Public Member Functions | Private Member Functions | Private Attributes | List of all members
oomph::SolidICProblem Class Reference

///////////////////////////////////////////////////////////////////// ///////////////////////////////////////////////////////////////////// More...

#include <elastic_problems.h>

+ Inheritance diagram for oomph::SolidICProblem:

Public Member Functions

 SolidICProblem ()
 Constructor. Initialise pointer to IC object to NULL. Create a dummy mesh that can be deleted when static problem finally goes out of scope at end of program execution. More...
 
 SolidICProblem (const SolidICProblem &)=delete
 Broken copy constructor. More...
 
void operator= (const SolidICProblem &)=delete
 Broken assignment operator. More...
 
void actions_after_newton_solve ()
 Update after solve (empty) More...
 
void actions_before_newton_solve ()
 Update the problem specs before solve. (empty) More...
 
void set_static_initial_condition (Problem *problem_pt, Mesh *mesh_pt, SolidInitialCondition *ic_pt, const double &time)
 Force the elastic structure that is discretised on the specified mesh to deform in the shape of the initial condition object (evaluated at the time specified) More...
 
void set_static_initial_condition (Problem *problem_pt, Mesh *mesh_pt, SolidInitialCondition *ic_pt)
 Force the elastic structure that is discretised on the specified mesh to deform in the shape of the initial condition object (wrapper) More...
 
template<class TIMESTEPPER >
void set_newmark_initial_condition_directly (Problem *problem_pt, Mesh *mesh_pt, TIMESTEPPER *timestepper_pt, SolidInitialCondition *ic_pt, const double &dt)
 Setup initial condition for time-integration with Newmark's method. History values are assigned to that the velocity and accelerations determined by the Newmark scheme are exact at the initial time. More...
 
template<class TIMESTEPPER >
void set_newmark_initial_condition_consistently (Problem *problem_pt, Mesh *mesh_pt, TIMESTEPPER *timestepper_pt, SolidInitialCondition *ic_pt, const double &dt, SolidFiniteElement::MultiplierFctPt multiplier_fct_pt=0)
 Setup initial condition for time-integration with Newmark's method. Past displacements and velocities are assigned directly (consistent with the idea that a second order ODE can take ICs up to 1st order, while the history value for the previous acceleration is determined by the condition that the weak equation is satisfied at the initial time.) The multiplier function needs to specify the factor that multiplies the inertia terms – typically this is a constant, given by the ratio $ \Lambda^2 $ of the problem's intrinsic timescale to the time used to non-dimensionalise the equations. If the function (pointer) is not specified the multiplier is assumed to be equal to 1.0 – appropriate for a non-dimensionalisation based on the problem's intrinsic timescale. More...
 
double & max_residual_after_consistent_newton_ic ()
 Max. tolerated residual after application of consistent Newmark IC. Used to check if we have specified the correct timescale ratio (non-dim density). More...
 
- Public Member Functions inherited from oomph::Problem
virtual void debug_hook_fct (const unsigned &i)
 Hook for debugging. Can be overloaded in driver code; argument allows identification of where we're coming from. More...
 
void set_analytic_dparameter (double *const &parameter_pt)
 Function to turn on analytic calculation of the parameter derivatives in continuation and bifurcation detection problems. More...
 
void unset_analytic_dparameter (double *const &parameter_pt)
 Function to turn off analytic calculation of the parameter derivatives in continuation and bifurcation detection problems. More...
 
bool is_dparameter_calculated_analytically (double *const &parameter_pt)
 Function to determine whether the parameter derivatives are calculated analytically. More...
 
void set_analytic_hessian_products ()
 Function to turn on analytic calculation of the parameter derivatives in continuation and bifurcation detection problems. More...
 
void unset_analytic_hessian_products ()
 Function to turn off analytic calculation of the parameter derivatives in continuation and bifurcation detection problems. More...
 
bool are_hessian_products_calculated_analytically ()
 Function to determine whether the hessian products are calculated analytically. More...
 
void set_pinned_values_to_zero ()
 Set all pinned values to zero. Used to set boundary conditions to be homogeneous in the copy of the problem used in adaptive bifurcation tracking (ALH: TEMPORARY HACK, WILL BE FIXED) More...
 
bool distributed () const
 If we have MPI return the "problem has been distributed" flag, otherwise it can't be distributed so return false. More...
 
Distributed_problem_matrix_distributiondistributed_problem_matrix_distribution ()
 accesss function to the distributed matrix distribution method 1 - Automatic - the Problem distribution is employed, unless any processor has number of rows equal to 110% of N/P, in which case uniform distribution is employed. 2 - Problem - the jacobian on processor p only contains rows that correspond to equations that are on this processor. (minimises communication) 3 - Uniform - each processor holds as close to N/P matrix rows as possible. (very well load balanced) More...
 
void enable_doc_imbalance_in_parallel_assembly ()
 Enable doc of load imbalance in parallel assembly of distributed problem. More...
 
void disable_doc_imbalance_in_parallel_assembly ()
 Disable doc of load imbalance in parallel assembly of distributed problem. More...
 
Vector< double > elemental_assembly_time ()
 Return vector of most-recent elemental assembly times (used for load balancing). Zero sized if no Jacobian has been computed since last re-assignment of equation numbers. More...
 
void clear_elemental_assembly_time ()
 Clear storage of most-recent elemental assembly times (used for load balancing). Next load balancing operation will be based on the number of elements associated with a tree root. More...
 
void enable_problem_distributed ()
 Enable problem distributed. More...
 
void disable_problem_distributed ()
 Disable problem distributed. More...
 
void set_default_first_and_last_element_for_assembly ()
 Set default first and last elements for parallel assembly of non-distributed problem. More...
 
void set_first_and_last_element_for_assembly (Vector< unsigned > &first_el_for_assembly, Vector< unsigned > &last_el_for_assembly)
 Manually set first and last elements for parallel assembly of non-distributed problem. More...
 
void get_first_and_last_element_for_assembly (Vector< unsigned > &first_el_for_assembly, Vector< unsigned > &last_el_for_assembly) const
 Get first and last elements for parallel assembly of non-distributed problem. More...
 
virtual void actions_before_adapt ()
 Actions that are to be performed before a mesh adaptation. These might include removing any additional elements, such as traction boundary elements before the adaptation. More...
 
virtual void actions_after_adapt ()
 Actions that are to be performed after a mesh adaptation. More...
 
OomphCommunicatorcommunicator_pt ()
 access function to the oomph-lib communicator More...
 
const OomphCommunicatorcommunicator_pt () const
 access function to the oomph-lib communicator, const version More...
 
 Problem ()
 Constructor: Allocate space for one time stepper and set all pointers to NULL and set defaults for all parameters. More...
 
 Problem (const Problem &dummy)=delete
 Broken copy constructor. More...
 
void operator= (const Problem &)=delete
 Broken assignment operator. More...
 
virtual ~Problem ()
 Virtual destructor to clean up memory. More...
 
Mesh *& mesh_pt ()
 Return a pointer to the global mesh. More...
 
Mesh *const & mesh_pt () const
 Return a pointer to the global mesh (const version) More...
 
Mesh *& mesh_pt (const unsigned &imesh)
 Return a pointer to the i-th submesh. If there are no submeshes, the 0-th submesh is the global mesh itself. More...
 
