assembly_handler.h
Go to the documentation of this file.
1 // LIC// ====================================================================
2 // LIC// This file forms part of oomph-lib, the object-oriented,
3 // LIC// multi-physics finite-element library, available
4 // LIC// at http://www.oomph-lib.org.
5 // LIC//
6 // LIC// Copyright (C) 2006-2024 Matthias Heil and Andrew Hazel
7 // LIC//
8 // LIC// This library is free software; you can redistribute it and/or
9 // LIC// modify it under the terms of the GNU Lesser General Public
10 // LIC// License as published by the Free Software Foundation; either
11 // LIC// version 2.1 of the License, or (at your option) any later version.
12 // LIC//
13 // LIC// This library is distributed in the hope that it will be useful,
14 // LIC// but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // LIC// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
16 // LIC// Lesser General Public License for more details.
17 // LIC//
18 // LIC// You should have received a copy of the GNU Lesser General Public
19 // LIC// License along with this library; if not, write to the Free Software
20 // LIC// Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
21 // LIC// 02110-1301 USA.
22 // LIC//
23 // LIC// The authors may be contacted at oomph-lib@maths.man.ac.uk.
24 // LIC//
25 // LIC//====================================================================
26 // A class that is used to assemble the linear systems solved
27 // by oomph-lib.
28 
29 // Include guards to prevent multiple inclusion of this header
30 #ifndef OOMPH_ASSEMBLY_HANDLER_CLASS_HEADER
31 #define OOMPH_ASSEMBLY_HANDLER_CLASS_HEADER
32 
33 // Config header generated by autoconfig
34 #ifdef HAVE_CONFIG_H
35 #include <oomph-lib-config.h>
36 #endif
37 
38 // OOMPH-LIB headers
39 #include "matrices.h"
40 #include "linear_solver.h"
42 
43 namespace oomph
44 {
45  // Forward class definition of the element
46  class GeneralisedElement;
47 
48  // Forward class definition of the problem
49  class Problem;
50 
51  //=============================================================
52  /// A class that is used to define the functions used to
53  /// assemble the elemental contributions to the
54  /// residuals vector and Jacobian matrix that define
55  /// the problem being solved.
56  /// The main use
57  /// of this class is to assemble and solve the augmented systems
58  /// used in bifurcation detection and tracking. The default
59  /// implementation merely calls the underlying elemental
60  /// functions with no augmentation.
61  //===============================================================
63  {
64  public:
65  /// Empty constructor
67 
68  /// Return the number of degrees of freedom in the element elem_pt
69  virtual unsigned ndof(GeneralisedElement* const& elem_pt);
70 
71  /// Return vector of dofs at time level t in the element elem_pt
72  virtual void dof_vector(GeneralisedElement* const& elem_pt,
73  const unsigned& t,
74  Vector<double>& dof);
75 
76  /// Return vector of pointers to dofs in the element elem_pt
77  virtual void dof_pt_vector(GeneralisedElement* const& elem_pt,
78  Vector<double*>& dof_pt);
79 
80  /// Return the t-th level of storage associated with the i-th
81  /// (local) dof stored in the problem
82  virtual double& local_problem_dof(Problem* const& problem_pt,
83  const unsigned& t,
84  const unsigned& i);
85 
86  /// Return the global equation number of the local unknown ieqn_local
87  /// in elem_pt.
88  virtual unsigned long eqn_number(GeneralisedElement* const& elem_pt,
89  const unsigned& ieqn_local);
90 
91  /// Return the contribution to the residuals of the element elem_pt
92  virtual void get_residuals(GeneralisedElement* const& elem_pt,
93  Vector<double>& residuals);
94 
95  /// Calculate the elemental Jacobian matrix "d equation
96  /// / d variable" for elem_pt.
97  virtual void get_jacobian(GeneralisedElement* const& elem_pt,
98  Vector<double>& residuals,
99  DenseMatrix<double>& jacobian);
100 
101  /// Calculate all desired vectors and matrices
102  /// provided by the element elem_pt.
103  virtual void get_all_vectors_and_matrices(
104  GeneralisedElement* const& elem_pt,
105  Vector<Vector<double>>& vec,
106  Vector<DenseMatrix<double>>& matrix);
107 
108  /// Calculate the derivative of the residuals with respect to
109  /// a parameter
110  virtual void get_dresiduals_dparameter(GeneralisedElement* const& elem_pt,
111  double* const& parameter_pt,
112  Vector<double>& dres_dparam);
113 
114  /// Calculate the derivative of the residuals and jacobian
115  /// with respect to a parameter
116  virtual void get_djacobian_dparameter(GeneralisedElement* const& elem_pt,
117  double* const& parameter_pt,
118  Vector<double>& dres_dparam,
119  DenseMatrix<double>& djac_dparam);
120 
121  /// Calculate the product of the Hessian (derivative of Jacobian with
122  /// respect to all variables) an eigenvector, Y, and
123  /// other specified vectors, C
124  /// (d(J_{ij})/d u_{k}) Y_{j} C_{k}
125  virtual void get_hessian_vector_products(GeneralisedElement* const& elem_pt,
126  Vector<double> const& Y,
127  DenseMatrix<double> const& C,
128  DenseMatrix<double>& product);
129 
130 
131  /// Return an unsigned integer to indicate whether the
132  /// handler is a bifurcation tracking handler. The default
133  /// is zero (not)
134  virtual int bifurcation_type() const
135  {
136  return 0;
137  }
138 
139  /// Return a pointer to the
140  /// bifurcation parameter in bifurcation tracking problems
141  virtual double* bifurcation_parameter_pt() const;
142 
143  /// Return the eigenfunction(s) associated with the bifurcation that
144  /// has been detected in bifurcation tracking problems
145  virtual void get_eigenfunction(Vector<DoubleVector>& eigenfunction);
146 
147  /// Compute the inner products of the given vector of pairs of
148  /// history values over the element.
149  virtual void get_inner_products(
150  GeneralisedElement* const& elem_pt,
151  Vector<std::pair<unsigned, unsigned>> const& history_index,
152  Vector<double>& inner_product);
153 
154  /// Compute the vectors that when taken as a dot product with
155  /// other history values give the inner product over the element
156  virtual void get_inner_product_vectors(
157  GeneralisedElement* const& elem_pt,
158  Vector<unsigned> const& history_index,
159  Vector<Vector<double>>& inner_product_vector);
160 
161 #ifdef OOMPH_HAS_MPI
162 
163  /// Function that is used to perform any synchronisation
164  /// required during the solution
165  virtual void synchronise() {}
166 #endif
167 
168  /// Empty virtual destructor
169  virtual ~AssemblyHandler() {}
170  };
171 
172 
173  //=============================================================
174  /// A class that is used to define the functions used to
175  /// assemble and invert the mass matrix when taking an explicit
176  /// timestep. The idea is simply to replace the jacobian matrix
177  /// with the mass matrix and then our standard linear solvers
178  /// will solve the required system
179  //===============================================================
181  {
182  public:
183  /// Empty Constructor
185 
186  /// Return the number of degrees of freedom in the element elem_pt
187  unsigned ndof(GeneralisedElement* const& elem_pt);
188 
189  /// Return the global equation number of the local unknown ieqn_local
190  /// in elem_pt.
191  unsigned long eqn_number(GeneralisedElement* const& elem_pt,
192  const unsigned& ieqn_local);
193 
194  /// Return the contribution to the residuals of the element elem_pt
195  /// This is deliberately broken in our eigenproblem
196  void get_residuals(GeneralisedElement* const& elem_pt,
197  Vector<double>& residuals);
198 
199  /// Calculate the elemental Jacobian matrix "d equation
200  /// / d variable" for elem_pt. Again deliberately broken in the eigenproblem
201  void get_jacobian(GeneralisedElement* const& elem_pt,
202  Vector<double>& residuals,
203  DenseMatrix<double>& jacobian);
204 
205  /// Calculate all desired vectors and matrices
206  /// provided by the element elem_pt.
