refineable_solid_elements.h
Go to the documentation of this file.
1 // LIC// ====================================================================
2 // LIC// This file forms part of oomph-lib, the object-oriented,
3 // LIC// multi-physics finite-element library, available
4 // LIC// at http://www.oomph-lib.org.
5 // LIC//
6 // LIC// Copyright (C) 2006-2024 Matthias Heil and Andrew Hazel
7 // LIC//
8 // LIC// This library is free software; you can redistribute it and/or
9 // LIC// modify it under the terms of the GNU Lesser General Public
10 // LIC// License as published by the Free Software Foundation; either
11 // LIC// version 2.1 of the License, or (at your option) any later version.
12 // LIC//
13 // LIC// This library is distributed in the hope that it will be useful,
14 // LIC// but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // LIC// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
16 // LIC// Lesser General Public License for more details.
17 // LIC//
18 // LIC// You should have received a copy of the GNU Lesser General Public
19 // LIC// License along with this library; if not, write to the Free Software
20 // LIC// Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
21 // LIC// 02110-1301 USA.
22 // LIC//
23 // LIC// The authors may be contacted at oomph-lib@maths.man.ac.uk.
24 // LIC//
25 // LIC//====================================================================
26 // Header file for refineable solid mechanics elements
27 
28 // Include guard to prevent multiple inclusions of this header
29 #ifndef OOMPH_REFINEABLE_ELASTICITY_ELEMENTS_HEADER
30 #define OOMPH_REFINEABLE_ELASTICITY_ELEMENTS_HEADER
31 
32 // oomph-lib headers
33 #include "solid_elements.h"
34 #include "../generic/refineable_quad_element.h"
35 #include "../generic/refineable_brick_element.h"
36 #include "../generic/error_estimator.h"
37 
38 namespace oomph
39 {
40  //========================================================================
41  /// Class for Refineable PVD equations
42  //========================================================================
43  template<unsigned DIM>
44  class RefineablePVDEquations : public virtual PVDEquations<DIM>,
45  public virtual RefineableSolidElement,
46  public virtual ElementWithZ2ErrorEstimator
47  {
48  public:
49  /// Constructor
51  : PVDEquations<DIM>(),
55  {
56  }
57 
58  /// Call the residuals including hanging node cases
60  Vector<double>& residuals,
61  DenseMatrix<double>& jacobian,
62  const unsigned& flag);
63 
64  /// No values are interpolated in this element (pure solid)
65  void get_interpolated_values(const unsigned& t,
66  const Vector<double>& s,
67  Vector<double>& values)
68  {
69  values.clear();
70  }
71 
72  /// No values are interpolated in this element (pure solid)
74  Vector<double>& values)
75  {
76  values.clear();
77  }
78 
79  /// Number of 'flux' terms for Z2 error estimation
80  unsigned num_Z2_flux_terms()
81  {
82  // DIM Diagonal strain rates and DIM*(DIM-1)/2 off diagonal terms
83  return DIM + DIM * (DIM - 1) / 2;
84  }
85 
86  /// Get 'flux' for Z2 error recovery: Upper triangular entries
87  /// in strain tensor.
89  {
90 #ifdef PARANOID
91  unsigned num_entries = DIM + ((DIM * DIM) - DIM) / 2;
92  if (flux.size() != num_entries)
93  {
94  std::ostringstream error_message;
95  error_message << "The flux vector has the wrong number of entries, "
96  << flux.size() << ", whereas it should be " << num_entries
97  << std::endl;
98  throw OomphLibError(error_message.str(),
99  OOMPH_CURRENT_FUNCTION,
100  OOMPH_EXCEPTION_LOCATION);
101  }
102 #endif
103 
104  // Get strain matrix
105  DenseMatrix<double> strain(DIM);
106  this->get_strain(s, strain);
107 
108  // Pack into flux Vector
109  unsigned icount = 0;
110 
111  // Start with diagonal terms
112  for (unsigned i = 0; i < DIM; i++)
113  {
114  flux[icount] = strain(i, i);
115  icount++;
116  }
117 
118  // Off diagonals row by row
119  for (unsigned i = 0; i < DIM; i++)
120  {
121  for (unsigned j = i + 1; j < DIM; j++)
122  {
123  flux[icount] = strain(i, j);
124  icount++;
125  }
126  }
127  }
128 
129  /// Number of continuously interpolated values: 0 (pure solid problem)
130  unsigned ncont_interpolated_values() const
131  {
132  return 0;
133  }
134 
135  // Return a pointer to the solid node at which pressure dof l2 is stored
136  // This is only required so that the generic templating in
137  // PseudoSolidNodeUpdateElements works OK
138  virtual Node* solid_pressure_node_pt(const unsigned& l)
139  {
140  return 0;
141  }
142 
143  /// Further build function, pass the pointers down to the sons
145  {
146  RefineablePVDEquations<DIM>* cast_father_element_pt =
147  dynamic_cast<RefineablePVDEquations<DIM>*>(this->father_element_pt());
148 
149  // Do whatever needs to be done in the base class
151 
152  // Set pointer to isotropic growth function
154  cast_father_element_pt->isotropic_growth_fct_pt();
155 
156  // Set pointer to body force function
157  this->Body_force_fct_pt = cast_father_element_pt->body_force_fct_pt();
158 
159  // Set pointer to the contitutive law
160  this->Constitutive_law_pt = cast_father_element_pt->constitutive_law_pt();
161 
162  // Set the timescale ratio (non-dim. density)
163  this->Lambda_sq_pt = cast_father_element_pt->lambda_sq_pt();
164 
165  // Set the flag that switches inertia on/off
166  this->Unsteady = cast_father_element_pt->is_inertia_enabled();
167 
168  // Evaluation of Jacobian by same method as father
170  cast_father_element_pt->is_jacobian_evaluated_by_fd();
171  }
172  };
173 
174  //========================================================================
175  /// Class for refineable QPVDElement elements
176  //========================================================================
177  template<unsigned DIM, unsigned NNODE_1D>
178  class RefineableQPVDElement : public virtual QPVDElement<DIM, NNODE_1D>,
179  public virtual RefineablePVDEquations<DIM>,
180  public virtual RefineableSolidQElement<DIM>
181  {
182  public:
183  /// Constructor:
185  : QPVDElement<DIM, NNODE_1D>(),
188  RefineablePVDEquations<DIM>(),
190  {
191  }
192 
193  /// Empty rebuild from sons, no need to reconstruct anything here
194  void rebuild_from_sons(Mesh*& mesh_pt) {}
195 
196  /// Number of vertex nodes in the element
197  unsigned nvertex_node() const
198  {
200  }
201 
202  /// Pointer to the j-th vertex node in the element
203  Node* vertex_node_pt(const unsigned& j) const
204  {
206  }
207 
208  /// Order of recovery shape functions for Z2 error estimation:
209  /// Same order as shape functions.