Mesh *const & mesh_pt (const unsigned &imesh) const
 Return a pointer to the i-th submesh (const version) More...
 
unsigned nsub_mesh () const
 Return number of submeshes. More...
 
unsigned add_sub_mesh (Mesh *const &mesh_pt)
 Add a submesh to the problem and return its number, i, by which it can be accessed via mesh_pt(i). More...
 
void flush_sub_meshes ()
 Flush the problem's collection of sub-meshes. Must be followed by call to rebuild_global_mesh(). More...
 
void build_global_mesh ()
 Build the global mesh by combining the all the submeshes. Note: The nodes boundary information refers to the boundary numbers within the submesh! More...
 
void rebuild_global_mesh ()
 If one of the submeshes has changed (e.g. by mesh adaptation) we need to update the global mesh. Note: The nodes boundary information refers to the boundary numbers within the submesh! More...
 
virtual void build_mesh ()
 Function to build the Problem's base mesh; this must be supplied by the user if they wish to use the load_balance() functionality, which is only available to problems that have already been distributed. If the problem has multiple meshes, each mesh must be built, added as as a submesh, and a call to build_global_mesh() must be made in this function. On return from this function all meshes must have been refined to the same level that they were in the when Problem::distribute() was first called. More...
 
void load_balance ()
 Balance the load of a (possibly non-uniformly refined) problem that has already been distributed, by re-distributing elements over processors. More...
 
void load_balance (const bool &report_stats)
 Balance the load of a (possibly non-uniformly refined) problem that has already been distributed, by re-distributing elements over processors. Produce explicit stats of load balancing process if boolean, report_stats, is set to true. More...
 
void load_balance (DocInfo &doc_info, const bool &report_stats)
 Balance the load of a (possibly non-uniformly refined) problem that has already been distributed, by re-distributing elements over processors. Produce explicit stats of load balancing process if boolean, report_stats, is set to true. More...
 
void load_balance (DocInfo &doc_info, const bool &report_stats, const Vector< unsigned > &input_target_domain_for_local_non_halo_element)
 Balance the load of a (possibly non-uniformly refined) problem that has already been distributed, by re-distributing elements over processors. Produce explicit stats of load balancing process if boolean, report_stats, is set to true and doc various bits of data (mainly for debugging) in directory specified by DocInfo object. If final input vector is non-zero-sized it provides an imposed partitioning. More...
 
void set_default_partition_in_load_balance ()
 Set the use of the default partition in the load balance. More...
 
void unset_default_partition_in_load_balance ()
 Do not use the default partition in the load balance. More...
 
void refine_distributed_base_mesh (Vector< Vector< Vector< unsigned >>> &to_be_refined_on_each_root, const unsigned &max_level_overall)
 Load balance helper routine: refine each new base (sub)mesh based upon the elements to be refined within each tree at each root on the current processor. More...
 
LinearSolver *& linear_solver_pt ()
 Return a pointer to the linear solver object. More...
 
LinearSolver *const & linear_solver_pt () const
 Return a pointer to the linear solver object (const version) More...
 
LinearSolver *& mass_matrix_solver_for_explicit_timestepper_pt ()
 Return a pointer to the linear solver object used for explicit time stepping. More...
 
LinearSolvermass_matrix_solver_for_explicit_timestepper_pt () const
 Return a pointer to the linear solver object used for explicit time stepping (const version). More...
 
EigenSolver *& eigen_solver_pt ()
 Return a pointer to the eigen solver object. More...
 
EigenSolver *const & eigen_solver_pt () const
 Return a pointer to the eigen solver object (const version) More...
 
Time *& time_pt ()
 Return a pointer to the global time object. More...
 
Timetime_pt () const
 Return a pointer to the global time object (const version). More...
 
double & time ()
 Return the current value of continuous time. More...
 
double time () const
 Return the current value of continuous time (const version) More...
 
TimeStepper *& time_stepper_pt ()
 Access function for the pointer to the first (presumably only) timestepper. More...
 
const TimeSteppertime_stepper_pt () const
 Access function for the pointer to the first (presumably only) timestepper. More...
 
TimeStepper *& time_stepper_pt (const unsigned &i)
 Return a pointer to the i-th timestepper. More...
 
ExplicitTimeStepper *& explicit_time_stepper_pt ()
 Return a pointer to the explicit timestepper. More...
 
unsigned long set_timestepper_for_all_data (TimeStepper *const &time_stepper_pt, const bool &preserve_existing_data=false)
 Set all problem data to have the same timestepper (timestepper_pt) Return the new number of dofs in the problem. More...
 
virtual void shift_time_values ()
 Shift all values along to prepare for next timestep. More...
 
AssemblyHandler *& assembly_handler_pt ()
 Return a pointer to the assembly handler object. More...
 
AssemblyHandler *const & assembly_handler_pt () const
 Return a pointer to the assembly handler object (const version) More...
 
double & minimum_dt ()
 Access function to min timestep in adaptive timestepping. More...
 
double & maximum_dt ()
 Access function to max timestep in adaptive timestepping. More...
 
double & target_error_safety_factor ()
 Access function to the safety factor in adaptive timestepping. More...
 
unsigned & max_newton_iterations ()
 Access function to max Newton iterations before giving up. More...
 
void problem_is_nonlinear (const bool &prob_lin)
 Access function to Problem_is_nonlinear. More...
 
double & max_residuals ()
 Access function to max residuals in Newton iterations before giving up. More...
 
bool & time_adaptive_newton_crash_on_solve_fail ()
 Access function for Time_adaptive_newton_crash_on_solve_fail. More...
 
double & newton_solver_tolerance ()
 Access function to tolererance of the Newton solver, i.e. the maximum value of the residuals that will be accepted. More...
 
void add_time_stepper_pt (TimeStepper *const &time_stepper_pt)
 Add a timestepper to the problem. The function will automatically create or resize the Time object so that it contains the appropriate number of levels of storage. More...
 
void set_explicit_time_stepper_pt (ExplicitTimeStepper *const &explicit_time_stepper_pt)
 Set the explicit timestepper for the problem. The function will automatically create or resize the Time object so that it contains the appropriate number of levels of storage. More...
 
void initialise_dt (const double &dt)
 Set all timesteps to the same value, dt, and assign weights for all timesteppers in the problem. More...
 
void initialise_dt (const Vector< double > &dt)
 Set the value of the timesteps to be equal to the values passed in a vector and assign weights for all timesteppers in the problem. More...
 
Data *& global_data_pt (const unsigned &i)
 Return a pointer to the the i-th global data object. More...
 
void add_global_data (Data *const &global_data_pt)
 Add Data to the Problem's global data – the Problem will perform equation numbering etc. for such Data. More...
 
void flush_global_data ()
 Flush the Problem's global data – resizes container to zero. Data objects are not deleted! More...
 
void create_new_linear_algebra_distribution (LinearAlgebraDistribution *&dist_pt)
 Get new linear algebra distribution (you're in charge of deleting it!) More...
 
LinearAlgebraDistribution *const & dof_distribution_pt () const
 Return the pointer to the dof distribution (read-only) More...
 
unsigned long ndof () const
 Return the number of dofs. More...
 
unsigned ntime_stepper () const
 Return the number of time steppers. More...
 
unsigned nglobal_data () const
 Return the number of global data values. More...
 
unsigned self_test ()
 Self-test: Check meshes and global data. Return 0 for OK. More...
 
void enable_store_local_dof_pt_in_elements ()
 Insist that local dof pointers are set up in each element when equation numbering takes place. More...
 
void disable_store_local_dof_pt_in_elements ()
 Insist that local dof pointers are NOT set up in each element when equation numbering takes place (the default) More...
 
unsigned long assign_eqn_numbers (const bool &assign_local_eqn_numbers=true)
 Assign all equation numbers for problem: Deals with global data (= data that isn't attached to any elements) and then does the equation numbering for the elements. Virtual so it can be overloaded in MPI problems. Bool argument can be set to false to ignore assigning local equation numbers (found to be necessary in the parallel implementation of locate_zeta between multiple meshes). More...
 
void describe_dofs (std::ostream &out= *(oomph_info.stream_pt())) const
 Function to describe the dofs in terms of the global equation number, i.e. what type of value (nodal value of a Node; value in a Data object; value of internal Data in an element; etc) is the unknown with a certain global equation number. Output stream defaults to oomph_info. More...
 
void enable_discontinuous_formulation ()
 Indicate that the problem involves discontinuous elements This allows for a more efficiently assembly and inversion of the mass matrix. More...
 