208  Vector<Vector<double>>& vec,
209  Vector<DenseMatrix<double>>& matrix);
210 
211  /// Empty virtual destructor
213  };
214 
215 
216  //=============================================================
217  /// A class that is used to define the functions used to
218  /// assemble the elemental contributions to the
219  /// mass matrix and jacobian (stiffness) matrix that define
220  /// a generalised eigenproblem.
221  //===============================================================
223  {
224  /// Storage for the real shift
225  double Sigma_real;
226 
227  public:
228  /// Constructor, sets the value of the real shift
229  EigenProblemHandler(const double& sigma_real) : Sigma_real(sigma_real) {}
230 
231  /// Return the number of degrees of freedom in the element elem_pt
232  unsigned ndof(GeneralisedElement* const& elem_pt);
233 
234  /// Return the global equation number of the local unknown ieqn_local
235  /// in elem_pt.
236  unsigned long eqn_number(GeneralisedElement* const& elem_pt,
237  const unsigned& ieqn_local);
238 
239  /// Return the contribution to the residuals of the element elem_pt
240  /// This is deliberately broken in our eigenproblem
241  void get_residuals(GeneralisedElement* const& elem_pt,
242  Vector<double>& residuals);
243 
244  /// Calculate the elemental Jacobian matrix "d equation
245  /// / d variable" for elem_pt. Again deliberately broken in the eigenproblem
246  void get_jacobian(GeneralisedElement* const& elem_pt,
247  Vector<double>& residuals,
248  DenseMatrix<double>& jacobian);
249 
250  /// Calculate all desired vectors and matrices
251  /// provided by the element elem_pt.
253  Vector<Vector<double>>& vec,
254  Vector<DenseMatrix<double>>& matrix);
255 
256  /// Empty virtual destructor
258  };
259 
260 
261  //=============================================================
262  /// A class that is used to assemble the residuals in
263  /// parallel by overloading the get_all_vectors_and_matrices,
264  /// so that only the residuals are returned. This ensures that
265  /// the (moderately complex) distributed parallel assembly
266  /// loops are only in one place.
267  //===============================================================
269  {
270  /// The original assembly handler
272 
273  public:
274  /// Constructor, set the original assembly handler
275  ParallelResidualsHandler(AssemblyHandler* const& assembly_handler_pt)
276  : Assembly_handler_pt(assembly_handler_pt)
277  {
278  }
279 
280  /// Use underlying assembly handler to return the number of
281  /// degrees of freedom in the element elem_pt
282  unsigned ndof(GeneralisedElement* const& elem_pt)
283  {
284  return Assembly_handler_pt->ndof(elem_pt);
285  }
286 
287  /// Use underlying AssemblyHandler to return the
288  /// global equation number of the local unknown ieqn_local in elem_pt.
289  unsigned long eqn_number(GeneralisedElement* const& elem_pt,
290  const unsigned& ieqn_local)
291  {
292  return Assembly_handler_pt->eqn_number(elem_pt, ieqn_local);
293  }
294 
295  /// Use underlying AssemblyHandler to return
296  /// the contribution to the residuals of the element elem_pt
297  void get_residuals(GeneralisedElement* const& elem_pt,
298  Vector<double>& residuals)
299  {
300  Assembly_handler_pt->get_residuals(elem_pt, residuals);
301  }
302 
303 
304  /// Use underlying AssemblyHandler to
305  /// Calculate the elemental Jacobian matrix "d equation
306  /// / d variable" for elem_pt.
307  void get_jacobian(GeneralisedElement* const& elem_pt,
308  Vector<double>& residuals,
309  DenseMatrix<double>& jacobian)
310  {
311  Assembly_handler_pt->get_jacobian(elem_pt, residuals, jacobian);
312  }
313 
314 
315  /// Calculate all desired vectors and matrices
316  /// provided by the element elem_pt
317  /// This function calls only the get_residuals function associated
318  /// with the original assembly handler
320  Vector<Vector<double>>& vec,
321  Vector<DenseMatrix<double>>& matrix)
322  {
323  Assembly_handler_pt->get_residuals(elem_pt, vec[0]);
324  }
325 
326  /// Empty virtual destructor
328  };
329 
330 
331  //==========================================================================
332  /// A class that is used to define the functions used when assembling
333  /// the derivatives of the residuals with respect to a parameter.
334  /// The idea is to replace get_residuals with get_dresiduals_dparameter with
335  /// a particular parameter and assembly handler that are passed on
336  /// assembly.
337  //==========================================================================
339  {
340  /// The value of the parameter
341  double* Parameter_pt;
342 
343  /// The original assembly handler
345 
346  public:
347  /// Store the original assembly handler and parameter
348  ParameterDerivativeHandler(AssemblyHandler* const& assembly_handler_pt,
349  double* const& parameter_pt)
350  : Parameter_pt(parameter_pt), Assembly_handler_pt(assembly_handler_pt)
351  {
352  }
353 
354  /// Return the number of degrees of freedom in the element elem_pt
355  /// Pass through to the original assembly handler
356  unsigned ndof(GeneralisedElement* const& elem_pt)
357  {
358  return Assembly_handler_pt->ndof(elem_pt);
359  }
360 
361  /// Return the global equation number of the local unknown ieqn_local
362  /// in elem_pt.Pass through to the original assembly handler
363  unsigned long eqn_number(GeneralisedElement* const& elem_pt,
364  const unsigned& ieqn_local)
365  {
366  return Assembly_handler_pt->eqn_number(elem_pt, ieqn_local);
367  }
368 
369  /// Return the contribution to the residuals of the element elem_pt
370  /// by using the derivatives
371  void get_residuals(GeneralisedElement* const& elem_pt,
372  Vector<double>& residuals)
373  {
375  elem_pt, Parameter_pt, residuals);
376  }
377 
378 
379  /// Calculate the elemental Jacobian matrix "d equation
380  /// / d variable" for elem_pt.
381  /// Overloaded to return the derivatives wrt the parameter
382  void get_jacobian(GeneralisedElement* const& elem_pt,
383  Vector<double>& residuals,
384  DenseMatrix<double>& jacobian)
385  {
387  elem_pt, Parameter_pt, residuals, jacobian);
388  }
389  };
390 
391 
392  //========================================================================
393  /// A custom linear solver class that is used to solve a block-factorised
394  /// version of the Fold bifurcation detection problem.
395  //========================================================================
397  {
398  /// Pointer to the original linear solver
400 
401  // Pointer to the problem, used in the resolve
403 
404  /// Pointer to the storage for the vector alpha
406 
407  /// Pointer to the storage for the vector e
409 
410  public:
411  /// Constructor, inherits the original linear solver
414  {
415  }
416 
417  /// Destructor: clean up the allocated memory
419 
420  /// The solve function uses the block factorisation
421  void solve(Problem* const& problem_pt, DoubleVector& result);
422 
423  /// The linear-algebra-type solver does not make sense.
424  /// The interface is deliberately broken
425  void solve(DoubleMatrixBase* const& matrix_pt,
426  const DoubleVector& rhs,
427  DoubleVector& result)
428  {
429  throw OomphLibError(
430  "Linear-algebra interface does not make sense for this linear solver\n",
431  OOMPH_CURRENT_FUNCTION,
432  OOMPH_EXCEPTION_LOCATION);
433  }
434 
435  /// The linear-algebra-type solver does not make sense.