210  unsigned nrecovery_order()
211  {
212  return NNODE_1D - 1;
213  }
214 
215  /// No additional hanging node procedures are required
216  /// for the solid elements.
218  };
219 
220  //==============================================================
221  /// FaceGeometry of the 2D RefineableQPVDElement elements
222  //==============================================================
223  template<unsigned NNODE_1D>
225  : public virtual SolidQElement<1, NNODE_1D>
226  {
227  public:
228  // Make sure that we call the constructor of the SolidQElement
229  // Only the Intel compiler seems to need this!
230  FaceGeometry() : SolidQElement<1, NNODE_1D>() {}
231  };
232 
233  //==============================================================
234  /// FaceGeometry of the FaceGeometry of the 2D RefineableQPVDElement
235  //==============================================================
236  template<unsigned NNODE_1D>
238  : public virtual PointElement
239  {
240  public:
241  // Make sure that we call the constructor of the SolidQElement
242  // Only the Intel compiler seems to need this!
244  };
245 
246 
247  //==============================================================
248  /// FaceGeometry of the 3D RefineableQPVDElement elements
249  //==============================================================
250  template<unsigned NNODE_1D>
252  : public virtual SolidQElement<2, NNODE_1D>
253  {
254  public:
255  // Make sure that we call the constructor of the SolidQElement
256  // Only the Intel compiler seems to need this!
257  FaceGeometry() : SolidQElement<2, NNODE_1D>() {}
258  };
259 
260  //==============================================================
261  /// FaceGeometry of the FaceGeometry of the 3D RefineableQPVDElement
262  //==============================================================
263  template<unsigned NNODE_1D>
265  : public virtual SolidQElement<1, NNODE_1D>
266  {
267  public:
268  // Make sure that we call the constructor of the SolidQElement
269  // Only the Intel compiler seems to need this!
270  FaceGeometry() : SolidQElement<1, NNODE_1D>() {}
271  };
272 
273 
274  //===========================================================================
275  /// Class for Refineable solid mechanics elements in near-incompressible/
276  /// incompressible formulation, so a pressure is included! In this case,
277  /// the pressure interpolation is discontinuous, a la Crouzeix Raviart
278  //===========================================================================
279  template<unsigned DIM>
281  : public virtual PVDEquationsWithPressure<DIM>,
282  public virtual RefineableSolidElement,
283  public virtual ElementWithZ2ErrorEstimator
284  {
285  public:
286  /// Constructor:
288  : PVDEquationsWithPressure<DIM>(),
292  {
293  }
294 
295  /// Add element's contribution to elemental residual vector and/or
296  /// Jacobian matrix
297  /// flag=1: compute both
298  /// flag=0: compute only residual vector
300  Vector<double>& residuals,
301  DenseMatrix<double>& jacobian,
302  DenseMatrix<double>& mass_matrix,
303  const unsigned& flag);
304 
305  /// No values are interpolated in this element (pure solid)
306  void get_interpolated_values(const unsigned& t,
307  const Vector<double>& s,
308  Vector<double>& values)
309  {
310  values.clear();
311  }
312 
313  /// No values are interpolated in this element (pure solid)
315  Vector<double>& values)
316  {
317  values.clear();
318  }
319 
320  /// Number of 'flux' terms for Z2 error estimation
321  unsigned num_Z2_flux_terms()
322  {
323  // DIM Diagonal strain rates and DIM*(DIM-1)/2 off diagonal terms
324  return DIM + DIM * (DIM - 1) / 2;
325  }
326 
327  // Get 'flux' for Z2 error recovery: Upper triangular entries
328  /// in strain tensor.