void disable_discontinuous_formulation ()
 Disable the use of a discontinuous-element formulation. Note that the methods will all still work even if the elements are discontinuous, we will just be assembling a larger system matrix than necessary. More...
 
void get_dofs (DoubleVector &dofs) const
 Return the vector of dofs, i.e. a vector containing the current values of all unknowns. More...
 
void get_dofs (const unsigned &t, DoubleVector &dofs) const
 Return vector of the t'th history value of all dofs. More...
 
void set_dofs (const DoubleVector &dofs)
 Set the values of the dofs. More...
 
void set_dofs (const unsigned &t, DoubleVector &dofs)
 Set the history values of the dofs. More...
 
void set_dofs (const unsigned &t, Vector< double * > &dof_pt)
 Set history values of dofs from the type of vector stored in problem::Dof_pt. More...
 
void add_to_dofs (const double &lambda, const DoubleVector &increment_dofs)
 Add lambda x incremenet_dofs[l] to the l-th dof. More...
 
double * global_dof_pt (const unsigned &i)
 Return a pointer to the dof, indexed by global equation number which may be haloed or stored locally. If it is haloed, a local copy must have been requested on this processor in the Halo_scheme_pt. More...
 
double & dof (const unsigned &i)
 i-th dof in the problem More...
 
double dof (const unsigned &i) const
 i-th dof in the problem (const version) More...
 
double *& dof_pt (const unsigned &i)
 Pointer to i-th dof in the problem. More...
 
double * dof_pt (const unsigned &i) const
 Pointer to i-th dof in the problem (const version) More...
 
virtual void get_inverse_mass_matrix_times_residuals (DoubleVector &Mres)
 Return the residual vector multiplied by the inverse mass matrix Virtual so that it can be overloaded for mpi problems. More...
 
virtual void get_dvaluesdt (DoubleVector &f)
 Get the time derivative of all values (using get_inverse_mass_matrix_times_residuals(..) with all time steppers set to steady) e.g. for use in explicit time steps. The approach used is slighty hacky, beware if you have a residual which is non-linear or implicit in the derivative or if you have overloaded get_jacobian(...). More...
 
virtual void get_residuals (DoubleVector &residuals)
 Return the fully-assembled residuals Vector for the problem: Virtual so it can be overloaded in for mpi problems. More...
 
virtual void get_jacobian (DoubleVector &residuals, DenseDoubleMatrix &jacobian)
 Return the fully-assembled Jacobian and residuals for the problem Interface for the case when the Jacobian matrix is dense. This is virtual so, if we feel like it (e.g. for testing iterative solvers with specific test matrices, we can bypass the default assembly procedure for the Jacobian and the residual vector. More...
 
virtual void get_jacobian (DoubleVector &residuals, CRDoubleMatrix &jacobian)
 Return the fully-assembled Jacobian and residuals for the problem. Interface for the case when the Jacobian is in row-compressed storage format. This is virtual so, if we feel like it (e.g. for testing iterative solvers with specific test matrices), we can bypass the default assembly procedure for the Jacobian and the residual vector. More...
 
virtual void get_jacobian (DoubleVector &residuals, CCDoubleMatrix &jacobian)
 Return the fully-assembled Jacobian and residuals for the problem. Interface for the case when the Jacobian is in column-compressed storage format. This is virtual so, if we feel like it (e.g. for testing iterative solvers with specific test matrices), we can bypass the default assembly procedure for the Jacobian and the residual vector. More...
 
virtual void get_jacobian (DoubleVector &residuals, SumOfMatrices &jacobian)
 Dummy virtual function that must be overloaded by the problem to specify which matrices should be summed to give the final Jacobian. More...
 
void get_fd_jacobian (DoubleVector &residuals, DenseMatrix< double > &jacobian)
 Return the fully-assembled Jacobian and residuals, generated by finite differences. More...
 
void get_derivative_wrt_global_parameter (double *const &parameter_pt, DoubleVector &result)
 Get the derivative of the entire residuals vector wrt a global parameter, used in continuation problems. More...
 
void get_hessian_vector_products (DoubleVectorWithHaloEntries const &Y, Vector< DoubleVectorWithHaloEntries > const &C, Vector< DoubleVectorWithHaloEntries > &product)
 Return the product of the global hessian (derivative of Jacobian matrix with respect to all variables) with an eigenvector, Y, and any number of other specified vectors C (d(J_{ij})/d u_{k}) Y_{j} C_{k}. This function is used in assembling and solving the augmented systems associated with bifurcation tracking. The default implementation is to use finite differences at the global level. More...
 
void solve_eigenproblem (const unsigned &n_eval, Vector< std::complex< double >> &alpha, Vector< double > &beta, Vector< DoubleVector > &eigenvector_real, Vector< DoubleVector > &eigenvector_imag, const bool &steady=true)
 Solve an eigenproblem as assembled by the Problem's constituent elements. Calculate (at least) n_eval eigenvalues and return the corresponding eigenvectors. The boolean flag (default true) specifies whether the steady jacobian should be assembled. If the flag is false then the weighted mass-matrix terms from the timestepper will be included in the jacobian — this is almost certainly never wanted. The eigenvalues and eigenvectors are, in general, complex. Eigenvalues may be infinite and are therefore returned as $ \lambda_i = \alpha_i / \beta_i $ where $ \alpha_i $ is complex while $ \beta_i $ is real. The actual eigenvalues may then be computed by doing the division, checking for zero betas to avoid NaNs. There's a convenience wrapper to this function that simply computes these eigenvalues regardless. That version may die in NaN checking is enabled (via the fenv.h header and the associated feenable function). More...
 
void solve_eigenproblem (const unsigned &n_eval, Vector< std::complex< double >> &eigenvalue, Vector< DoubleVector > &eigenvector_real, Vector< DoubleVector > &eigenvector_imag, const bool &steady=true)
 Solve an eigenproblem as assembled by the Problem's constituent elements. Calculate (at least) n_eval eigenvalues and return the corresponding eigenvectors. The boolean flag (default true) specifies whether the steady jacobian should be assembled. If the flag is false then the weighted mass-matrix terms from the timestepper will be included in the jacobian — this is almost certainly never wanted. Note that the eigenvalues and eigenvectors are, in general, complex and the eigenvalues may be infinite. In this case it's safer to use the other version of this function which returns the eigenvalues in terms of a fractional representation. More...
 
void solve_eigenproblem (const unsigned &n_eval, Vector< std::complex< double >> &eigenvalue, const bool &make_timesteppers_steady=true)
 Solve an eigenproblem as assembled by the Problem's constituent elements but only return the eigenvalues, not the eigenvectors. At least n_eval eigenvalues are computed. The boolean flag (default true) is used to specify whether the weighted mass-matrix terms from the timestepping scheme should be included in the jacobian — this is almost certainly never wanted. Note that the eigenvalues may be infinite. In this case it's safer to use the other version of this function which returns the eigenvalues in terms of a fractional representation. More...
 
void solve_eigenproblem (const unsigned &n_eval, Vector< std::complex< double >> &alpha, Vector< double > &beta, const bool &steady=true)
 Solve an eigenproblem as assembled by the Problem's constituent elements but only return the eigenvalues, not the eigenvectors. At least n_eval eigenvalues are computed. The boolean flag (default true) is used to specify whether the weighted mass-matrix terms from the timestepping scheme should be included in the jacobian — this is almost certainly never wanted. Note that the eigenvalues may be infinite and are therefore returned as $ \lambda_i = \alpha_i / \beta_i $ where $ \alpha_i $ is complex while $ \beta_i $ is real. The actual eigenvalues may then be computed by doing the division, checking for zero betas to avoid NaNs. More...
 
void solve_adjoint_eigenproblem (const unsigned &n_eval, Vector< std::complex< double >> &eigenvalue, Vector< DoubleVector > &eigenvector_real, Vector< DoubleVector > &eigenvector_imag, const bool &steady=true)
 Solve an adjoint eigenvalue problem using the same procedure as solve_eigenproblem. See the documentation on that function for more details. More...
 