436  /// The interface is deliberately broken
437  void solve(DoubleMatrixBase* const& matrix_pt,
438  const Vector<double>& rhs,
439  Vector<double>& result)
440  {
441  throw OomphLibError(
442  "Linear-algebra interface does not make sense for this linear solver\n",
443  OOMPH_CURRENT_FUNCTION,
444  OOMPH_EXCEPTION_LOCATION);
445  }
446 
447  /// The resolve function also uses the block factorisation
448  void resolve(const DoubleVector& rhs, DoubleVector& result);
449 
450  /// Access function to the original linear solver
452  {
453  return Linear_solver_pt;
454  }
455  };
456 
457 
458  //===================================================================
459  /// A class that is used to assemble the augmented system that defines
460  /// a fold (saddle-node) or limit point. The "standard" problem must
461  /// be a function of a global paramter \f$\lambda\f$, and a
462  /// solution is \f$R(u,\lambda) = 0 \f$ , where \f$ u \f$ are the unknowns
463  /// in the problem. A limit point is formally specified by the augmented
464  /// system of size \f$ 2N+1 \f$
465  /// \f[ R(u,\lambda) = 0, \f]
466  /// \f[ Jy = 0, \f]
467  /// \f[\phi\cdot y = 1. \f]
468  /// In the above \f$ J \f$ is the usual Jacobian matrix, \f$ dR/du \f$, and
469  /// \f$ \phi \f$ is a constant vector that is chosen to
470  /// ensure that the null vector, \f$ y \f$, is not trivial.
471  //======================================================================
473  {
475 
476  /// A little private enum to determine whether we are solving
477  /// the block system or not
478  enum
479  {
483  };
484 
485  /// Integer flag to indicate which system should be assembled.
486  /// There are three possibilities. The full augmented system (0),
487  /// the non-augmented jacobian system (1), a system in which the
488  /// jacobian is augmented by 1 row and column to ensure that it is
489  /// non-singular (2). See the enum above
491 
492  /// Pointer to the problem
494 
495  /// Store the number of degrees of freedom in the non-augmented
496  /// problem
497  unsigned Ndof;
498 
499  /// A constant vector used to ensure that the null vector
500  /// is not trivial
502 
503  /// Storage for the null vector
505 
506  /// A vector that is used to determine how many elements
507  /// contribute to a particular equation. It is used to ensure
508  /// that the global system is correctly formulated.
510 
511  /// Storage for the pointer to the parameter
512  double* Parameter_pt;
513 
514  public:
515  /// Constructor:
516  /// initialise the fold handler, by setting initial guesses
517  /// for Y, Phi and calculating count. If the system changes, a new
518  /// fold handler must be constructed
519  FoldHandler(Problem* const& problem_pt, double* const& parameter_pt);
520 
521 
522  /// Constructor in which initial eigenvector can be passed
523  FoldHandler(Problem* const& problem_pt,
524  double* const& parameter_pt,
525  const DoubleVector& eigenvector);
526 
527  /// Constructor in which initial eigenvector
528  /// and normalisation can be passed
529  FoldHandler(Problem* const& problem_pt,
530  double* const& parameter_pt,
531  const DoubleVector& eigenvector,
532  const DoubleVector& normalisation);
533 
534 
535  /// Destructor, return the problem to its original state
536  /// before the augmented system was added
537  ~FoldHandler();
538 
539  /// Get the number of elemental degrees of freedom
540  unsigned ndof(GeneralisedElement* const& elem_pt);
541 
542  /// Get the global equation number of the local unknown
543  unsigned long eqn_number(GeneralisedElement* const& elem_pt,
544  const unsigned& ieqn_local);
545 
546  /// Get the residuals
547  void get_residuals(GeneralisedElement* const& elem_pt,
548  Vector<double>& residuals);
549 
550  /// Calculate the elemental Jacobian matrix "d equation
551  /// / d variable".
552  void get_jacobian(GeneralisedElement* const& elem_pt,
553  Vector<double>& residuals,
554  DenseMatrix<double>& jacobian);
555 
556  /// Overload the derivatives of the residuals with respect to
557  /// a parameter to apply to the augmented system
558  void get_dresiduals_dparameter(GeneralisedElement* const& elem_pt,
559  double* const& parameter_pt,
560  Vector<double>& dres_dparam);
561 
562  /// Overload the derivative of the residuals and jacobian
563  /// with respect to a parameter so that it breaks
564  void get_djacobian_dparameter(GeneralisedElement* const& elem_pt,
565  double* const& parameter_pt,
566  Vector<double>& dres_dparam,
567  DenseMatrix<double>& djac_dparam);
568 
569  /// Overload the hessian vector product function so that
570  /// it breaks
571  void get_hessian_vector_products(GeneralisedElement* const& elem_pt,
572  Vector<double> const& Y,
573  DenseMatrix<double> const& C,
574  DenseMatrix<double>& product);
575 
576  /// Indicate that we are tracking a fold bifurcation by returning 1
577  int bifurcation_type() const
578  {
579  return 1;
580  }
581 
582  /// Return a pointer to the
583  /// bifurcation parameter in bifurcation tracking problems
584  double* bifurcation_parameter_pt() const
585  {
586  return Parameter_pt;
587  }
588 
589  /// Return the eigenfunction(s) associated with the bifurcation that
590  /// has been detected in bifurcation tracking problems
591  void get_eigenfunction(Vector<DoubleVector>& eigenfunction);
592 
593  /// Set to solve the augmented block system
595 
596  /// Set to solve the block system
597  void solve_block_system();
598 
599  /// Solve non-block system
600  void solve_full_system();
601  };
602 
603 
604  //========================================================================
605  /// A custom linear solver class that is used to solve a block-factorised
606  /// version of the PitchFork bifurcation detection problem.
607  //========================================================================
609  {
610  /// Pointer to the original linear solver
612 
613  /// Pointer to the problem, used in the resolve
615 
616  /// Pointer to the storage for the vector b
618 
619  /// Pointer to the storage for the vector c
621 
622  /// Pointer to the storage for the vector d
624 
625  /// Pointer to the storage for the vector of derivatives with respect
626  /// to the bifurcation parameter
628 
629  public:
630  /// Constructor, inherits the original linear solver
633  Problem_pt(0),
634  B_pt(0),
635  C_pt(0),
636  D_pt(0),
637  dJy_dparam_pt(0)
638  {
639  }
640 
641  /// Destructor: clean up the allocated memory
643 
644  /// The solve function uses the block factorisation
645  void solve(Problem* const& problem_pt, DoubleVector& result);
646 
647  /// The linear-algebra-type solver does not make sense.
648  /// The interface is deliberately broken
649  void solve(DoubleMatrixBase* const& matrix_pt,
650  const DoubleVector& rhs,
651  DoubleVector& result)
652  {
653  throw OomphLibError(
654  "Linear-algebra interface does not make sense for this linear solver\n",
655  OOMPH_CURRENT_FUNCTION,
656  OOMPH_EXCEPTION_LOCATION);
657  }
658 
659  /// The linear-algebra-type solver does not make sense.
660  /// The interface is deliberately broken
661  void solve(DoubleMatrixBase* const& matrix_pt,
662  const Vector<double>& rhs,
663  Vector<double>& result)
664  {
665  throw OomphLibError(
666  "Linear-algebra interface does not make sense for this linear solver\n",
667  OOMPH_CURRENT_FUNCTION,
668  OOMPH_EXCEPTION_LOCATION);
669  }
670 
671 
672  /// The resolve function also uses the block factorisation
673  void resolve(const DoubleVector& rhs, DoubleVector& result);
674 
675  /// Access function to the original linear solver
677  {
678  return Linear_solver_pt;
679  }
680  };
681 
682 
683  //========================================================================
684  /// A custom linear solver class that is used to solve a block-factorised
685  /// version of the PitchFork bifurcation detection problem.
