double * Parameter_pt
Storage for the pointer to the parameter.
unsigned ndof(GeneralisedElement *const &elem_pt)
Get the number of elemental degrees of freedom.
A Generalised Element class.
Definition: elements.h:73
bool is_halo() const
Is this element a halo?
Definition: elements.h:1167
void dof_vector(const unsigned &t, Vector< double > &dof)
Return the vector of dof values at time level t.
Definition: elements.h:845
virtual void get_inner_products(Vector< std::pair< unsigned, unsigned >> const &history_index, Vector< double > &inner_product)
Return the vector of inner product of the given pairs of history values.
Definition: elements.h:1099
virtual void get_hessian_vector_products(Vector< double > const &Y, DenseMatrix< double > const &C, DenseMatrix< double > &product)
Calculate the product of the Hessian (derivative of Jacobian with respect to all variables) an eigenv...
Definition: elements.h:1087
unsigned ndof() const
Return the number of equations/dofs in the element.
Definition: elements.h:839
unsigned long eqn_number(const unsigned &ieqn_local) const
Return the global equation number corresponding to the ieqn_local-th local equation number.
Definition: elements.h:708
virtual void get_residuals(Vector< double > &residuals)
Calculate the vector of residuals of the equations in the element. By default initialise the vector t...
Definition: elements.h:984
virtual void get_mass_matrix(Vector< double > &residuals, DenseMatrix< double > &mass_matrix)
Calculate the residuals and the elemental "mass" matrix, the matrix that multiplies the time derivati...
Definition: elements.h:1007
virtual void get_dresiduals_dparameter(double *const &parameter_pt, Vector< double > &dres_dparam)
Calculate the derivatives of the residuals with respect to a parameter.
Definition: elements.h:1038
void dof_pt_vector(Vector< double * > &dof_pt)
Return the vector of pointers to dof values.
Definition: elements.h:870
virtual void get_inner_product_vectors(Vector< unsigned > const &history_index, Vector< Vector< double >> &inner_product_vector)
Compute the vectors that when taken as a dot product with other history values give the inner product...
Definition: elements.h:1110
virtual void get_djacobian_and_dmass_matrix_dparameter(double *const &parameter_pt, Vector< double > &dres_dparam, DenseMatrix< double > &djac_dparam, DenseMatrix< double > &dmass_matrix_dparam)
Calculate the derivatives of the elemental Jacobian matrix mass matrix and residuals with respect to ...
Definition: elements.h:1065
virtual void get_jacobian(Vector< double > &residuals, DenseMatrix< double > &jacobian)
Calculate the elemental Jacobian matrix "d equation / d variable".
Definition: elements.h:994
virtual void get_djacobian_dparameter(double *const &parameter_pt, Vector< double > &dres_dparam, DenseMatrix< double > &djac_dparam)
Calculate the derivatives of the elemental Jacobian matrix and residuals with respect to a parameter.
Definition: elements.h:1050
virtual void get_jacobian_and_mass_matrix(Vector< double > &residuals, DenseMatrix< double > &jacobian, DenseMatrix< double > &mass_matrix)
Calculate the residuals and jacobian and elemental "mass" matrix, the matrix that multiplies the time...
Definition: elements.h:1020
A class that is used to assemble the augmented system that defines a Hopf bifurcation....
Vector< double > Phi
The real part of the null vector.
Vector< int > Count
A vector that is used to determine how many elements contribute to a particular equation....
double Omega
The critical frequency of the bifurcation.
void get_dresiduals_dparameter(GeneralisedElement *const &elem_pt, double *const &parameter_pt, Vector< double > &dres_dparam)
Overload the derivatives of the residuals with respect to a parameter to apply to the augmented syste...
~HopfHandler()
Destructor, return the problem to its original state, before the augmented system was added.
void solve_full_system()
Solve non-block system.
void get_djacobian_dparameter(GeneralisedElement *const &elem_pt, double *const &parameter_pt, Vector< double > &dres_dparam, DenseMatrix< double > &djac_dparam)
Overload the derivative of the residuals and jacobian with respect to a parameter so that it breaks.
void get_residuals(GeneralisedElement *const &elem_pt, Vector< double > &residuals)
Get the residuals.
void get_hessian_vector_products(GeneralisedElement *const &elem_pt, Vector< double > const &Y, DenseMatrix< double > const &C, DenseMatrix< double > &product)
Overload the hessian vector product function so that it breaks.
unsigned ndof(GeneralisedElement *const &elem_pt)
Get the number of elemental degrees of freedom.