void solve_adjoint_eigenproblem (const unsigned &n_eval, Vector< std::complex< double >> &eigenvalue, const bool &steady=true)
 Solve an adjoint eigenvalue problem using the same procedure as solve_eigenproblem but only return the eigenvalues, not the eigenvectors. At least n_eval eigenvalues are computed. See the documentation on that function for more details. More...
 
virtual void get_eigenproblem_matrices (CRDoubleMatrix &mass_matrix, CRDoubleMatrix &main_matrix, const double &shift=0.0)
 Get the matrices required by a eigensolver. If the shift parameter is non-zero the second matrix will be shifted. More...
 
void assign_eigenvector_to_dofs (DoubleVector &eigenvector)
 Assign the eigenvector passed to the function to the dofs in the problem so that it can be output by the usual routines. More...
 
void add_eigenvector_to_dofs (const double &epsilon, const DoubleVector &eigenvector)
 Add the eigenvector passed to the function scaled by the constat epsilon to the dofs in the problem so that it can be output by the usual routines. More...
 
void store_current_dof_values ()
 Store the current values of the degrees of freedom. More...
 
void restore_dof_values ()
 Restore the stored values of the degrees of freedom. More...
 
void enable_jacobian_reuse ()
 Enable recycling of Jacobian in Newton iteration (if the linear solver allows it). Useful for linear problems with constant Jacobians or nonlinear problems where you're willing to risk the trade-off between faster solve times and degraded Newton convergence rate. More...
 
void disable_jacobian_reuse ()
 Disable recycling of Jacobian in Newton iteration. More...
 
bool jacobian_reuse_is_enabled ()
 Is recycling of Jacobian in Newton iteration enabled? More...
 
bool & use_predictor_values_as_initial_guess ()
 
void newton_solve ()
 Use Newton method to solve the problem. More...
 
void enable_globally_convergent_newton_method ()
 enable globally convergent Newton method More...
 
void disable_globally_convergent_newton_method ()
 disable globally convergent Newton method More...
 
void newton_solve (unsigned const &max_adapt)
 Adaptive Newton solve: up to max_adapt adaptations of all refineable submeshes are performed to achieve the the error targets specified in the refineable submeshes. More...
 
void steady_newton_solve (unsigned const &max_adapt=0)
 Solve a steady problem using adaptive Newton's method, but in the context of an overall unstady problem, perhaps to determine an initial condition. This is achieved by setting the weights in the timesteppers to be zero which has the effect of rendering them steady timesteppers. The optional argument max_adapt specifies the max. number of adaptations of all refineable submeshes are performed to achieve the the error targets specified in the refineable submeshes. More...
 
void copy (Problem *orig_problem_pt)
 Copy Data values, nodal positions etc from specified problem. Note: This is not a copy constructor. We assume that the current and the "original" problem have both been created by calling the same problem constructor so that all Data objects, time steppers etc. in the two problems are completely independent. This function copies the nodal, internal and global values, and the time parameters from the original problem into "this" one. This functionality is required, e.g. for multigrid computations. More...
 
virtual Problemmake_copy ()
 Make and return a pointer to the copy of the problem. A virtual function that must be filled in by the user is they wish to perform adaptive refinement in bifurcation tracking or in multigrid problems. ALH: WILL NOT BE NECESSARY IN BIFURCATION TRACKING IN LONG RUN... More...
 
virtual void read (std::ifstream &restart_file, bool &unsteady_restart)
 Read refinement pattern of all refineable meshes and refine them accordingly, then read all Data and nodal position info from file for restart. Return flag to indicate if the restart was from steady or unsteady solution. More...
 
virtual void read (std::ifstream &restart_file)
 Read refinement pattern of all refineable meshes and refine them accordingly, then read all Data and nodal position info from file for restart. More...
 
virtual void dump (std::ofstream &dump_file) const
 Dump refinement pattern of all refineable meshes and all generic Problem data to file for restart. More...
 
void dump (const std::string &dump_file_name) const
 Dump refinement pattern of all refineable meshes and all generic Problem data to file for restart. More...
 
void get_all_halo_data (std::map< unsigned, double * > &map_of_halo_data)
 Get pointers to all possible halo data indexed by global equation number in a map. More...
 
long synchronise_eqn_numbers (const bool &assign_local_eqn_numbers=true)
 Classify any non-classified nodes into halo/haloed and synchronise equation numbers. Return the total number of degrees of freedom in the overall problem. More...
 
void synchronise_dofs (const bool &do_halos, const bool &do_external_halos)
 Synchronise the degrees of freedom by overwriting the haloed values with their non-halo counterparts held on other processors. Bools control if we deal with data associated with external halo/ed elements/nodes or the "normal" halo/ed ones. More...
 
void synchronise_all_dofs ()
 Perform all required synchronisation in solvers. More...
 
void check_halo_schemes (DocInfo &doc_info)
 Check the halo/haloed node/element schemes. More...
 
void check_halo_schemes ()
 Check the halo/haloed node/element schemes. More...
 
Vector< unsigned > distribute (const Vector< unsigned > &element_partition, DocInfo &doc_info, const bool &report_stats=false)
 Distribute the problem and doc, using the specified partition; returns a vector which details the partitioning. More...
 
Vector< unsigned > distribute (DocInfo &doc_info, const bool &report_stats=false)
 Distribute the problem; returns a vector which details the partitioning. More...
 
Vector< unsigned > distribute (const Vector< unsigned > &element_partition, const bool &report_stats=false)
 Distribute the problem using the specified partition; returns a vector which details the partitioning. More...
 
Vector< unsigned > distribute (const bool &report_stats=false)
 Distribute the problem; returns a vector which details the partitioning. More...
 
virtual void partition_global_mesh (Mesh *&global_mesh_pt, DocInfo &doc_info, Vector< unsigned > &element_domain, const bool &report_stats=false)
 Partition the global mesh, return vector specifying the processor number for each element. Virtual so that it can be overloaded by any user; the default is to use METIS to perform the partitioning (with a bit of cleaning up afterwards to sort out "special cases"). More...
 
void prune_halo_elements_and_nodes (DocInfo &doc_info, const bool &report_stats)
 (Irreversibly) prune halo(ed) elements and nodes, usually after another round of refinement, to get rid of excessively wide halo layers. Note that the current mesh will be now regarded as the base mesh and no unrefinement relative to it will be possible once this function has been called. More...
 
void prune_halo_elements_and_nodes (const bool &report_stats=false)
 (Irreversibly) prune halo(ed) elements and nodes, usually after another round of refinement, to get rid of excessively wide halo layers. Note that the current mesh will be now regarded as the base mesh and no unrefinement relative to it will be possible once this function has been called. More...
 
bool problem_has_been_distributed ()
 Access to Problem_has_been_distributed flag. More...
 
void delete_all_external_storage ()
 Wrapper function to delete external storage for each submesh of the problem. More...
 
virtual void symmetrise_eigenfunction_for_adaptive_pitchfork_tracking ()
 Virtual function that is used to symmetrise the problem so that the current solution exactly satisfies any symmetries within the system. Used when adpativly solving pitchfork detection problems when small asymmetries in the coarse solution can be magnified leading to very inaccurate answers on the fine mesh. This is always problem-specific and must be filled in by the user The default issues a warning. More...
 
double * bifurcation_parameter_pt () const
 Return pointer to the parameter that is used in the bifurcation detection. If we are not tracking a bifurcation then an error will be thrown by the AssemblyHandler. More...
 
void get_bifurcation_eigenfunction (Vector< DoubleVector > &eigenfunction)
 Return the eigenfunction calculated as part of a bifurcation tracking process. If we are not tracking a bifurcation then an error will be thrown by the AssemblyHandler. More...
 