686  //========================================================================
688  {
689  /// Pointer to the original linear solver
691 
692  /// Pointer to the problem, used in the resolve
694 
695  /// Pointer to the storage for the vector alpha
697 
698  /// Pointer to the storage for the vector e
700 
701  public:
702  /// Constructor, inherits the original linear solver
705  {
706  }
707 
708  /// Destructor: clean up the allocated memory
710 
711  /// The solve function uses the block factorisation
712  void solve(Problem* const& problem_pt, DoubleVector& result);
713 
714  /// The linear-algebra-type solver does not make sense.
715  /// The interface is deliberately broken
716  void solve(DoubleMatrixBase* const& matrix_pt,
717  const DoubleVector& rhs,
718  DoubleVector& result)
719  {
720  throw OomphLibError(
721  "Linear-algebra interface does not make sense for this linear solver\n",
722  OOMPH_CURRENT_FUNCTION,
723  OOMPH_EXCEPTION_LOCATION);
724  }
725 
726  /// The linear-algebra-type solver does not make sense.
727  /// The interface is deliberately broken
728  void solve(DoubleMatrixBase* const& matrix_pt,
729  const Vector<double>& rhs,
730  Vector<double>& result)
731  {
732  throw OomphLibError(
733  "Linear-algebra interface does not make sense for this linear solver\n",
734  OOMPH_CURRENT_FUNCTION,
735  OOMPH_EXCEPTION_LOCATION);
736  }
737 
738 
739  /// The resolve function also uses the block factorisation
740  void resolve(const DoubleVector& rhs, DoubleVector& result);
741 
742  /// Access function to the original linear solver
744  {
745  return Linear_solver_pt;
746  }
747  };
748 
749  //========================================================================
750  /// A class that is used to assemble the augmented system that defines
751  /// a pitchfork (symmetry-breaking) bifurcation. The "standard" problem
752  /// must be a function of a global parameter \f$ \lambda \f$ and a solution
753  /// is \f$R(u,\lambda) = 0\f$, where \f$u\f$ are the unknowns in the
754  /// problem. A pitchfork bifurcation may be specified by the augmented
755  /// system of size \f$2N+2\f$.
756  /// \f[ R(u,\lambda) + \sigma \psi = 0,\f]
757  /// \f[ Jy = 0,\f]
758  /// \f[ \langle u, \phi \rangle = 0, \f]
759  /// \f[ \phi \cdot y = 1.\f]
760  /// In the abovem \f$J\f$ is the usual Jacobian matrix, \f$dR/du\f$
761  /// and \f$\phi\f$ is a constant vector that is chosen to ensure that
762  /// the null vector, \f$y\f$, is not trivial.
763  /// Here \f$\sigma \f$ is a slack variable that is used to enforce the
764  /// constraint \f$ \langle u, \phi \rangle = 0 \f$ --- the inner product
765  /// of the solution with the chosen symmetry vector is zero. At the
766  /// bifurcation \f$ \sigma \f$ should be very close to zero. Note that
767  /// this formulation means that any odd symmetry in the problem must
768  /// be about zero. Moreover, we use the dot product of two vectors to
769  /// calculate the inner product, rather than an integral over the
770  /// domain and so the mesh must be symmetric in the appropriate directions.
771  //========================================================================
773  {
776 
777  /// A little private enum to determine whether we are solving
778  /// the block system or not
779  enum
780  {
784  };
785 
786  /// Integer flag to indicate which system should be assembled.
787  /// There are three possibilities. The full augmented system (0),
788  /// the non-augmented jacobian system (1), a system in which the
789  /// jacobian is augmented by 1 row and column to ensure that it is
790  /// non-singular (2). See the enum above
792 
793  /// Pointer to the problem
795 
796  /// Pointer to the underlying (original) assembly handler
798 
799  /// Store the number of degrees of freedom in the non-augmented
800  /// problem
801  unsigned Ndof;
802 
803  /// Store the original dof distribution
805 
806  /// The augmented distribution
808 
809  /// A slack variable used to specify the amount of antisymmetry
810  /// in the solution.
811  double Sigma;
812 
813  /// Storage for the null vector
815 
816  /// A constant vector that is specifies the symmetry being broken
818 
819  /// A constant vector used to ensure that the null vector
820  /// is not trivial
822 
823  /// A vector that is used to determine how many elements
824  /// contribute to a particular equation. It is used to ensure
825  /// that the global system is correctly formulated.
826  /// This should really be an integer, but its double so that
827  /// the distribution can be used
829 
830  /// A vector that is used to map the global equations to their
831  /// actual location in a distributed problem
833 
834  /// Storage for the pointer to the parameter
835  double* Parameter_pt;
836 
837  // The total number of elements in the problem
838  unsigned Nelement;
839 
840 #ifdef OOMPH_HAS_MPI
841  /// Boolean to indicate whether the problem is distributed
843 #endif
844 
845  /// Function that is used to return map the global equations
846  /// using the simplistic numbering scheme into the actual distributed
847  /// scheme
848  inline unsigned global_eqn_number(const unsigned& i)
849  {
850 #ifdef OOMPH_HAS_MPI
851  // If the problem is distributed I have to do something
852  if (Distributed)
853  {
854  return Global_eqn_number[i];
855  }
856  // Otherwise it's just i
857  else
858 #endif
859  {
860  return i;
861  }
862  }
863 
864  public:
865  /// Constructor, initialise the systems
866  PitchForkHandler(Problem* const& problem_pt,
867  AssemblyHandler* const& assembly_handler_pt,
868  double* const& parameter_pt,
869  const DoubleVector& symmetry_vector);
870 
871  /// Destructor, return the problem to its original state,
872  /// before the augmented system was added
874 
875  // Has this been called
876 
877  /// Get the number of elemental degrees of freedom
878  unsigned ndof(GeneralisedElement* const& elem_pt);
879 
880  /// Get the global equation number of the local unknown
881  unsigned long eqn_number(GeneralisedElement* const& elem_pt,
882  const unsigned& ieqn_local);
883 
884  /// Get the residuals
885  void get_residuals(GeneralisedElement* const& elem_pt,
886  Vector<double>& residuals);
887 
888  /// Calculate the elemental Jacobian matrix "d equation
889  /// / d variable".
890  void get_jacobian(GeneralisedElement* const& elem_pt,
891  Vector<double>& residuals,
892  DenseMatrix<double>& jacobian);
893 
894  /// Overload the derivatives of the residuals with respect to
895  /// a parameter to apply to the augmented system
896  void get_dresiduals_dparameter(GeneralisedElement* const& elem_pt,
897  double* const& parameter_pt,
898  Vector<double>& dres_dparam);
899 
900  /// Overload the derivative of the residuals and jacobian
901  /// with respect to a parameter so that it breaks
902  void get_djacobian_dparameter(GeneralisedElement* const& elem_pt,
903  double* const& parameter_pt,
904  Vector<double>& dres_dparam,
905  DenseMatrix<double>& djac_dparam);
906 
907  /// Overload the hessian vector product function so that
908  /// it breaks
909  void get_hessian_vector_products(GeneralisedElement* const& elem_pt,
910  Vector<double> const& Y,
911  DenseMatrix<double> const& C,
912  DenseMatrix<double>& product);
913 
914 
915  /// Indicate that we are tracking a pitchfork
916  /// bifurcation by returning 2
917  int bifurcation_type() const
918  {
919  return 2;
920  }
921 
922  /// Return a pointer to the
923  /// bifurcation parameter in bifurcation tracking problems
924  double* bifurcation_parameter_pt() const
925  {
926  return Parameter_pt;
927  }
928 
929  /// Return the eigenfunction(s) associated with the bifurcation that
930  /// has been detected in bifurcation tracking problems
931  void get_eigenfunction(Vector<DoubleVector>& eigenfunction);
932 
933 #ifdef OOMPH_HAS_MPI
934  /// Function that is used to perform any synchronisation
935  /// required during the solution
936  void synchronise();
937 #endif
938 
939 
940  /// Set to solve the augmented block system
942 
943  /// Set to solve the block system
944  void solve_block_system();
945 
946  /// Solve non-block system
947  void solve_full_system();
948  };
949 
950  //========================================================================
951  /// A custom linear solver class that is used to solve a block-factorised
952  /// version of the Hopf bifurcation detection problem.