329  //----------------------------------------------------------------
331  {
332  // Find the dimension of the problem
333 #ifdef PARANOID
334  unsigned num_entries = DIM + ((DIM * DIM) - DIM) / 2;
335  if (flux.size() != num_entries)
336  {
337  std::ostringstream error_message;
338  error_message << "The flux vector has the wrong number of entries, "
339  << flux.size() << ", whereas it should be " << num_entries
340  << std::endl;
341  throw OomphLibError(error_message.str(),
342  OOMPH_CURRENT_FUNCTION,
343  OOMPH_EXCEPTION_LOCATION);
344  }
345 #endif
346 
347  // Get strain matrix
348  DenseMatrix<double> strain(DIM);
349  this->get_strain(s, strain);
350 
351  // Pack into flux Vector
352  unsigned icount = 0;
353 
354  // Start with diagonal terms
355  for (unsigned i = 0; i < DIM; i++)
356  {
357  flux[icount] = strain(i, i);
358  icount++;
359  }
360 
361  // Off diagonals row by row
362  for (unsigned i = 0; i < DIM; i++)
363  {
364  for (unsigned j = i + 1; j < DIM; j++)
365  {
366  flux[icount] = strain(i, j);
367  icount++;
368  }
369  }
370  }
371 
372  /// Number of continuously interpolated values: 0 (pure solid problem)
373  unsigned ncont_interpolated_values() const
374  {
375  return 0;
376  }
377 
378  // Return a pointer to the solid node at which pressure dof l2 is stored
379  virtual Node* solid_pressure_node_pt(const unsigned& l)
380  {
381  return 0;
382  }
383 
384 
385  /// Pass the generic stuff down to the sons
387  {
388  RefineablePVDEquationsWithPressure<DIM>* cast_father_element_pt =
390  this->father_element_pt());
391 
392  // Do whatever needs to be done in the base class
394 
395  // Set pointer to isotropic growth function
397  cast_father_element_pt->isotropic_growth_fct_pt();
398 
399  // Set pointer to body force function
400  this->Body_force_fct_pt = cast_father_element_pt->body_force_fct_pt();
401 
402  // Set pointer to the contitutive law
403  this->Constitutive_law_pt = cast_father_element_pt->constitutive_law_pt();
404 
405  // Set the timescale ratio (non-dim. density)
406  this->Lambda_sq_pt = cast_father_element_pt->lambda_sq_pt();
407 
408  // Set the flag that switches inertia on/off
409  this->Unsteady = cast_father_element_pt->is_inertia_enabled();
410 
411  // Set the incompressibility flag
412  this->Incompressible = cast_father_element_pt->is_incompressible();
413 
414  // Evaluation of Jacobian by same method as father
416  cast_father_element_pt->is_jacobian_evaluated_by_fd();
417  }
418 
419 
420  /// Compute the diagonal of the displacement mass matrix for
421  /// LSC preconditioner
422  void get_mass_matrix_diagonal(Vector<double>& mass_diag);
423  };
424 
425  //===========================================================================
426  /// Class for refineable solid mechanics elements in near-incompressible/
427  /// incompressible formulation, so a pressure is included! In this case,
428  /// the pressure interpolation is discontinuous, a la Crouzeix Raviart,
429  /// and the displacement is always quadratic.
430  //===========================================================================
431  template<unsigned DIM>
433  : public virtual QPVDElementWithPressure<DIM>,
434  public virtual RefineablePVDEquationsWithPressure<DIM>,
435  public virtual RefineableSolidQElement<DIM>
436  {
437  private:
438  /// Unpin all solid pressure dofs
440  {
441  unsigned n_pres = this->npres_solid();
442  // loop over pressure dofs and unpin them
443  for (unsigned l = 0; l < n_pres; l++)
444  {
446  }
447  }
448 
449  public:
450  /// Constructor:
452  : QPVDElementWithPressure<DIM>(),
457  {
458  }
459 
460 
461  /// Reconstruct the pressure from the sons
462  /// Must be specialized for each dimension
463  inline void rebuild_from_sons(Mesh*& mesh_pt);
464 
465  /// Number of vertex nodes in the element
466  unsigned nvertex_node() const
467  {
469  }
470 
471  /// Pointer to the j-th vertex node in the element
472  Node* vertex_node_pt(const unsigned& j) const
473  {
475  }
476 
477  /// Order of recovery shape functions for Z2 error estimation:
478  /// Same order as shape functions.
479  unsigned nrecovery_order()
480  {
481  return 2;
482  } // NNODE_1D-1;}
483 
484  /// No additional hanging node procedures are required for
485  /// discontinuous solid pressures.
487 
488  /// Further build: Interpolate the solid pressure values
489  /// Again this must be specialised for each dimension
490  inline void further_build();
491 
492 
493  /// Number of continuously interpolated values: 0 (pure solid problem)
494  unsigned ncont_interpolated_values() const
495  {
496  return 0;
497  }
498  };
499 
500  //======================================================================
501  /// FaceGeometry of the 2D RefineableQPVDElementWithPressure
502  //=======================================================================
503  template<>
505  : public virtual SolidQElement<1, 3>
506  {
507  public:
508  // Make sure that we call the constructor of the SolidQElement
509  // Only the Intel compiler seems to need this!
511  };
512 
513 
514  //===========================================================================
515  /// FaceGeometry of the FaceGeometry of the 2D
516  /// RefineableQPVDElementWithPressure
517  //============================================================================
518  template<>
520  : public virtual PointElement
521  {
522  public:
523  // Make sure that we call the constructor of the SolidQElement
524  // Only the Intel compiler seems to need this!
526  };
527 
528  //====================================================================
529  /// 2D rebuild from sons: reconstruct the solid pressure
530  //===================================================================
531  template<>
533  Mesh*& mesh_pt)
534  {
535  using namespace QuadTreeNames;
536 
537  // Storage for the solid pressure of each son
538  double centre_solid_p[4] = {0.0, 0.0, 0.0, 0.0};
539 
540  // Loop over the sons and assign the central solid pressure
541  for (unsigned ison = 0; ison < 4; ison++)
542  {
543  // Add the sons midnode pressure
544  centre_solid_p[ison] =
546  quadtree_pt()->son_pt(ison)->object_pt())
547  ->solid_p(0);
548  }
549 
550  // Use the average for the central solid pressure
551  double p_value = 0.25 * (centre_solid_p[0] + centre_solid_p[1] +
552  centre_solid_p[2] + centre_solid_p[3]);
553  // Actually set the pressure
554  set_solid_p(0, p_value);
555 
556 
557  // Slope in s_0 direction
558  //----------------------
559 
560  // Use average of the 2 FD approximations based on the
561  // elements central pressure values
562  // [Other options: Take average of the four
563  // pressure derivatives]
564  double slope1 = centre_solid_p[SE] - centre_solid_p[SW];
565  double slope2 = centre_solid_p[NE] - centre_solid_p[NW];
566 
567 
568  // Use the average value
569  p_value = 0.5 * (slope1 + slope2);
570  set_solid_p(1, p_value);
571 
572  // Slope in s_1 direction
573  //----------------------
574 
575  // Use average of the 2 FD approximations based on the
576  // elements central pressure values
577  // [Other options: Take average of the four
578  // pressure derivatives]
579 
580  slope1 = centre_solid_p[NE] - centre_solid_p[SE];
581  slope2 = centre_solid_p[NW] - centre_solid_p[SW];
582 
583  // Use the average
584  p_value = 0.5 * (slope1 + slope2);
585  set_solid_p(2, p_value);
586  }
587 
588 
589  //==============================================================
590  /// 2D further build interpolates the internal solid pressure
591  /// from the father.