void activate_fold_tracking (double *const &parameter_pt, const bool &block_solve=true)
 Turn on fold tracking using the augmented system specified in the FoldHandler class. After a call to this function subsequent calls of the standard solution methods will converge to a fold (limit) point at a particular value of the variable addressed by parameter_pt. The system may not converge if the initial guess is sufficiently poor or, alternatively, if finite differencing is used to calculate the jacobian matrix in the elements. If the boolean flag block_solver is true (the default) then a block factorisation is used to solve the augmented system which is both faster and uses less memory. More...
 
void activate_bifurcation_tracking (double *const &parameter_pt, const DoubleVector &eigenvector, const bool &block_solve=true)
 Activate generic bifurcation tracking for a single (real) eigenvalue where the initial guess for the eigenvector can be specified. More...
 
void activate_bifurcation_tracking (double *const &parameter_pt, const DoubleVector &eigenvector, const DoubleVector &normalisation, const bool &block_solve=true)
 Activate generic bifurcation tracking for a single (real) eigenvalue where the initial guess for the eigenvector can be specified and the normalisation condition can also be specified. More...
 
void activate_pitchfork_tracking (double *const &parameter_pt, const DoubleVector &symmetry_vector, const bool &block_solve=true)
 Turn on pitchfork tracking using the augmented system specified in the PitchForkHandler class. After a call to this function subsequent calls of the standard solution methods will converge to a pitchfork bifurcation at a particular value of the variable addressed by parameter_pt. The symmetry that is to be broken must be specified by supplying a symmetry_vector(ndof). The easiest way to determine such a vector is to solve the associated eigenproblem $ Jx = \lambda M x$ and pass in the eigenvector. This is not always necessary however, if the symmetry is easy to construct. The system may not converge if the initial guess is sufficiently poor or, alternatively, if finite differencing is used to calculate the jacobian matrix in the elements. If the boolean flag block_solver is true (the default) then a block factorisation is used to solve the augmented system which is both faster and requires less memory. More...
 
void activate_hopf_tracking (double *const &parameter_pt, const bool &block_solve=true)
 Turn on Hopf bifurcation tracking using the augmented system specified in the HopfHandler class. After a call to this function subsequent calls of the standard solution methods will converge to a Hopf bifuraction at a particular value of the variable addressed by parameter_pt. The system may not converge if the initial guess is sufficiently poor or, alternatively, if finite differencing is used to calculate the jacobian matrix in the elements. More...
 
void activate_hopf_tracking (double *const &parameter_pt, const double &omega, const DoubleVector &null_real, const DoubleVector &null_imag, const bool &block_solve=true)
 Turn on Hopf bifurcation tracking using the augmented system specified in the HopfHandler class. After a call to this function subsequent calls of the standard solution methods will converge to a Hopf bifuraction at a particular value of the variable addressed by parameter_pt. The system may not converge if the initial guess is sufficiently poor or, alternatively, if finite differencing is used to calculate the jacobian matrix in the elements. This interface allows specification of an inital guess for the frequency and real and imaginary parts of the null vector, such as might be obtained from an eigensolve. More...
 
void deactivate_bifurcation_tracking ()
 Deactivate all bifuraction tracking, by reseting the assembly handler to the default. More...
 
void reset_assembly_handler_to_default ()
 Reset the system to the standard non-augemented state. More...
 
double arc_length_step_solve (double *const &parameter_pt, const double &ds, const unsigned &max_adapt=0)
 Solve a steady problem using arc-length continuation, when the parameter that becomes a variable corresponding to the arc-length constraint equation is an external double: parameter_pt is a pointer to that double, ds is the desired arc_length and max_adapt is the maximum number of spatial adaptations (default zero, no adaptation). More...
 
double arc_length_step_solve (Data *const &data_pt, const unsigned &data_index, const double &ds, const unsigned &max_adapt=0)
 Solve a steady problem using arc-length continuation, when the variable corresponding to the arc-length constraint equation is already stored in data used in the problem: data_pt is a pointer to the appropriate data object, data_index is the index of the value that will be traded for the constriant, ds is the desired arc_length and max_adapt is the maximum number of spatial adaptations (default zero, no adaptation). Note that the value must be pinned in order for this formulation to work. More...
 
void reset_arc_length_parameters ()
 Reset the "internal" arc-length continuation parameters, so as to allow continuation in another parameter. N.B. The parameters that are reset are the "minimum" that are required, others should perhaps be reset, depending upon the application. More...
 
int & sign_of_jacobian ()
 Access function for the sign of the global jacobian matrix. This will be set by the linear solver, if possible (direct solver). If not alternative methods must be used to detect bifurcations (solving the associated eigenproblem). More...
 
void explicit_timestep (const double &dt, const bool &shift_values=true)
 Take an explicit timestep of size dt and optionally shift any stored values of the time history. More...
 
void unsteady_newton_solve (const double &dt)
 Advance time by dt and solve by Newton's method. This version always shifts time values. More...
 
void unsteady_newton_solve (const double &dt, const bool &shift_values)
 Advance time by dt and solve the system, using Newton's method. The boolean flag is used to control whether the time values should be shifted. If it is true the current data values will be shifted (copied to the locations where there are stored as previous timesteps) before solution. More...
 
void unsteady_newton_solve (const double &dt, const unsigned &max_adapt, const bool &first, const bool &shift=true)
 Unsteady adaptive Newton solve: up to max_adapt adaptations of all refineable submeshes are performed to achieve the the error targets specified in the refineable submeshes. If first==true, the initial conditions are re-assigned after the mesh adaptations. Shifting of time can be suppressed by overwriting the default value of shift (true). [Shifting must be done if first_timestep==true because we're constantly re-assigning the initial conditions; if first_timestep==true and shift==false shifting is performed anyway and a warning is issued. More...
 
double doubly_adaptive_unsteady_newton_solve (const double &dt, const double &epsilon, const unsigned &max_adapt, const bool &first, const bool &shift=true)
 Unsteady "doubly" adaptive Newton solve: Does temporal adaptation first, i.e. we try to do a timestep with an increment of dt, and adjusting dt until the solution on the given mesh satisfies the temporal error measure with tolerance epsilon. Following this, we do up to max_adapt spatial adaptions (without re-examining the temporal error). If first==true, the initial conditions are re-assigned after the mesh adaptations. Shifting of time can be suppressed by overwriting the default value of shift (true). [Shifting must be done if first_timestep==true because we're constantly re-assigning the initial conditions; if first_timestep==true and shift==false shifting is performed anyway and a warning is issued. More...
 
double doubly_adaptive_unsteady_newton_solve (const double &dt, const double &epsilon, const unsigned &max_adapt, const unsigned &suppress_resolve_after_spatial_adapt_flag, const bool &first, const bool &shift=true)
 Unsteady "doubly" adaptive Newton solve: Does temporal adaptation first, i.e. we try to do a timestep with an increment of dt, and adjusting dt until the solution on the given mesh satisfies the temporal error measure with tolerance epsilon. Following this, we do up to max_adapt spatial adaptions (without re-examining the temporal error). If first==true, the initial conditions are re-assigned after the mesh adaptations. Shifting of time can be suppressed by overwriting the default value of shift (true). [Shifting must be done if first_timestep==true because we're constantly re-assigning the initial conditions; if first_timestep==true and shift==false shifting is performed anyway and a warning is issued. Pseudo-Boolean flag suppress_resolve_after_spatial_adapt [0: false; 1: true] does what it says.]. More...
 
double adaptive_unsteady_newton_solve (const double &dt_desired, const double &epsilon)
 Attempt to advance timestep by dt_desired. If the solution fails the timestep will be halved until convergence is achieved, or the timestep falls below NewtonSolverParameters::Minimum_time_step. The error control parameter epsilon represents the (approximate) desired magnitude of the global error at each timestep. The routine returns a double that is the suggested next timestep and should be passed as dt_desired the next time the routine is called. This version always shifts the time values. More...
 