Vector< double > C
A constant vector used to ensure that the null vector is not trivial.
void get_eigenfunction(Vector< DoubleVector > &eigenfunction)
Return the eigenfunction(s) associated with the bifurcation that has been detected in bifurcation tra...
Vector< double > Psi
The imaginary part of the null vector.
unsigned long eqn_number(GeneralisedElement *const &elem_pt, const unsigned &ieqn_local)
Get the global equation number of the local unknown.
unsigned Solve_which_system
Integer flag to indicate which system should be assembled. There are three possibilities....
Problem * Problem_pt
Pointer to the problem.
void get_jacobian(GeneralisedElement *const &elem_pt, Vector< double > &residuals, DenseMatrix< double > &jacobian)
Calculate the elemental Jacobian matrix "d equation / d variable".
HopfHandler(Problem *const &problem_pt, double *const &parameter_pt)
Constructor.
unsigned Ndof
Store the number of degrees of freedom in the non-augmented problem.
void solve_complex_system()
Set to solve the complex system.
void solve_standard_system()
Set to solve the standard system.
double * Parameter_pt
Pointer to the parameter.
Describes the distribution of a distributable linear algebra type object. Typically this is a contain...
unsigned first_row() const
access function for the first row on this processor. If not distributed then this is just zero.
void build(const OomphCommunicator *const comm_pt, const unsigned &first_row, const unsigned &nrow_local, const unsigned &nrow=0)
Sets the distribution. Takes first_row, nrow_local and nrow as arguments. If nrow is not provided or ...
bool built() const
if the communicator_pt is null then the distribution is not setup then false is returned,...
unsigned nrow_local() const
access function for the num of local rows on this processor. If no MPI then Nrow is returned.
Base class for all linear solvers. This merely defines standard interfaces for linear solvers,...
Definition: linear_solver.h:68
virtual void solve(Problem *const &problem_pt, DoubleVector &result)=0
Solver: Takes pointer to problem and returns the results vector which contains the solution of the li...
virtual void enable_resolve()
Enable resolve (i.e. store matrix and/or LU decomposition, say) Virtual so it can be overloaded to pe...
virtual void resolve(const DoubleVector &rhs, DoubleVector &result)
Resolve the system defined by the last assembled jacobian and the rhs vector. Solution is returned in...
bool Enable_resolve
Boolean that indicates whether the matrix (or its factors, in the case of direct solver) should be st...
Definition: linear_solver.h:73
virtual void disable_resolve()
Disable resolve (i.e. store matrix and/or LU decomposition, say) This function simply resets an inter...
bool is_resolve_enabled() const
Boolean flag indicating if resolves are enabled.
GeneralisedElement *& element_pt(const unsigned long &e)
Return pointer to element e.
Definition: mesh.h:448
unsigned long nelement() const
Return number of elements in the mesh.
Definition: mesh.h:590
An OomphLibError object which should be thrown when an run-time error is encountered....
A class that is used to assemble the augmented system that defines a pitchfork (symmetry-breaking) bi...
LinearAlgebraDistribution * Dof_distribution_pt
Store the original dof distribution.
Problem * Problem_pt
Pointer to the problem.
void synchronise()
Function that is used to perform any synchronisation required during the solution.
void solve_full_system()
Solve non-block system.
DoubleVectorWithHaloEntries Y
Storage for the null vector.
AssemblyHandler * Assembly_handler_pt
Pointer to the underlying (original) assembly handler.
void get_residuals(GeneralisedElement *const &elem_pt, Vector< double > &residuals)
Get the residuals.
double Sigma
A slack variable used to specify the amount of antisymmetry in the solution.
unsigned Solve_which_system
Integer flag to indicate which system should be assembled. There are three possibilities....
void get_dresiduals_dparameter(GeneralisedElement *const &elem_pt, double *const &parameter_pt, Vector< double > &dres_dparam)
Overload the derivatives of the residuals with respect to a parameter to apply to the augmented syste...
~PitchForkHandler()
Destructor, return the problem to its original state, before the augmented system was added.
void get_hessian_vector_products(GeneralisedElement *const &elem_pt, Vector< double > const &Y, DenseMatrix< double > const &C, DenseMatrix< double > &product)
Overload the hessian vector product function so that it breaks.
DoubleVectorWithHaloEntries C
A constant vector used to ensure that the null vector is not trivial.
unsigned Ndof
Store the number of degrees of freedom in the non-augmented problem.
PitchForkHandler(Problem *const &problem_pt, AssemblyHandler *const &assembly_handler_pt, double *const &parameter_pt, const DoubleVector &symmetry_vector)
Constructor, initialise the systems.
void get_eigenfunction(Vector< DoubleVector > &eigenfunction)
Return the eigenfunction(s) associated with the bifurcation that has been detected in bifurcation tra...