592  //=============================================================
593  template<>
595  {
597 
598  using namespace QuadTreeNames;
599 
600  // What type of son am I? Ask my quadtree representation...
601  int son_type = quadtree_pt()->son_type();
602 
603  // Pointer to my father (in element impersonation)
604  RefineableElement* father_el_pt = quadtree_pt()->father_pt()->object_pt();
605 
606  Vector<double> s_father(2);
607 
608  // Son midpoint is located at the following coordinates in father element:
609 
610  // South west son
611  if (son_type == SW)
612  {
613  s_father[0] = -0.5;
614  s_father[1] = -0.5;
615  }
616  // South east son
617  else if (son_type == SE)
618  {
619  s_father[0] = 0.5;
620  s_father[1] = -0.5;
621  }
622  // North east son
623  else if (son_type == NE)
624  {
625  s_father[0] = 0.5;
626  s_father[1] = 0.5;
627  }
628 
629  // North west son
630  else if (son_type == NW)
631  {
632  s_father[0] = -0.5;
633  s_father[1] = 0.5;
634  }
635 
636  // Pressure value in father element
637  RefineableQPVDElementWithPressure<2>* cast_father_element_pt =
638  dynamic_cast<RefineableQPVDElementWithPressure<2>*>(father_el_pt);
639  double press = cast_father_element_pt->interpolated_solid_p(s_father);
640 
641  // Pressure value gets copied straight into internal dof:
642  set_solid_p(0, press);
643 
644  // The slopes get copied from father and halved
645  set_solid_p(1, 0.5 * cast_father_element_pt->solid_p(1));
646  set_solid_p(2, 0.5 * cast_father_element_pt->solid_p(2));
647  }
648 
649 
650  //===============================================================
651  /// 3D rebuild from sons: reconstruct the pressure
652  //===============================================================
653  template<>
655  Mesh*& mesh_pt)
656  {
657  using namespace OcTreeNames;
658 
659  // Storage for the central solid pressure of each son
660  double centre_solid_p[8] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0};
661 
662  // Loop over the sons and assign the central solid pressure
663  for (unsigned ison = 0; ison < 8; ison++)
664  {
665  centre_solid_p[ison] = octree_pt()
666  ->son_pt(ison)
667  ->object_pt()
668  ->internal_data_pt(this->P_solid_internal_index)
669  ->value(0);
670  }
671 
672  // Central pressure value:
673  //-----------------------
674 
675  // Use average of the sons central pressure values
676  // Other options: Take average of the four (discontinuous)
677  // pressure values at the father's midpoint]
678  double av_press = 0.0;
679 
680  // Loop over the sons and sum the centre pressures
681  for (unsigned ison = 0; ison < 8; ison++)
682  {
683  av_press += centre_solid_p[ison];
684  }
685 
686  // Use the average
687  internal_data_pt(this->P_solid_internal_index)
688  ->set_value(0, 0.125 * av_press);
689 
690 
691  // Slope in s_0 direction
692  //----------------------
693 
694  // Use average of the 4 FD approximations based on the
695  // elements central pressure values
696  // [Other options: Take average of the four
697  // pressure derivatives]
698 
699  double slope1 = centre_solid_p[RDF] - centre_solid_p[LDF];
700  double slope2 = centre_solid_p[RUF] - centre_solid_p[LUF];
701  double slope3 = centre_solid_p[RDB] - centre_solid_p[LDB];
702  double slope4 = centre_solid_p[RUB] - centre_solid_p[LUB];
703 
704  // Use the average
705  internal_data_pt(this->P_solid_internal_index)
706  ->set_value(1, 0.25 * (slope1 + slope2 + slope3 + slope4));
707 
708 
709  // Slope in s_1 direction
710  //----------------------
711 
712  // Use average of the 4 FD approximations based on the
713  // elements central pressure values
714  // [Other options: Take average of the four
715  // pressure derivatives]
716  slope1 = centre_solid_p[LUB] - centre_solid_p[LDB];
717  slope2 = centre_solid_p[RUB] - centre_solid_p[RDB];
718  slope3 = centre_solid_p[LUF] - centre_solid_p[LDF];
719  slope4 = centre_solid_p[RUF] - centre_solid_p[RDF];
720 
721  // Use the average
722  internal_data_pt(this->P_solid_internal_index)
723  ->set_value(2, 0.25 * (slope1 + slope2 + slope3 + slope4));
724 
725 
726  // Slope in s_2 direction
727  //----------------------
728 
729  // Use average of the 4 FD approximations based on the
730  // elements central pressure values
731  // [Other options: Take average of the four
732  // pressure derivatives]
733  slope1 = centre_solid_p[LUF] - centre_solid_p[LUB];
734  slope2 = centre_solid_p[RUF] - centre_solid_p[RUB];
735  slope3 = centre_solid_p[LDF] - centre_solid_p[LDB];
736  slope4 = centre_solid_p[RDF] - centre_solid_p[RDB];
737 
738  // Use the average
739  internal_data_pt(this->P_solid_internal_index)
740  ->set_value(3, 0.25 * (slope1 + slope2 + slope3 + slope4));
741  }
742 
743 
744  //================================================================
745  /// 3D Further build: Interpolate the solid pressure values
746  //=================================================================
747  template<>
749 
750  {
752 
753  using namespace OcTreeNames;
754 
755  // What type of son am I? Ask my quadtree representation...