double adaptive_unsteady_newton_solve (const double &dt_desired, const double &epsilon, const bool &shift_values)
 Attempt to advance timestep by dt_desired. If the solution fails the timestep will be halved until convergence is achieved, or the timestep falls below NewtonSolverParameters::Minimum_time_step. The error control parameter epsilon represents the (approximate) desired magnitude of the global error at each timestep. The routine returns a double that is the suggested next timestep and should be passed as dt_desired the next time the routine is called. Once again the boolean flag, shift_values, is used to control whether the time values are shifted. More...
 
void assign_initial_values_impulsive ()
 Initialise data and nodal positions to simulate impulsive start from initial configuration/solution. More...
 
void assign_initial_values_impulsive (const double &dt)
 Initialise data and nodal positions to simulate an impulsive start and also set the initial and previous values of dt. More...
 
void calculate_predictions ()
 Calculate predictions. More...
 
void enable_mass_matrix_reuse ()
 Enable recycling of the mass matrix in explicit timestepping schemes. Useful for timestepping on fixed meshes when you want to avoid the linear solve phase. More...
 
void disable_mass_matrix_reuse ()
 Turn off recyling of the mass matrix in explicit timestepping schemes. More...
 
bool mass_matrix_reuse_is_enabled ()
 Return whether the mass matrix is being reused. More...
 
void refine_uniformly (const Vector< unsigned > &nrefine_for_mesh)
 Refine refineable sub-meshes, each as many times as specified in the vector and rebuild problem. More...
 
void refine_uniformly (const Vector< unsigned > &nrefine_for_mesh, DocInfo &doc_info)
 Refine refineable sub-meshes, each as many times as specified in the vector and rebuild problem; doc refinement process. More...
 
void refine_uniformly_and_prune (const Vector< unsigned > &nrefine_for_mesh)
 Refine refineable sub-meshes, each as many times as specified in the vector and rebuild problem. Prune after refinements. More...
 
void refine_uniformly_and_prune (const Vector< unsigned > &nrefine_for_mesh, DocInfo &doc_info)
 Refine refineable sub-meshes, each as many times as specified in the vector and rebuild problem; doc refinement process. More...
 
void refine_uniformly (DocInfo &doc_info)
 Refine (all) refineable (sub)mesh(es) uniformly and rebuild problem; doc refinement process. More...
 
void refine_uniformly_and_prune (DocInfo &doc_info)
 Refine (all) refineable (sub)mesh(es) uniformly and rebuild problem; doc refinement process. More...
 
void refine_uniformly ()
 Refine (all) refineable (sub)mesh(es) uniformly and rebuild problem. More...
 
void refine_uniformly (const unsigned &i_mesh, DocInfo &doc_info)
 Do uniform refinement for submesh i_mesh with documentation. More...
 
void refine_uniformly (const unsigned &i_mesh)
 Do uniform refinement for submesh i_mesh without documentation. More...
 
void p_refine_uniformly (const Vector< unsigned > &nrefine_for_mesh)
 p-refine p-refineable sub-meshes, each as many times as specified in the vector and rebuild problem More...
 
void p_refine_uniformly (const Vector< unsigned > &nrefine_for_mesh, DocInfo &doc_info)
 p-refine p-refineable sub-meshes, each as many times as specified in the vector and rebuild problem; doc refinement process More...
 
void p_refine_uniformly_and_prune (const Vector< unsigned > &nrefine_for_mesh)
 p-refine p-refineable sub-meshes, each as many times as specified in the vector and rebuild problem. Prune after refinements More...
 
void p_refine_uniformly_and_prune (const Vector< unsigned > &nrefine_for_mesh, DocInfo &doc_info)
 p-refine p-refineable sub-meshes, each as many times as specified in the vector and rebuild problem; doc refinement process More...
 
void p_refine_uniformly (DocInfo &doc_info)
 p-refine (all) p-refineable (sub)mesh(es) uniformly and rebuild problem; doc refinement process. More...
 
void p_refine_uniformly_and_prune (DocInfo &doc_info)
 p-refine (all) p-refineable (sub)mesh(es) uniformly and rebuild problem; doc refinement process. More...
 
void p_refine_uniformly ()
 p-refine (all) p-refineable (sub)mesh(es) uniformly and rebuild problem More...
 
void p_refine_uniformly (const unsigned &i_mesh, DocInfo &doc_info)
 Do uniform p-refinement for submesh i_mesh with documentation. More...
 
void p_refine_uniformly (const unsigned &i_mesh)
 Do uniform p-refinement for submesh i_mesh without documentation. More...
 
void refine_selected_elements (const Vector< unsigned > &elements_to_be_refined)
 Refine (one and only!) mesh by splitting the elements identified by their numbers relative to the problems' only mesh, then rebuild the problem. More...
 
void refine_selected_elements (const Vector< RefineableElement * > &elements_to_be_refined_pt)
 Refine (one and only!) mesh by splitting the elements identified by their pointers, then rebuild the problem. More...
 
void refine_selected_elements (const unsigned &i_mesh, const Vector< unsigned > &elements_to_be_refined)
 Refine specified submesh by splitting the elements identified by their numbers relative to the submesh, then rebuild the problem. More...
 
void refine_selected_elements (const unsigned &i_mesh, const Vector< RefineableElement * > &elements_to_be_refined_pt)
 Refine specified submesh by splitting the elements identified by their pointers, then rebuild the problem. More...
 
void refine_selected_elements (const Vector< Vector< unsigned >> &elements_to_be_refined)
 Refine all submeshes by splitting the elements identified by their numbers relative to each submesh in a Vector of Vectors, then rebuild the problem. More...
 
void refine_selected_elements (const Vector< Vector< RefineableElement * >> &elements_to_be_refined_pt)
 Refine all submeshes by splitting the elements identified by their pointers within each submesh in a Vector of Vectors, then rebuild the problem. More...
 
void p_refine_selected_elements (const Vector< unsigned > &elements_to_be_refined)
 p-refine (one and only!) mesh by refining the elements identified by their numbers relative to the problems' only mesh, then rebuild the problem. More...
 
void p_refine_selected_elements (const Vector< PRefineableElement * > &elements_to_be_refined_pt)
 p-refine (one and only!) mesh by refining the elements identified by their pointers, then rebuild the problem. More...
 
void p_refine_selected_elements (const unsigned &i_mesh, const Vector< unsigned > &elements_to_be_refined)
 p-refine specified submesh by refining the elements identified by their numbers relative to the submesh, then rebuild the problem. More...
 
void p_refine_selected_elements (const unsigned &i_mesh, const Vector< PRefineableElement * > &elements_to_be_refined_pt)
 p-refine specified submesh by refining the elements identified by their pointers, then rebuild the problem. More...
 
void p_refine_selected_elements (const Vector< Vector< unsigned >> &elements_to_be_refined)
 p-refine all submeshes by refining the elements identified by their numbers relative to each submesh in a Vector of Vectors, then rebuild the problem. More...
 
void p_refine_selected_elements (const Vector< Vector< PRefineableElement * >> &elements_to_be_refined_pt)
 p-refine all submeshes by refining the elements identified by their pointers within each submesh in a Vector of Vectors, then rebuild the problem. More...
 
unsigned unrefine_uniformly ()
 Refine (all) refineable (sub)mesh(es) uniformly and rebuild problem. Return 0 for success, 1 for failure (if unrefinement has reached the coarsest permitted level) More...
 
unsigned unrefine_uniformly (const unsigned &i_mesh)
 Do uniform refinement for submesh i_mesh without documentation. Return 0 for success, 1 for failure (if unrefinement has reached the coarsest permitted level) More...
 
void p_unrefine_uniformly (DocInfo &doc_info)
 p-unrefine (all) p-refineable (sub)mesh(es) uniformly and rebuild problem. More...
 
void p_unrefine_uniformly (const unsigned &i_mesh, DocInfo &doc_info)
 Do uniform p-unrefinement for submesh i_mesh without documentation. More...
 