953  //========================================================================
955  {
956  /// Pointer to the original linear solver
958 
959  /// Pointer to the problem, used in the resolve
961 
962  /// Pointer to the storage for the vector a
964 
965  /// Pointer to the storage for the vector e (0 to n-1)
967 
968  /// Pointer to the storage for the vector g (0 to n-1)
970 
971  public:
972  /// Constructor, inherits the original linear solver
975  Problem_pt(0),
976  A_pt(0),
977  E_pt(0),
978  G_pt(0)
979  {
980  }
981 
982  /// Destructor: clean up the allocated memory
984 
985  /// Solve for two right hand sides
986  void solve_for_two_rhs(Problem* const& problem_pt,
987  DoubleVector& result,
988  const DoubleVector& rhs2,
989  DoubleVector& result2);
990 
991  /// The solve function uses the block factorisation
992  void solve(Problem* const& problem_pt, DoubleVector& result);
993 
994  /// The linear-algebra-type solver does not make sense.
995  /// The interface is deliberately broken
996  void solve(DoubleMatrixBase* const& matrix_pt,
997  const DoubleVector& rhs,
998  DoubleVector& result)
999  {
1000  throw OomphLibError(
1001  "Linear-algebra interface does not make sense for this linear solver\n",
1002  OOMPH_CURRENT_FUNCTION,
1003  OOMPH_EXCEPTION_LOCATION);
1004  }
1005 
1006  /// The linear-algebra-type solver does not make sense.
1007  /// The interface is deliberately broken
1008  void solve(DoubleMatrixBase* const& matrix_pt,
1009  const Vector<double>& rhs,
1010  Vector<double>& result)
1011  {
1012  throw OomphLibError(
1013  "Linear-algebra interface does not make sense for this linear solver\n",
1014  OOMPH_CURRENT_FUNCTION,
1015  OOMPH_EXCEPTION_LOCATION);
1016  }
1017 
1018 
1019  /// The resolve function also uses the block factorisation
1020  void resolve(const DoubleVector& rhs, DoubleVector& result);
1021 
1022  /// Access function to the original linear solver
1024  {
1025  return Linear_solver_pt;
1026  }
1027  };
1028 
1029 
1030  //===============================================================
1031  /// A class that is used to assemble the augmented system that defines
1032  /// a Hopf bifurcation. The "standard" problem
1033  /// must be a function of a global parameter \f$ \lambda \f$ and a solution
1034  /// is \f$ R(u,\lambda) = 0 \f$, where \f$ u \f$ are the unknowns in the
1035  /// problem. A Hopf bifurcation may be specified by the augmented
1036  /// system of size \f$ 3N+2 \f$.
1037  /// \f[ R(u,\lambda) = 0, \f]
1038  /// \f[ J\phi + \omega M \psi = 0, \f]
1039  /// \f[ J\psi - \omega M \phi = 0, \f]
1040  /// \f[ c \cdot \phi = 1. \f]
1041  /// \f[ c \cdot \psi = 0. \f]
1042  /// In the above \f$ J \f$ is the usual Jacobian matrix, \f$ dR/du \f$
1043  /// and \f$ M \f$ is the mass matrix that multiplies the time derivative
1044  /// terms. \f$ \phi + i\psi \f$ is the (complex) null vector of the complex
1045  /// matrix \f$ J - i\omega M \f$, where \f$ \omega \f$ is the critical
1046  /// frequency. \f$ c \f$ is a constant vector that is used to ensure that the
1047  /// null vector is non-trivial.
1048  //===========================================================================
1050  {
1052 
1053  /// Integer flag to indicate which system should be assembled.
1054  /// There are three possibilities. The full augmented system (0),
1055  /// the non-augmented jacobian system (1), and complex
1056  /// system (2), where the matrix is a combination of the jacobian
1057  /// and mass matrices.
1059 
1060  /// Pointer to the problem
1062 
1063  /// Pointer to the parameter
1064  double* Parameter_pt;
1065 
1066  /// Store the number of degrees of freedom in the non-augmented
1067  /// problem
1068  unsigned Ndof;
1069 
1070  /// The critical frequency of the bifurcation
1071  double Omega;
1072 
1073  /// The real part of the null vector
1075 
1076  /// The imaginary part of the null vector
1078 
1079  /// A constant vector used to ensure that the null vector is
1080  /// not trivial
1082 
1083  /// A vector that is used to determine how many elements
1084  /// contribute to a particular equation. It is used to ensure
1085  /// that the global system is correctly formulated.
1087 
1088  public:
1089  /// Constructor
1090  HopfHandler(Problem* const& problem_pt, double* const& parameter_pt);
1091 
1092  /// Constructor with initial guesses for the frequency and null
1093  /// vectors, such as might be provided by an eigensolver
1094  HopfHandler(Problem* const& problem_pt,
1095  double* const& paramter_pt,
1096  const double& omega,
1097  const DoubleVector& phi,
1098  const DoubleVector& psi);
1099 
1100  /// Destructor, return the problem to its original state,
1101  /// before the augmented system was added
1102  ~HopfHandler();
1103 
1104  /// Get the number of elemental degrees of freedom
1105  unsigned ndof(GeneralisedElement* const& elem_pt);
1106 
1107  /// Get the global equation number of the local unknown
1108  unsigned long eqn_number(GeneralisedElement* const& elem_pt,
1109  const unsigned& ieqn_local);
1110 
1111  /// Get the residuals
1112  void get_residuals(GeneralisedElement* const& elem_pt,
1113  Vector<double>& residuals);
1114 
1115  /// Calculate the elemental Jacobian matrix "d equation
1116  /// / d variable".
1117  void get_jacobian(GeneralisedElement* const& elem_pt,
1118  Vector<double>& residuals,
1119  DenseMatrix<double>& jacobian);
1120 
1121  /// Overload the derivatives of the residuals with respect to
1122  /// a parameter to apply to the augmented system
1123  void get_dresiduals_dparameter(GeneralisedElement* const& elem_pt,
1124  double* const& parameter_pt,
1125  Vector<double>& dres_dparam);
1126 
1127  /// Overload the derivative of the residuals and jacobian
1128  /// with respect to a parameter so that it breaks
1129  void get_djacobian_dparameter(GeneralisedElement* const& elem_pt,
1130  double* const& parameter_pt,
1131  Vector<double>& dres_dparam,
1132  DenseMatrix<double>& djac_dparam);
1133 
1134  /// Overload the hessian vector product function so that
1135  /// it breaks
1136  void get_hessian_vector_products(GeneralisedElement* const& elem_pt,
1137  Vector<double> const& Y,
1138  DenseMatrix<double> const& C,
1139  DenseMatrix<double>& product);
1140 
1141  /// Indicate that we are tracking a Hopf
1142  /// bifurcation by returning 3
1143  int bifurcation_type() const
1144  {
1145  return 3;
1146  }
1147 
1148  /// Return a pointer to the
1149  /// bifurcation parameter in bifurcation tracking problems
1151  {
1152  return Parameter_pt;
1153  }
1154 
1155  /// Return the eigenfunction(s) associated with the bifurcation that
1156  /// has been detected in bifurcation tracking problems
1157  void get_eigenfunction(Vector<DoubleVector>& eigenfunction);
1158 
1159  /// Return the frequency of the bifurcation
1160  const double& omega() const
1161  {
1162  return Omega;
1163  }
1164 
1165  /// Set to solve the standard system
1166  void solve_standard_system();
1167 
1168  /// Set to solve the complex system
1169  void solve_complex_system();
1170 
1171  /// Solve non-block system
1172  void solve_full_system();
1173  };
1174 
1175 
1176 } // namespace oomph
1177 #endif
cstr elem_len * i
Definition: cfortran.h:603
char t
Definition: cfortran.h:568
A class that is used to define the functions used to assemble the elemental contributions to the resi...