756  int son_type = octree_pt()->son_type();
757 
758  // Pointer to my father (in element impersonation)
759  RefineableQElement<3>* father_el_pt = dynamic_cast<RefineableQElement<3>*>(
760  octree_pt()->father_pt()->object_pt());
761 
762  Vector<double> s_father(3);
763 
764  // Son midpoint is located at the following coordinates in father element:
765  for (unsigned i = 0; i < 3; i++)
766  {
767  s_father[i] = 0.5 * OcTree::Direction_to_vector[son_type][i];
768  }
769 
770  // Pressure value in father element
771  RefineableQPVDElementWithPressure<3>* cast_father_element_pt =
772  dynamic_cast<RefineableQPVDElementWithPressure<3>*>(father_el_pt);
773 
774  double press = cast_father_element_pt->interpolated_solid_p(s_father);
775 
776 
777  // Pressure value gets copied straight into internal dof:
778  set_solid_p(0, press);
779 
780  // The slopes get copied from father and halved
781  for (unsigned i = 1; i < 4; i++)
782  {
783  set_solid_p(i, 0.5 * cast_father_element_pt->solid_p(i));
784  }
785  }
786 
787  //=========================================================================
788  /// FaceGeometry of the 3D RefineableQPVDElementWithPressure
789  //========================================================================
790  template<>
792  : public virtual SolidQElement<2, 3>
793  {
794  public:
795  // Make sure that we call the constructor of the SolidQElement
796  // Only the Intel compiler seems to need this!
798  };
799 
800 
801  //========================================================================
802  /// FaceGeometry of the FaceGeometry of the 3D
803  /// RefineableQPVDElementWithPressure
804  //==========================================================================
805  template<>
807  : public virtual SolidQElement<1, 3>
808  {
809  public:
810  // Make sure that we call the constructor of the SolidQElement
811  // Only the Intel compiler seems to need this!
813  };
814 
815 
816  //===========================================================================
817  /// Class for refineable solid mechanics elements in near-incompressible/
818  /// incompressible formulation, so a pressure is included! These elements
819  /// include a continuously interpolated pressure a la Taylor Hood/
820  //===========================================================================
821  template<unsigned DIM>
823  : public virtual QPVDElementWithContinuousPressure<DIM>,
824  public virtual RefineablePVDEquationsWithPressure<DIM>,
825  public virtual RefineableSolidQElement<DIM>
826  {
827  public:
828  /// Constructor:
835  {
836  }
837 
838 
839  /// Overload the number of additional solid dofs at each node, we
840  /// shall always assign 1, otherwise it's a real pain
841  unsigned required_nvalue(const unsigned& n) const
842  {
843  return 1;
844  }
845 
846  /// Number of continuously interpolated values (1) solid pressure
847  unsigned ncont_interpolated_values() const
848  {
849  return 1;
850  }
851 
852  /// Empty rebuild from sons, empty
853  void rebuild_from_sons(Mesh*& mesh_pt) {}
854 
855  /// OK, interpolate the solid pressures
857  Vector<double>& values)
858  {
859  // There is only one solid pressure, initialise to zero
860  values.resize(1);
861 
862  // Get the interpolated value
863  values[0] = this->interpolated_solid_p(s);
864  }
865 
866  /// OK get the time-dependent verion
867  void get_interpolated_values(const unsigned& t,
868  const Vector<double>& s,
869  Vector<double>& values)
870  {
871  // There is only one solid pressure, initialise to zero
872  values.resize(1);
873  // The solid pressure does not depend on time!
874  values[0] = this->interpolated_solid_p(s);
875  }
876 
877 
878  /// Unpin all pressure dofs
880  {
881  // find the index at which the pressure is stored
882  int solid_p_index = this->solid_p_nodal_index();
883  unsigned n_node = this->nnode();
884  // loop over nodes
885  for (unsigned n = 0; n < n_node; n++)
886  {
887  this->node_pt(n)->unpin(solid_p_index);
888  }
889  }
890 
891 
892  /// Pin the redundant solid pressure
894  {
895  // Find the index of the solid pressure
896  int solid_p_index = this->solid_p_nodal_index();
897  // Let's pin all pressure nodes
898  unsigned n_node = this->nnode();
899  for (unsigned l = 0; l < n_node; l++)
900  {
901  // Pin the solid pressure
902  this->node_pt(l)->pin(solid_p_index);
903  }
904 
905  // Now loop over the pressure nodes and unpin the solid pressures
906  unsigned n_solid_pres = this->npres_solid();
907  // Loop over these nodes and unpin the solid pressures
908  for (unsigned l = 0; l < n_solid_pres; l++)
909  {
910  Node* nod_pt = this->solid_pressure_node_pt(l);
911  if (!nod_pt->is_hanging(solid_p_index))
912  {
913  nod_pt->unpin(solid_p_index);
914  }
915  }
916  }
917 
918 
919  /// Number of vertex nodes in the element
920  unsigned nvertex_node() const
921  {
923  }
924 
925  /// Pointer to the j-th vertex node in the element
926  Node* vertex_node_pt(const unsigned& j) const
927  {
929  }
930 
931  /// Order of recovery shape functions for Z2 error estimation:
932  /// Same order as shape functions.
933  unsigned nrecovery_order()
934  {
935  return 2;
936  } // NNODE_1D-1;}
937 
938 
939  /// The pressure "nodes" are a
940  /// subset of the nodes, so when value_id==0, the n-th pressure
941  /// node is returned.
942  Node* interpolating_node_pt(const unsigned& n, const int& value_id)
943 
944  {
945 #ifdef PARANOID
947 #endif
948  // If we are at the value return the solid pressure node
949  if (value_id == 0)
950  {
951  return this->solid_pressure_node_pt(n);
952  }
953  // Otherwise return the nodal values
954  else
955  {
956  return this->node_pt(n);
957  }
958  }
959 
960  /// The pressure nodes are the corner nodes, so when value_id==0,
961  /// the fraction is the same as the 1d node number, 0 or 1.