void adapt (unsigned &n_refined, unsigned &n_unrefined)
 Adapt problem: Perform mesh adaptation for (all) refineable (sub)mesh(es), based on their own error estimates and the target errors specified in the mesh(es). Following mesh adaptation, update global mesh, and re-assign equation numbers. Return # of refined/unrefined elements. On return from this function, Problem can immediately be solved again. More...
 
void adapt ()
 Adapt problem: Perform mesh adaptation for (all) refineable (sub)mesh(es), based on their own error estimates and the target errors specified in the mesh(es). Following mesh adaptation, update global mesh, and re-assign equation numbers. On return from this function, Problem can immediately be solved again. [Argument-free wrapper]. More...
 
void p_adapt (unsigned &n_refined, unsigned &n_unrefined)
 p-adapt problem: Perform mesh adaptation for (all) refineable (sub)mesh(es), based on their own error estimates and the target errors specified in the mesh(es). Following mesh adaptation, update global mesh, and re-assign equation numbers. Return # of refined/unrefined elements. On return from this function, Problem can immediately be solved again. More...
 
void p_adapt ()
 p-adapt problem: Perform mesh adaptation for (all) refineable (sub)mesh(es), based on their own error estimates and the target errors specified in the mesh(es). Following mesh adaptation, update global mesh, and re-assign equation numbers. On return from this function, Problem can immediately be solved again. [Argument-free wrapper] More...
 
void adapt_based_on_error_estimates (unsigned &n_refined, unsigned &n_unrefined, Vector< Vector< double >> &elemental_error)
 Adapt problem: Perform mesh adaptation for (all) refineable (sub)mesh(es), based on the error estimates in elemental_error and the target errors specified in the mesh(es). Following mesh adaptation, update global mesh, and re-assign equation numbers. Return # of refined/unrefined elements. On return from this function, Problem can immediately be solved again. More...
 
void adapt_based_on_error_estimates (Vector< Vector< double >> &elemental_error)
 Adapt problem: Perform mesh adaptation for (all) refineable (sub)mesh(es), based on the error estimates in elemental_error and the target errors specified in the mesh(es). Following mesh adaptation, update global mesh, and re-assign equation numbers. Return # of refined/unrefined elements. On return from this function, Problem can immediately be solved again. [Wrapper without n_refined and n_unrefined arguments]. More...
 
void get_all_error_estimates (Vector< Vector< double >> &elemental_error)
 Return the error estimates computed by (all) refineable (sub)mesh(es) in the elemental_error structure, which consists of a vector of vectors of elemental errors, one vector for each (sub)mesh. More...
 
void doc_errors (DocInfo &doc_info)
 Get max and min error for all elements in submeshes. More...
 
void doc_errors ()
 Get max and min error for all elements in submeshes. More...
 
void enable_info_in_newton_solve ()
 Enable the output of information when in the newton solver (Default) More...
 
void disable_info_in_newton_solve ()
 Disable the output of information when in the newton solver. More...
 
- Public Member Functions inherited from oomph::ExplicitTimeSteppableObject
 ExplicitTimeSteppableObject ()
 Empty constructor. More...
 
 ExplicitTimeSteppableObject (const ExplicitTimeSteppableObject &)=delete
 Broken copy constructor. More...
 
void operator= (const ExplicitTimeSteppableObject &)=delete
 Broken assignment operator. More...
 
virtual ~ExplicitTimeSteppableObject ()
 Empty destructor. More...
 
virtual void actions_before_explicit_stage ()
 Empty virtual function to do anything needed before a stage of an explicit time step (Runge-Kutta steps contain multiple stages per time step, most others only contain one). More...
 
virtual void actions_after_explicit_stage ()
 Empty virtual function that should be overloaded to update any dependent data or boundary conditions that should be advanced after each stage of an explicit time step (Runge-Kutta steps contain multiple stages per time step, most others only contain one). More...
 

Private Member Functions

void backup_original_state ()
 Backup original state of all data associated with mesh. More...
 
void reset_original_state ()
 Reset original state of all data associated with mesh. More...
 
void setup_problem ()
 Change pinned status of all data associated with mesh so that the IC problem can be solved. More...
 

Private Attributes

SolidInitialConditionIC_pt
 Pointer to initial condition object. More...
 
Vector< int > Backup_pinned
 Vector to store pinned status of all data. More...
 
Vector< Vector< Data * > > Backup_ext_data
 Vector of Vectors to store pointers to exernal data in the elements. More...
 
double Max_residual_after_consistent_newton_ic
 Max. tolerated residual after application of consistent Newmark IC. Used to check if we have specified the correct timescale ratio (non-dim density). More...
 

Additional Inherited Members

- Public Types inherited from oomph::Problem
enum  Distributed_problem_matrix_distribution { Default_matrix_distribution , Problem_matrix_distribution , Uniform_matrix_distribution }
 enum for distribution of distributed jacobians. 1 - Automatic - the Problem distribution is employed, unless any processor has number of rows equal to 110% of N/P, in which case uniform distribution is employed. 2 - Problem - the jacobian on processor p only contains rows that correspond to equations that are on this processor. (minimises communication) 3 - Uniform - each processor holds as close to N/P matrix rows as possible. (very well load balanced) More...
 
typedef void(* SpatialErrorEstimatorFctPt) (Mesh *&mesh_pt, Vector< double > &elemental_error)
 Function pointer for spatial error estimator. More...
 
typedef void(* SpatialErrorEstimatorWithDocFctPt) (Mesh *&mesh_pt, Vector< double > &elemental_error, DocInfo &doc_info)
 Function pointer for spatial error estimator with doc. More...
 
- Public Attributes inherited from oomph::Problem
double Max_permitted_error_for_halo_check
 Threshold for error throwing in Problem::check_halo_schemes() More...
 
bool Shut_up_in_newton_solve
 Boolean to indicate if all output is suppressed in Problem::newton_solve(). Defaults to false. More...
 
- Static Public Attributes inherited from oomph::Problem
static bool Suppress_warning_about_actions_before_read_unstructured_meshes
 Flag to allow suppression of warning messages re reading in unstructured meshes during restart. More...
 
- Protected Types inherited from oomph::Problem
enum  Assembly_method {
  Perform_assembly_using_vectors_of_pairs , Perform_assembly_using_two_vectors , Perform_assembly_using_maps , Perform_assembly_using_lists ,
  Perform_assembly_using_two_arrays
}
 Enumerated flags to determine which sparse assembly method is used. More...
 
- Protected Member Functions inherited from oomph::Problem
unsigned setup_element_count_per_dof ()
 Function that populates the Element_counter_per_dof vector with the number of elements that contribute to each dof. For example, with linear elements in 1D each dof contains contributions from two elements apart from those on the boundary. Returns the total number of elements in the problem. More...
 
void setup_dof_halo_scheme ()
 Function that is used to setup the halo scheme. More...
 
virtual void sparse_assemble_row_or_column_compressed (Vector< int * > &column_or_row_index, Vector< int * > &row_or_column_start, Vector< double * > &value, Vector< unsigned > &nnz, Vector< double * > &residual, bool compressed_row_flag)
 Protected helper function that is used to assemble the Jacobian matrix in the case when the storage is row or column compressed. The boolean Flag indicates if we want compressed row format (true) or compressed column. More...
 
virtual void actions_before_newton_convergence_check ()
 Any actions that are to be performed before the residual is checked in the Newton method, e.g. update any boundary conditions that depend upon variables of the problem; update any ‘dependent’ variables; or perform an update of the nodal positions in SpineMeshes etc. CAREFUL: This step should (and if the FD-based LinearSolver FD_LU is used, must) only update values that are pinned! More...
 
virtual void actions_before_newton_step ()
 Any actions that are to be performed before each individual Newton step. Most likely to be used for diagnostic purposes to doc the solution during a non-converging iteration, say. More...
 