virtual unsigned ndof(GeneralisedElement *const &elem_pt)
Return the number of degrees of freedom in the element elem_pt.
virtual void synchronise()
Function that is used to perform any synchronisation required during the solution.
virtual int bifurcation_type() const
Return an unsigned integer to indicate whether the handler is a bifurcation tracking handler....
virtual void get_hessian_vector_products(GeneralisedElement *const &elem_pt, Vector< double > const &Y, DenseMatrix< double > const &C, DenseMatrix< double > &product)
Calculate the product of the Hessian (derivative of Jacobian with respect to all variables) an eigenv...
virtual void get_dresiduals_dparameter(GeneralisedElement *const &elem_pt, double *const &parameter_pt, Vector< double > &dres_dparam)
Calculate the derivative of the residuals with respect to a parameter.
virtual double * bifurcation_parameter_pt() const
Return a pointer to the bifurcation parameter in bifurcation tracking problems.
virtual void get_all_vectors_and_matrices(GeneralisedElement *const &elem_pt, Vector< Vector< double >> &vec, Vector< DenseMatrix< double >> &matrix)
Calculate all desired vectors and matrices provided by the element elem_pt.
virtual void get_eigenfunction(Vector< DoubleVector > &eigenfunction)
Return the eigenfunction(s) associated with the bifurcation that has been detected in bifurcation tra...
virtual void get_residuals(GeneralisedElement *const &elem_pt, Vector< double > &residuals)
Return the contribution to the residuals of the element elem_pt.
virtual unsigned long eqn_number(GeneralisedElement *const &elem_pt, const unsigned &ieqn_local)
Return the global equation number of the local unknown ieqn_local in elem_pt.
virtual ~AssemblyHandler()
Empty virtual destructor.
virtual double & local_problem_dof(Problem *const &problem_pt, const unsigned &t, const unsigned &i)
Return the t-th level of storage associated with the i-th (local) dof stored in the problem.
virtual void get_inner_products(GeneralisedElement *const &elem_pt, Vector< std::pair< unsigned, unsigned >> const &history_index, Vector< double > &inner_product)
Compute the inner products of the given vector of pairs of history values over the element.
virtual void dof_vector(GeneralisedElement *const &elem_pt, const unsigned &t, Vector< double > &dof)
Return vector of dofs at time level t in the element elem_pt.
virtual void get_jacobian(GeneralisedElement *const &elem_pt, Vector< double > &residuals, DenseMatrix< double > &jacobian)
Calculate the elemental Jacobian matrix "d equation / d variable" for elem_pt.
virtual void get_djacobian_dparameter(GeneralisedElement *const &elem_pt, double *const &parameter_pt, Vector< double > &dres_dparam, DenseMatrix< double > &djac_dparam)
Calculate the derivative of the residuals and jacobian with respect to a parameter.
AssemblyHandler()
Empty constructor.
virtual void get_inner_product_vectors(GeneralisedElement *const &elem_pt, Vector< unsigned > const &history_index, Vector< Vector< double >> &inner_product_vector)
Compute the vectors that when taken as a dot product with other history values give the inner product...
virtual void dof_pt_vector(GeneralisedElement *const &elem_pt, Vector< double * > &dof_pt)
Return vector of pointers to dofs in the element elem_pt.
A custom linear solver class that is used to solve a block-factorised version of the Fold bifurcation...
void solve(Problem *const &problem_pt, DoubleVector &result)
The solve function uses the block factorisation.
LinearSolver * Linear_solver_pt
Pointer to the original linear solver.
AugmentedBlockFoldLinearSolver(LinearSolver *const linear_solver_pt)
Constructor, inherits the original linear solver.
LinearSolver * linear_solver_pt() const
Access function to the original linear solver.
DoubleVector * E_pt
Pointer to the storage for the vector e.
void resolve(const DoubleVector &rhs, DoubleVector &result)
The resolve function also uses the block factorisation.
~AugmentedBlockFoldLinearSolver()
Destructor: clean up the allocated memory.
DoubleVector * Alpha_pt
Pointer to the storage for the vector alpha.
void solve(DoubleMatrixBase *const &matrix_pt, const Vector< double > &rhs, Vector< double > &result)
The linear-algebra-type solver does not make sense. The interface is deliberately broken.
void solve(DoubleMatrixBase *const &matrix_pt, const DoubleVector &rhs, DoubleVector &result)
The linear-algebra-type solver does not make sense. The interface is deliberately broken.
A custom linear solver class that is used to solve a block-factorised version of the PitchFork bifurc...
void solve(Problem *const &problem_pt, DoubleVector &result)
The solve function uses the block factorisation.
LinearSolver * Linear_solver_pt
Pointer to the original linear solver.
void resolve(const DoubleVector &rhs, DoubleVector &result)
The resolve function also uses the block factorisation.
DoubleVector * Alpha_pt
Pointer to the storage for the vector alpha.
DoubleVector * E_pt
Pointer to the storage for the vector e.
void solve(DoubleMatrixBase *const &matrix_pt, const DoubleVector &rhs, DoubleVector &result)
The linear-algebra-type solver does not make sense. The interface is deliberately broken.
AugmentedBlockPitchForkLinearSolver(LinearSolver *const linear_solver_pt)
Constructor, inherits the original linear solver.
void solve(DoubleMatrixBase *const &matrix_pt, const Vector< double > &rhs, Vector< double > &result)
The linear-algebra-type solver does not make sense. The interface is deliberately broken.
LinearSolver * linear_solver_pt() const
Access function to the original linear solver.
~AugmentedBlockPitchForkLinearSolver()
Destructor: clean up the allocated memory.
Problem * Problem_pt
Pointer to the problem, used in the resolve.
A custom linear solver class that is used to solve a block-factorised version of the Hopf bifurcation...
LinearSolver * Linear_solver_pt
Pointer to the original linear solver.
void resolve(const DoubleVector &rhs, DoubleVector &result)
The resolve function also uses the block factorisation.
DoubleVector * A_pt
Pointer to the storage for the vector a.
void solve(DoubleMatrixBase *const &matrix_pt, const Vector< double > &rhs, Vector< double > &result)
The linear-algebra-type solver does not make sense. The interface is deliberately broken.
void solve(Problem *const &problem_pt, DoubleVector &result)
The solve function uses the block factorisation.
Problem * Problem_pt
Pointer to the problem, used in the resolve.
~BlockHopfLinearSolver()
Destructor: clean up the allocated memory.
void solve_for_two_rhs(Problem *const &problem_pt, DoubleVector &result, const DoubleVector &rhs2, DoubleVector &result2)
Solve for two right hand sides.
DoubleVector * E_pt
Pointer to the storage for the vector e (0 to n-1)
BlockHopfLinearSolver(LinearSolver *const linear_solver_pt)
Constructor, inherits the original linear solver.
void solve(DoubleMatrixBase *const &matrix_pt, const DoubleVector &rhs, DoubleVector &result)
The linear-algebra-type solver does not make sense. The interface is deliberately broken.
DoubleVector * G_pt
Pointer to the storage for the vector g (0 to n-1)
LinearSolver * linear_solver_pt() const
Access function to the original linear solver.
A custom linear solver class that is used to solve a block-factorised version of the PitchFork bifurc...
DoubleVector * D_pt
Pointer to the storage for the vector d.