962  double local_one_d_fraction_of_interpolating_node(const unsigned& n1d,
963  const unsigned& i,
964  const int& value_id)
965  {
966 #ifdef PARANOID
968 #endif
969  // If it's the only value, we have the pressure
970  if (value_id == 0)
971  {
972  // The pressure nodes are just located on the boundaries at 0 or 1
973  return double(n1d);
974  }
975  // Otherwise we have the geometric nodes
976  else
977  {
978  return this->local_one_d_fraction_of_node(n1d, i);
979  }
980  }
981 
982  /// The velocity nodes are the same as the geometric nodes. The
983  /// pressure nodes must be calculated by using the same methods as
984  /// the geometric nodes, but by recalling that there are only two pressure
985  /// nodes per edge.
987  const int& value_id)
988  {
989 #ifdef PARANOID
991 #endif
992 
993  // If we are calculating solid pressure nodes
994  if (value_id == 0)
995  {
996  // Storage for the index of the pressure node
997  unsigned total_index = 0;
998  // The number of nodes along each 1d edge is 2.
999  unsigned NNODE_1D = 2;
1000  // Storage for the index along each boundary
1001  Vector<int> index(DIM);
1002  // Loop over the coordinates
1003  for (unsigned i = 0; i < DIM; i++)
1004  {
1005  // If we are at the lower limit, the index is zero
1006  if (s[i] == -1.0)
1007  {
1008  index[i] = 0;
1009  }
1010  // If we are at the upper limit, the index is the number of nodes
1011  // minus 1
1012  else if (s[i] == 1.0)
1013  {
1014  index[i] = NNODE_1D - 1;
1015  }
1016  // Otherwise, we have to calculate the index in general
1017  else
1018  {
1019  // For uniformly spaced nodes the 0th node number would be
1020  double float_index = 0.5 * (1.0 + s[i]) * (NNODE_1D - 1);
1021  index[i] = int(float_index);
1022  // What is the excess. This should be safe because the
1023  // taking the integer part rounds down
1024  double excess = float_index - index[i];
1025  // If the excess is bigger than our tolerance there is no node,
1026  // return null
1027  if ((excess > FiniteElement::Node_location_tolerance) &&
1028  ((1.0 - excess) > FiniteElement::Node_location_tolerance))
1029  {
1030  return 0;
1031  }
1032  }
1033  /// Construct the general pressure index from the components.
1034  total_index +=
1035  index[i] * static_cast<unsigned>(pow(static_cast<float>(NNODE_1D),
1036  static_cast<int>(i)));
1037  }
1038  // If we've got here we have a node, so let's return a pointer to it
1039  return this->solid_pressure_node_pt(total_index);
1040  }
1041  // Otherwise velocity nodes are the same as pressure nodes
1042  else
1043  {
1044  return this->get_node_at_local_coordinate(s);
1045  }
1046  }
1047 
1048 
1049  /// The number of 1d pressure nodes is 2, otherwise we have
1050  /// the positional nodes
1051  unsigned ninterpolating_node_1d(const int& value_id)
1052  {
1053 #ifdef PARANOID
1054  RefineableElement::check_value_id(1, value_id);
1055 #endif
1056 
1057  if (value_id == 0)
1058  {
1059  return 2;
1060  }
1061  else
1062  {
1063  return this->nnode_1d();
1064  }
1065  }
1066 
1067  /// The number of pressure nodes is 2^DIM. The number of
1068  /// velocity nodes is the same as the number of geometric nodes.
1069  unsigned ninterpolating_node(const int& value_id)
1070  {
1071 #ifdef PARANOID
1072  RefineableElement::check_value_id(1, value_id);
1073 #endif
1074 
1075  if (value_id == 0)
1076  {
1077  return static_cast<unsigned>(pow(2.0, static_cast<int>(DIM)));
1078  }
1079  else
1080  {
1081  return this->nnode();
1082  }
1083  }
1084 
1085  /// The basis interpolating the pressure is given by pshape().
1086  /// / The basis interpolating the velocity is shape().
1088  Shape& psi,
1089  const int& value_id) const
1090  {
1091 #ifdef PARANOID
1092  RefineableElement::check_value_id(1, value_id);
1093 #endif
1094 
1095  if (value_id == 0)
1096  {
1097  return this->solid_pshape(s, psi);
1098  }
1099  else
1100  {
1101  return this->shape(s, psi);
1102  }
1103  }
1104 
1105 
1106  /// Perform additional hanging node procedures for variables
1107  /// that are not interpolated by all nodes.
1109  {
1110  this->setup_hang_for_value(this->solid_p_nodal_index());
1111  }
1112 
1113  // Return a pointer to the solid node at which pressure dof l2 is stored
1114  Node* solid_pressure_node_pt(const unsigned& l)
1115  {
1116  return this->node_pt(this->Pconv[l]);
1117  }
1118  };
1119 
1120 
1121  //=========================================================================
1122  /// FaceGeometry of the 2D RefineableQPVDElementWithContinuousPressure
1123  /// elements
1124  //=========================================================================
1125  template<>
1127  : public virtual SolidQElement<1, 3>
1128  {
1129  public:
1130  // Make sure that we call the constructor of the SolidQElement
1131  // Only the Intel compiler seems to need this!
1133  };
1134 
1135  //=========================================================================
1136  /// FaceGeometry of the FaceGeometry of the 2D
1137  /// RefineableQPVDElementWithContinuousPressure
1138  //=========================================================================
1139  template<>
1142  : public virtual PointElement
1143  {
1144  public:
1145  // Make sure that we call the constructor of the SolidQElement
1146  // Only the Intel compiler seems to need this!
1148  };
1149 
1150  //=========================================================================
1151  /// FaceGeometry of the 3D RefineableQPVDElementWithContinuousPressure
1152  //=========================================================================
1153  template<>
1155  : public virtual SolidQElement<2, 3>
1156  {
1157  public:
1158  // Make sure that we call the constructor of the SolidQElement
1159  // Only the Intel compiler seems to need this!