DoubleVectorWithHaloEntries Psi
A constant vector that is specifies the symmetry being broken.
double * Parameter_pt
Storage for the pointer to the parameter.
void get_djacobian_dparameter(GeneralisedElement *const &elem_pt, double *const &parameter_pt, Vector< double > &dres_dparam, DenseMatrix< double > &djac_dparam)
Overload the derivative of the residuals and jacobian with respect to a parameter so that it breaks.
void get_jacobian(GeneralisedElement *const &elem_pt, Vector< double > &residuals, DenseMatrix< double > &jacobian)
Calculate the elemental Jacobian matrix "d equation / d variable".
unsigned long eqn_number(GeneralisedElement *const &elem_pt, const unsigned &ieqn_local)
Get the global equation number of the local unknown.
bool Distributed
Boolean to indicate whether the problem is distributed.
unsigned global_eqn_number(const unsigned &i)
Function that is used to return map the global equations using the simplistic numbering scheme into t...
Vector< unsigned > Global_eqn_number
A vector that is used to map the global equations to their actual location in a distributed problem.
void solve_augmented_block_system()
Set to solve the augmented block system.
void solve_block_system()
Set to solve the block system.
DoubleVectorWithHaloEntries Count
A vector that is used to determine how many elements contribute to a particular equation....
unsigned ndof(GeneralisedElement *const &elem_pt)
Get the number of elemental degrees of freedom.
LinearAlgebraDistribution * Augmented_dof_distribution_pt
The augmented distribution.
////////////////////////////////////////////////////////////////// //////////////////////////////////...
Definition: problem.h:154
double *& dof_pt(const unsigned &i)
Pointer to i-th dof in the problem.
Definition: problem.h:1855
DoubleVectorHaloScheme * Halo_scheme_pt
Pointer to the halo scheme for any global vectors that have the Dof_distribution.
Definition: problem.h:580
void setup_dof_halo_scheme()
Function that is used to setup the halo scheme.
Definition: problem.cc:387
unsigned long ndof() const
Return the number of dofs.
Definition: problem.h:1704
AssemblyHandler *& assembly_handler_pt()
Return a pointer to the assembly handler object.
Definition: problem.h:1590
double * global_dof_pt(const unsigned &i)
Return a pointer to the dof, indexed by global equation number which may be haloed or stored locally....
Definition: problem.h:1794
Vector< Vector< unsigned > > Sparse_assemble_with_arrays_previous_allocation
the number of elements in each row of a compressed matrix in the previous matrix assembly.
Definition: problem.h:670
virtual void actions_after_change_in_bifurcation_parameter()
Actions that are to be performed after a change in the parameter that is being varied as part of the ...
Definition: problem.h:1171
OomphCommunicator * communicator_pt()
access function to the oomph-lib communicator
Definition: problem.h:1266
LinearSolver *& linear_solver_pt()
Return a pointer to the linear solver object.
Definition: problem.h:1486
virtual void get_residuals(DoubleVector &residuals)
Return the fully-assembled residuals Vector for the problem: Virtual so it can be overloaded in for m...
Definition: problem.cc:3801
double & dof(const unsigned &i)
i-th dof in the problem
Definition: problem.h:1843
int & sign_of_jacobian()
Access function for the sign of the global jacobian matrix. This will be set by the linear solver,...
Definition: problem.h:2529
Vector< double * > Dof_pt
Vector of pointers to dofs.
Definition: problem.h:557
Mesh *& mesh_pt()
Return a pointer to the global mesh.
Definition: problem.h:1300
void get_hessian_vector_products(DoubleVectorWithHaloEntries const &Y, Vector< DoubleVectorWithHaloEntries > const &C, Vector< DoubleVectorWithHaloEntries > &product)
Return the product of the global hessian (derivative of Jacobian matrix with respect to all variables...
Definition: problem.cc:7963
LinearAlgebraDistribution * Dof_distribution_pt
The distribution of the DOFs in this problem. This object is created in the Problem constructor and s...
Definition: problem.h:463
virtual void actions_before_newton_convergence_check()
Any actions that are to be performed before the residual is checked in the Newton method,...
Definition: problem.h:1068
void get_derivative_wrt_global_parameter(double *const &parameter_pt, DoubleVector &result)
Get the derivative of the entire residuals vector wrt a global parameter, used in continuation proble...
Definition: problem.cc:7865
bool distributed() const
If we have MPI return the "problem has been distributed" flag, otherwise it can't be distributed so r...
Definition: problem.h:828
//////////////////////////////////////////////////////////////////// ////////////////////////////////...