LinearSolver * linear_solver_pt() const
Access function to the original linear solver.
DoubleVector * dJy_dparam_pt
Pointer to the storage for the vector of derivatives with respect to the bifurcation parameter.
~BlockPitchForkLinearSolver()
Destructor: clean up the allocated memory.
void solve(DoubleMatrixBase *const &matrix_pt, const Vector< double > &rhs, Vector< double > &result)
The linear-algebra-type solver does not make sense. The interface is deliberately broken.
DoubleVector * B_pt
Pointer to the storage for the vector b.
Problem * Problem_pt
Pointer to the problem, used in the resolve.
BlockPitchForkLinearSolver(LinearSolver *const linear_solver_pt)
Constructor, inherits the original linear solver.
void resolve(const DoubleVector &rhs, DoubleVector &result)
The resolve function also uses the block factorisation.
void solve(DoubleMatrixBase *const &matrix_pt, const DoubleVector &rhs, DoubleVector &result)
The linear-algebra-type solver does not make sense. The interface is deliberately broken.
DoubleVector * C_pt
Pointer to the storage for the vector c.
void solve(Problem *const &problem_pt, DoubleVector &result)
The solve function uses the block factorisation.
LinearSolver * Linear_solver_pt
Pointer to the original linear solver.
Abstract base class for matrices of doubles – adds abstract interfaces for solving,...
Definition: matrices.h:261
===================================================================== An extension of DoubleVector th...
A vector in the mathematical sense, initially developed for linear algebra type applications....
Definition: double_vector.h:58
A class that is used to define the functions used to assemble the elemental contributions to the mass...
void get_residuals(GeneralisedElement *const &elem_pt, Vector< double > &residuals)
Return the contribution to the residuals of the element elem_pt This is deliberately broken in our ei...
double Sigma_real
Storage for the real shift.
void get_all_vectors_and_matrices(GeneralisedElement *const &elem_pt, Vector< Vector< double >> &vec, Vector< DenseMatrix< double >> &matrix)
Calculate all desired vectors and matrices provided by the element elem_pt.
~EigenProblemHandler()
Empty virtual destructor.
void get_jacobian(GeneralisedElement *const &elem_pt, Vector< double > &residuals, DenseMatrix< double > &jacobian)
Calculate the elemental Jacobian matrix "d equation / d variable" for elem_pt. Again deliberately bro...
EigenProblemHandler(const double &sigma_real)
Constructor, sets the value of the real shift.
unsigned long eqn_number(GeneralisedElement *const &elem_pt, const unsigned &ieqn_local)
Return the global equation number of the local unknown ieqn_local in elem_pt.
unsigned ndof(GeneralisedElement *const &elem_pt)
Return the number of degrees of freedom in the element elem_pt.
A class that is used to define the functions used to assemble and invert the mass matrix when taking ...
~ExplicitTimeStepHandler()
Empty virtual destructor.
unsigned long eqn_number(GeneralisedElement *const &elem_pt, const unsigned &ieqn_local)
Return the global equation number of the local unknown ieqn_local in elem_pt.
unsigned ndof(GeneralisedElement *const &elem_pt)
Return the number of degrees of freedom in the element elem_pt.
ExplicitTimeStepHandler()
Empty Constructor.
void get_all_vectors_and_matrices(GeneralisedElement *const &elem_pt, Vector< Vector< double >> &vec, Vector< DenseMatrix< double >> &matrix)
Calculate all desired vectors and matrices provided by the element elem_pt.
void get_jacobian(GeneralisedElement *const &elem_pt, Vector< double > &residuals, DenseMatrix< double > &jacobian)
Calculate the elemental Jacobian matrix "d equation / d variable" for elem_pt. Again deliberately bro...
void get_residuals(GeneralisedElement *const &elem_pt, Vector< double > &residuals)
Return the contribution to the residuals of the element elem_pt This is deliberately broken in our ei...
A class that is used to assemble the augmented system that defines a fold (saddle-node) or limit poin...
double * bifurcation_parameter_pt() const
Return a pointer to the bifurcation parameter in bifurcation tracking problems.
Problem * Problem_pt
Pointer to the problem.
Vector< int > Count
A vector that is used to determine how many elements contribute to a particular equation....
unsigned long eqn_number(GeneralisedElement *const &elem_pt, const unsigned &ieqn_local)
Get the global equation number of the local unknown.
void solve_full_system()
Solve non-block system.
void get_djacobian_dparameter(GeneralisedElement *const &elem_pt, double *const &parameter_pt, Vector< double > &dres_dparam, DenseMatrix< double > &djac_dparam)
Overload the derivative of the residuals and jacobian with respect to a parameter so that it breaks.
unsigned Solve_which_system
Integer flag to indicate which system should be assembled. There are three possibilities....
void solve_augmented_block_system()
Set to solve the augmented block system.
Vector< double > Phi
A constant vector used to ensure that the null vector is not trivial.
unsigned Ndof
Store the number of degrees of freedom in the non-augmented problem.
void get_hessian_vector_products(GeneralisedElement *const &elem_pt, Vector< double > const &Y, DenseMatrix< double > const &C, DenseMatrix< double > &product)
Overload the hessian vector product function so that it breaks.
~FoldHandler()
Destructor, return the problem to its original state before the augmented system was added.
void solve_block_system()
Set to solve the block system.
void get_residuals(GeneralisedElement *const &elem_pt, Vector< double > &residuals)
Get the residuals.
Vector< double > Y
Storage for the null vector.
void get_eigenfunction(Vector< DoubleVector > &eigenfunction)
Return the eigenfunction(s) associated with the bifurcation that has been detected in bifurcation tra...
void get_jacobian(GeneralisedElement *const &elem_pt, Vector< double > &residuals, DenseMatrix< double > &jacobian)
Calculate the elemental Jacobian matrix "d equation / d variable".
void get_dresiduals_dparameter(GeneralisedElement *const &elem_pt, double *const &parameter_pt, Vector< double > &dres_dparam)
Overload the derivatives of the residuals with respect to a parameter to apply to the augmented syste...
int bifurcation_type() const
Indicate that we are tracking a fold bifurcation by returning 1.
FoldHandler(Problem *const &problem_pt, double *const &parameter_pt)
Constructor: initialise the fold handler, by setting initial guesses for Y, Phi and calculating count...
double * Parameter_pt
Storage for the pointer to the parameter.
unsigned ndof(GeneralisedElement *const &elem_pt)
Get the number of elemental degrees of freedom.
A Generalised Element class.
Definition: elements.h:73
A class that is used to assemble the augmented system that defines a Hopf bifurcation....
Vector< double > Phi
The real part of the null vector.
Vector< int > Count
A vector that is used to determine how many elements contribute to a particular equation....
double Omega
The critical frequency of the bifurcation.
void get_dresiduals_dparameter(GeneralisedElement *const &elem_pt, double *const &parameter_pt, Vector< double > &dres_dparam)
Overload the derivatives of the residuals with respect to a parameter to apply to the augmented syste...
~HopfHandler()
Destructor, return the problem to its original state, before the augmented system was added.
double * bifurcation_parameter_pt() const
Return a pointer to the bifurcation parameter in bifurcation tracking problems.
void solve_full_system()
Solve non-block system.
void get_djacobian_dparameter(GeneralisedElement *const &elem_pt, double *const &parameter_pt, Vector< double > &dres_dparam, DenseMatrix< double > &djac_dparam)
Overload the derivative of the residuals and jacobian with respect to a parameter so that it breaks.
void get_residuals(GeneralisedElement *const &elem_pt, Vector< double > &residuals)
Get the residuals.
void get_hessian_vector_products(GeneralisedElement *const &elem_pt, Vector< double > const &Y, DenseMatrix< double > const &C, DenseMatrix< double > &product)
Overload the hessian vector product function so that it breaks.
const double & omega() const
Return the frequency of the bifurcation.
int bifurcation_type() const
Indicate that we are tracking a Hopf bifurcation by returning 3.
unsigned ndof(GeneralisedElement *const &elem_pt)
Get the number of elemental degrees of freedom.