1161  };
1162 
1163  //=========================================================================
1164  /// FaceGeometry of the FaceGeometry of the 3D
1165  /// RefineableQPVDElementWithContinuousPressue
1166  //=========================================================================
1167  template<>
1170  : public virtual SolidQElement<1, 3>
1171  {
1172  public:
1173  // Make sure that we call the constructor of the SolidQElement
1174  // Only the Intel compiler seems to need this!
1176  };
1177 
1178 } // namespace oomph
1179 
1180 #endif
static char t char * s
Definition: cfortran.h:568
cstr elem_len * i
Definition: cfortran.h:603
char t
Definition: cfortran.h:568
void pin(const unsigned &i)
Pin the i-th stored variable.
Definition: nodes.h:385
void unpin(const unsigned &i)
Unpin the i-th stored variable.
Definition: nodes.h:391
Base class for finite elements that can compute the quantities that are required for the Z2 error est...
//////////////////////////////////////////////////////////////////// ////////////////////////////////...
Definition: elements.h:5002
Node *& node_pt(const unsigned &n)
Return a pointer to the local node n.
Definition: elements.h:2179
virtual Node * get_node_at_local_coordinate(const Vector< double > &s) const
If there is a node at this local coordinate, return the pointer to the node.
Definition: elements.cc:3912
virtual unsigned nvertex_node() const
Return the number of vertex nodes in this element. Broken virtual function in "pure" finite elements.
Definition: elements.h:2495
static const double Node_location_tolerance
Default value for the tolerance to be used when locating nodes via local coordinates.
Definition: elements.h:1378
virtual void shape(const Vector< double > &s, Shape &psi) const =0
Calculate the geometric shape functions at local coordinate s. This function must be overloaded for e...
unsigned nnode() const
Return the number of nodes.
Definition: elements.h:2214
virtual Node * vertex_node_pt(const unsigned &j) const
Pointer to the j-th vertex node in the element. Broken virtual function in "pure" finite elements.
Definition: elements.h:2504
virtual unsigned nnode_1d() const
Return the number of nodes along one edge of the element Default is to return zero — must be overload...
Definition: elements.h:2222
virtual double local_one_d_fraction_of_node(const unsigned &n1d, const unsigned &i)
Get the local fraction of any node in the n-th position in a one dimensional expansion along the i-th...
Definition: elements.h:1862
Data *& internal_data_pt(const unsigned &i)
Return a pointer to i-th internal data object.
Definition: elements.h:622
A general mesh class.
Definition: mesh.h:67
Nodes are derived from Data, but, in addition, have a definite (Eulerian) position in a space of a gi...
Definition: nodes.h:906
bool is_hanging() const
Test whether the node is geometrically hanging.
Definition: nodes.h:1285
static Vector< Vector< int > > Direction_to_vector
For each direction, i.e. a son_type (vertex), a face or an edge, this defines a vector that indicates...
Definition: octree.h:353
An OomphLibError object which should be thrown when an run-time error is encountered....
bool Unsteady
Flag that switches inertia on/off.
BodyForceFctPt Body_force_fct_pt
Pointer to body force function.
bool is_jacobian_evaluated_by_fd() const
Return the flag indicating whether the jacobian is evaluated by fd.
BodyForceFctPt & body_force_fct_pt()
Access function: Pointer to body force function.
ConstitutiveLaw *& constitutive_law_pt()
Return the constitutive law pointer.
ConstitutiveLaw * Constitutive_law_pt
Pointer to the constitutive law.
bool is_inertia_enabled() const
Access function to flag that switches inertia on/off (const version)
double *& lambda_sq_pt()
Access function for pointer to timescale ratio (nondim density)
void get_strain(const Vector< double > &s, DenseMatrix< double > &strain) const
Return the strain tensor.
IsotropicGrowthFctPt Isotropic_growth_fct_pt
Pointer to isotropic growth function.
bool Evaluate_jacobian_by_fd
Use FD to evaluate Jacobian.
IsotropicGrowthFctPt & isotropic_growth_fct_pt()
Access function: Pointer to isotropic growth function.
double * Lambda_sq_pt
Timescale ratio (non-dim. density)
//////////////////////////////////////////////////////////////////// ////////////////////////////////...
double interpolated_solid_p(const Vector< double > &s)
Return the interpolated_solid_pressure.
bool Incompressible
Boolean to determine whether the solid is incompressible or not.
bool is_incompressible() const
Return whether the material is incompressible.
A class for elements that solve the equations of solid mechanics, based on the principle of virtual d...
/////////////////////////////////////////////////////////////////////// /////////////////////////////...
Definition: elements.h:3443
//////////////////////////////////////////////////////////////////////// ////////////////////////////...
unsigned npres_solid() const
Return number of pressure values.
void solid_pshape(const Vector< double > &s, Shape &psi) const
Return the pressure shape functions.
int solid_p_nodal_index() const
Set the value at which the solid pressure is stored in the nodes.
static const unsigned Pconv[]
Static array of ints to hold conversion from pressure node numbers to actual node numbers.
/////////////////////////////////////////////////////////////////////////// /////////////////////////...
unsigned npres_solid() const
Return number of pressure values.
double solid_p(const unsigned &l)
Return the lth pressure value.
unsigned P_solid_internal_index
Internal index that indicates at which internal data value the solid presure is stored.
An Element that solves the solid mechanics equations, based on the principle of virtual displacements...
RefineableElements are FiniteElements that may be subdivided into children to provide a better local ...
static void check_value_id(const int &n_continuously_interpolated_values, const int &value_id)
Static helper function that is used to check that the value_id is in range.
virtual RefineableElement * father_element_pt() const
Return a pointer to the father element.