Vector< double > C
A constant vector used to ensure that the null vector is not trivial.
void get_eigenfunction(Vector< DoubleVector > &eigenfunction)
Return the eigenfunction(s) associated with the bifurcation that has been detected in bifurcation tra...
Vector< double > Psi
The imaginary part of the null vector.
unsigned long eqn_number(GeneralisedElement *const &elem_pt, const unsigned &ieqn_local)
Get the global equation number of the local unknown.
unsigned Solve_which_system
Integer flag to indicate which system should be assembled. There are three possibilities....
Problem * Problem_pt
Pointer to the problem.
void get_jacobian(GeneralisedElement *const &elem_pt, Vector< double > &residuals, DenseMatrix< double > &jacobian)
Calculate the elemental Jacobian matrix "d equation / d variable".
HopfHandler(Problem *const &problem_pt, double *const &parameter_pt)
Constructor.
unsigned Ndof
Store the number of degrees of freedom in the non-augmented problem.
void solve_complex_system()
Set to solve the complex system.
void solve_standard_system()
Set to solve the standard system.
double * Parameter_pt
Pointer to the parameter.
Describes the distribution of a distributable linear algebra type object. Typically this is a contain...
Base class for all linear solvers. This merely defines standard interfaces for linear solvers,...
Definition: linear_solver.h:68
An OomphLibError object which should be thrown when an run-time error is encountered....
A class that is used to assemble the residuals in parallel by overloading the get_all_vectors_and_mat...
unsigned long eqn_number(GeneralisedElement *const &elem_pt, const unsigned &ieqn_local)
Use underlying AssemblyHandler to return the global equation number of the local unknown ieqn_local i...
unsigned ndof(GeneralisedElement *const &elem_pt)
Use underlying assembly handler to return the number of degrees of freedom in the element elem_pt.
void get_jacobian(GeneralisedElement *const &elem_pt, Vector< double > &residuals, DenseMatrix< double > &jacobian)
Use underlying AssemblyHandler to Calculate the elemental Jacobian matrix "d equation / d variable" f...
AssemblyHandler * Assembly_handler_pt
The original assembly handler.
ParallelResidualsHandler(AssemblyHandler *const &assembly_handler_pt)
Constructor, set the original assembly handler.
void get_residuals(GeneralisedElement *const &elem_pt, Vector< double > &residuals)
Use underlying AssemblyHandler to return the contribution to the residuals of the element elem_pt.
~ParallelResidualsHandler()
Empty virtual destructor.
void get_all_vectors_and_matrices(GeneralisedElement *const &elem_pt, Vector< Vector< double >> &vec, Vector< DenseMatrix< double >> &matrix)
Calculate all desired vectors and matrices provided by the element elem_pt This function calls only t...
A class that is used to define the functions used when assembling the derivatives of the residuals wi...
void get_jacobian(GeneralisedElement *const &elem_pt, Vector< double > &residuals, DenseMatrix< double > &jacobian)
Calculate the elemental Jacobian matrix "d equation / d variable" for elem_pt. Overloaded to return t...
unsigned ndof(GeneralisedElement *const &elem_pt)
Return the number of degrees of freedom in the element elem_pt Pass through to the original assembly ...
unsigned long eqn_number(GeneralisedElement *const &elem_pt, const unsigned &ieqn_local)
Return the global equation number of the local unknown ieqn_local in elem_pt.Pass through to the orig...
double * Parameter_pt
The value of the parameter.
void get_residuals(GeneralisedElement *const &elem_pt, Vector< double > &residuals)
Return the contribution to the residuals of the element elem_pt by using the derivatives.
AssemblyHandler * Assembly_handler_pt
The original assembly handler.
ParameterDerivativeHandler(AssemblyHandler *const &assembly_handler_pt, double *const &parameter_pt)
Store the original assembly handler and parameter.
A class that is used to assemble the augmented system that defines a pitchfork (symmetry-breaking) bi...
LinearAlgebraDistribution * Dof_distribution_pt
Store the original dof distribution.
Problem * Problem_pt
Pointer to the problem.
void synchronise()
Function that is used to perform any synchronisation required during the solution.
void solve_full_system()
Solve non-block system.
DoubleVectorWithHaloEntries Y
Storage for the null vector.
AssemblyHandler * Assembly_handler_pt
Pointer to the underlying (original) assembly handler.
void get_residuals(GeneralisedElement *const &elem_pt, Vector< double > &residuals)
Get the residuals.
double Sigma
A slack variable used to specify the amount of antisymmetry in the solution.
unsigned Solve_which_system
Integer flag to indicate which system should be assembled. There are three possibilities....
void get_dresiduals_dparameter(GeneralisedElement *const &elem_pt, double *const &parameter_pt, Vector< double > &dres_dparam)
Overload the derivatives of the residuals with respect to a parameter to apply to the augmented syste...
~PitchForkHandler()
Destructor, return the problem to its original state, before the augmented system was added.
double * bifurcation_parameter_pt() const
Return a pointer to the bifurcation parameter in bifurcation tracking problems.
void get_hessian_vector_products(GeneralisedElement *const &elem_pt, Vector< double > const &Y, DenseMatrix< double > const &C, DenseMatrix< double > &product)
Overload the hessian vector product function so that it breaks.
DoubleVectorWithHaloEntries C
A constant vector used to ensure that the null vector is not trivial.
unsigned Ndof
Store the number of degrees of freedom in the non-augmented problem.
PitchForkHandler(Problem *const &problem_pt, AssemblyHandler *const &assembly_handler_pt, double *const &parameter_pt, const DoubleVector &symmetry_vector)
Constructor, initialise the systems.
void get_eigenfunction(Vector< DoubleVector > &eigenfunction)
Return the eigenfunction(s) associated with the bifurcation that has been detected in bifurcation tra...
DoubleVectorWithHaloEntries Psi
A constant vector that is specifies the symmetry being broken.
double * Parameter_pt
Storage for the pointer to the parameter.
void get_djacobian_dparameter(GeneralisedElement *const &elem_pt, double *const &parameter_pt, Vector< double > &dres_dparam, DenseMatrix< double > &djac_dparam)
Overload the derivative of the residuals and jacobian with respect to a parameter so that it breaks.
void get_jacobian(GeneralisedElement *const &elem_pt, Vector< double > &residuals, DenseMatrix< double > &jacobian)
Calculate the elemental Jacobian matrix "d equation / d variable".
int bifurcation_type() const
Indicate that we are tracking a pitchfork bifurcation by returning 2.
unsigned long eqn_number(GeneralisedElement *const &elem_pt, const unsigned &ieqn_local)
Get the global equation number of the local unknown.
bool Distributed
Boolean to indicate whether the problem is distributed.
unsigned global_eqn_number(const unsigned &i)
Function that is used to return map the global equations using the simplistic numbering scheme into t...
Vector< unsigned > Global_eqn_number
A vector that is used to map the global equations to their actual location in a distributed problem.
void solve_augmented_block_system()
Set to solve the augmented block system.
void solve_block_system()
Set to solve the block system.
DoubleVectorWithHaloEntries Count
A vector that is used to determine how many elements contribute to a particular equation....
unsigned ndof(GeneralisedElement *const &elem_pt)
Get the number of elemental degrees of freedom.
LinearAlgebraDistribution * Augmented_dof_distribution_pt
The augmented distribution.
////////////////////////////////////////////////////////////////// //////////////////////////////////...
Definition: problem.h:154
//////////////////////////////////////////////////////////////////// ////////////////////////////////...