Class for Refineable solid mechanics elements in near-incompressible/ incompressible formulation,...
void get_interpolated_values(const unsigned &t, const Vector< double > &s, Vector< double > &values)
No values are interpolated in this element (pure solid)
unsigned ncont_interpolated_values() const
Number of continuously interpolated values: 0 (pure solid problem)
unsigned num_Z2_flux_terms()
Number of 'flux' terms for Z2 error estimation.
void get_Z2_flux(const Vector< double > &s, Vector< double > &flux)
in strain tensor.
void get_interpolated_values(const Vector< double > &s, Vector< double > &values)
No values are interpolated in this element (pure solid)
virtual Node * solid_pressure_node_pt(const unsigned &l)
void fill_in_generic_residual_contribution_pvd_with_pressure(Vector< double > &residuals, DenseMatrix< double > &jacobian, DenseMatrix< double > &mass_matrix, const unsigned &flag)
Add element's contribution to elemental residual vector and/or Jacobian matrix flag=1: compute both f...
void further_build()
Pass the generic stuff down to the sons.
void get_mass_matrix_diagonal(Vector< double > &mass_diag)
Compute the diagonal of the displacement mass matrix for LSC preconditioner.
Class for Refineable PVD equations.
unsigned num_Z2_flux_terms()
Number of 'flux' terms for Z2 error estimation.
void get_Z2_flux(const Vector< double > &s, Vector< double > &flux)
Get 'flux' for Z2 error recovery: Upper triangular entries in strain tensor.
void get_interpolated_values(const Vector< double > &s, Vector< double > &values)
No values are interpolated in this element (pure solid)
virtual Node * solid_pressure_node_pt(const unsigned &l)
void further_build()
Further build function, pass the pointers down to the sons.
void get_interpolated_values(const unsigned &t, const Vector< double > &s, Vector< double > &values)
No values are interpolated in this element (pure solid)
void fill_in_generic_contribution_to_residuals_pvd(Vector< double > &residuals, DenseMatrix< double > &jacobian, const unsigned &flag)
Call the residuals including hanging node cases.
unsigned ncont_interpolated_values() const
Number of continuously interpolated values: 0 (pure solid problem)
Refineable version of QElement<3,NNODE_1D>.
Class for refineable solid mechanics elements in near-incompressible/ incompressible formulation,...
double local_one_d_fraction_of_interpolating_node(const unsigned &n1d, const unsigned &i, const int &value_id)
The pressure nodes are the corner nodes, so when value_id==0, the fraction is the same as the 1d node...
void rebuild_from_sons(Mesh *&mesh_pt)
Empty rebuild from sons, empty.
unsigned required_nvalue(const unsigned &n) const
Overload the number of additional solid dofs at each node, we shall always assign 1,...
void interpolating_basis(const Vector< double > &s, Shape &psi, const int &value_id) const
The basis interpolating the pressure is given by pshape(). / The basis interpolating the velocity is ...
unsigned ninterpolating_node(const int &value_id)
The number of pressure nodes is 2^DIM. The number of velocity nodes is the same as the number of geom...
unsigned nvertex_node() const
Number of vertex nodes in the element.
void pin_elemental_redundant_nodal_solid_pressures()
Pin the redundant solid pressure.
Node * interpolating_node_pt(const unsigned &n, const int &value_id)
The pressure "nodes" are a subset of the nodes, so when value_id==0, the n-th pressure node is return...
Node * vertex_node_pt(const unsigned &j) const
Pointer to the j-th vertex node in the element.
unsigned ninterpolating_node_1d(const int &value_id)
The number of 1d pressure nodes is 2, otherwise we have the positional nodes.
unsigned nrecovery_order()
Order of recovery shape functions for Z2 error estimation: Same order as shape functions.
void get_interpolated_values(const Vector< double > &s, Vector< double > &values)
OK, interpolate the solid pressures.
Node * get_interpolating_node_at_local_coordinate(const Vector< double > &s, const int &value_id)
The velocity nodes are the same as the geometric nodes. The pressure nodes must be calculated by usin...
unsigned ncont_interpolated_values() const
Number of continuously interpolated values (1) solid pressure.
void further_setup_hanging_nodes()
Perform additional hanging node procedures for variables that are not interpolated by all nodes.
void get_interpolated_values(const unsigned &t, const Vector< double > &s, Vector< double > &values)
OK get the time-dependent verion.
Class for refineable solid mechanics elements in near-incompressible/ incompressible formulation,...
void further_setup_hanging_nodes()
No additional hanging node procedures are required for discontinuous solid pressures.
unsigned nrecovery_order()
Order of recovery shape functions for Z2 error estimation: Same order as shape functions.
unsigned nvertex_node() const
Number of vertex nodes in the element.
Node * vertex_node_pt(const unsigned &j) const
Pointer to the j-th vertex node in the element.
unsigned ncont_interpolated_values() const
Number of continuously interpolated values: 0 (pure solid problem)
void rebuild_from_sons(Mesh *&mesh_pt)
Reconstruct the pressure from the sons Must be specialized for each dimension.
void unpin_elemental_solid_pressure_dofs()
Unpin all solid pressure dofs.
void further_build()
Further build: Interpolate the solid pressure values Again this must be specialised for each dimensio...
Class for refineable QPVDElement elements.
Node * vertex_node_pt(const unsigned &j) const
Pointer to the j-th vertex node in the element.
void further_setup_hanging_nodes()
No additional hanging node procedures are required for the solid elements.
unsigned nvertex_node() const
Number of vertex nodes in the element.
void rebuild_from_sons(Mesh *&mesh_pt)
Empty rebuild from sons, no need to reconstruct anything here.
unsigned nrecovery_order()
Order of recovery shape functions for Z2 error estimation: Same order as shape functions.
/////////////////////////////////////////////////////////////////// /////////////////////////////////...
virtual void further_build()
Further build: Pass the father's Use_undeformed_macro_element_for_new_lagrangian_coords flag down,...
A class that is used to template the solid refineable Q elements by dimension. It's really nothing mo...
Definition: Qelements.h:2286
A Class for shape functions. In simple cases, the shape functions have only one index that can be tho...
Definition: shape.h:76
SolidQElement elements are quadrilateral elements whose derivatives also include those based upon the...
Definition: Qelements.h:1742
//////////////////////////////////////////////////////////////////// ////////////////////////////////...