virtual void actions_after_newton_step ()
 Any actions that are to be performed after each individual Newton step. Most likely to be used for diagnostic purposes to doc the solution during a non-converging iteration, say. More...
 
virtual void actions_before_implicit_timestep ()
 Actions that should be performed before each implicit time step. This is needed when one wants to solve a steady problem before timestepping and needs to distinguish between the two cases. More...
 
virtual void actions_after_implicit_timestep ()
 Actions that should be performed after each implicit time step. This is needed when one wants to solve a steady problem before timestepping and needs to distinguish between the two cases. More...
 
virtual void actions_after_implicit_timestep_and_error_estimation ()
 Actions that should be performed after each implicit time step. This is needed if your actions_after_implicit_timestep() modify the solution in a way that affects the error estimate. More...
 
virtual void actions_before_explicit_timestep ()
 Actions that should be performed before each explicit time step. More...
 
virtual void actions_after_explicit_timestep ()
 Actions that should be performed after each explicit time step. More...
 
virtual void actions_before_read_unstructured_meshes ()
 Actions that are to be performed before reading in restart data for problems involving unstructured bulk meshes. If the problem contains such meshes we need to strip out any face elements that are attached to them because restart of unstructured meshes re-creates their elements and nodes from scratch, leading to dangling pointers from the face elements to the old elements and nodes. This function is virtual and (practically) empty but toggles a flag to indicate that it has been called. This is used to issue a warning, prompting the user to consider overloading it if the problem is found to contain unstructured bulk meshes during restarts. More...
 
virtual void actions_after_read_unstructured_meshes ()
 Actions that are to be performed before reading in restart data for problems involving unstructured bulk meshes. Typically used to re-attach FaceElements, say, that were stripped out in actions_before_read_unstructured_meshes(). This function is virtual and (practically) empty but toggles a flag to indicate that it has been called. This is used to issue a warning, prompting the user to consider overloading it if the problem is found to contain unstructured bulk meshes during restarts. More...
 
virtual void actions_before_distribute ()
 Actions to be performed before a (mesh) distribution. More...
 
virtual void actions_after_distribute ()
 Actions to be performed after a (mesh) distribution. More...
 
virtual void actions_after_change_in_global_parameter (double *const &parameter_pt)
 Actions that are to be performed when the global parameter addressed by parameter_pt has been changed in the function get_derivative_wrt_global_parameter() The default is to call actions_before_newton_solve(), actions_before_newton_convergence_check() and actions_after_newton_solve(). This could be amazingly inefficient in certain problems and should be overloaded in such cases. An example would be when a remesh is required in general, but the global parameter does not affect the mesh directly. More...
 
virtual void actions_after_change_in_bifurcation_parameter ()
 Actions that are to be performed after a change in the parameter that is being varied as part of the solution of a bifurcation detection problem. The default is to call actions_before_newton_solve(), actions_before_newton_convergence_check() and actions_after_newton_solve(). This could be amazingly inefficient in certain problems and should be overloaded in such cases. An example would be when a remesh is required in general, but the global parameter does not affect the mesh directly. More...
 
virtual void actions_after_parameter_increase (double *const &parameter_pt)
 Empty virtual function; provides hook to perform actions after the increase in the arclength parameter (during continuation) More...
 
double & dof_derivative (const unsigned &i)
 Access function to the derivative of the i-th (local) dof with respect to the arc length, used in continuation. More...
 
double & dof_current (const unsigned &i)
 Access function to the current value of the i-th (local) dof at the start of a continuation step. More...
 
virtual void set_initial_condition ()
 Set initial condition (incl previous timesteps). We need to establish this interface because I.C. needs to be reset when problem is adapted during the first timestep. More...
 
virtual double global_temporal_error_norm ()
 Function to calculate a global error norm, used in adaptive timestepping to control the change in timestep. Individual errors for each data object can be obtained via the data timestepper's temporal_error_in_value or temporal_error_in_position functions and should be combined to construct a global norm. For example, in fluids problems a suitable norm is usually the weighted sum of the errors in the velocities; for moving mesh problems is it usually better to use the weighted sum of the errors in position. More...
 
unsigned newton_solve_continuation (double *const &parameter_pt)
 Perform a basic arc-length continuation step using Newton's method. Returns number of Newton steps taken. More...
 
unsigned newton_solve_continuation (double *const &parameter_pt, DoubleVector &z)
 This function performs a basic continuation step using the Newton method. The number of Newton steps taken is returned, to be used in any external step-size control routines. The governing parameter of the problem is passed as a pointer to the routine, as is a vector in which to store the derivatives wrt the parameter, if required. More...
 
void calculate_continuation_derivatives (double *const &parameter_pt)
 A function to calculate the derivatives wrt the arc-length. This version of the function actually does a linear solve so that the derivatives are calculated "exactly" rather than using the values at the Newton step just before convergence. This is necessary in spatially adaptive problems, in which the number of degrees of freedom changes and so the appropriate derivatives must be calculated for the new variables. This function is called if no Newton steps were taken in the continuation routine ... i.e. the initial residuals were sufficiently small. More...
 
void calculate_continuation_derivatives (const DoubleVector &z)
 A function to calculate the derivatives with respect to the arc-length required for continuation. The arguments is the solution of the linear system, Jz = dR/dparameter, that gives du/dparameter and the direction output from the newton_solve_continuation function. The derivatives are stored in the ContinuationParameters namespace. More...
 
void calculate_continuation_derivatives_fd (double *const &parameter_pt)
 A function to calculate the derivatives with respect to the arc-length required for continuation by finite differences, using the previous values of the solution. The derivatives are stored in the ContinuationParameters namespace. More...
 
bool does_pointer_correspond_to_problem_data (double *const &parameter_pt)
 Return a boolean flag to indicate whether the pointer parameter_pt refers to values stored in a Data object that is contained within the problem. More...
 
void set_consistent_pinned_values_for_continuation ()
 Private helper function that is used to set the appropriate pinned values for continuation. More...
 
- Protected Attributes inherited from oomph::Problem
Vector< Problem * > Copy_of_problem_pt
 Vector of pointers to copies of the problem used in adaptive bifurcation tracking problems (ALH: TEMPORARY HACK, WILL BE FIXED) More...
 
std::map< double *, bool > Calculate_dparameter_analytic
 Map used to determine whether the derivatives with respect to a parameter should be finite differenced. The default is that finite differences should be used. More...
 
bool Calculate_hessian_products_analytic
 Map used to determine whether the hessian products should be computed using finite differences. The default is that finite differences will be used. More...
 
LinearAlgebraDistributionDof_distribution_pt
 The distribution of the DOFs in this problem. This object is created in the Problem constructor and setup when assign_eqn_numbers(...) is called. If this problem is distributed then this distribution will match the distribution of the equation numbers. If this problem is not distributed then this distribution will be uniform over all processors. More...
 
Vector< double * > Dof_pt
 Vector of pointers to dofs. More...
 
DoubleVectorWithHaloEntries Element_count_per_dof
 Counter that records how many elements contribute to each dof. Used to determine the (discrete) arc-length automatically. It really should be an integer, but is a double so that the distribution information can be used for distributed problems. More...
 
Vector< double > Elemental_assembly_time
 Storage for assembly times (used for load balancing) More...
 
DoubleVectorHaloSchemeHalo_scheme_pt
 Pointer to the halo scheme for any global vectors that have the Dof_distribution. More...
 
Vector< double * > Halo_dof_pt
 Storage for the halo degrees of freedom (only required) when accessing via the global equation number in distributed problems. More...
 
double Relaxation_factor
 Relaxation fator for Newton method (only a fractional Newton correction is applied if this is less than 1; default 1). More...
 
double Newton_solver_tolerance
 The Tolerance below which the Newton Method is deemed to have converged. More...
 
unsigned Max_newton_iterations
 Maximum number of Newton iterations. More...
 
unsigned Nnewton_iter_taken
 Actual number of Newton iterations taken during the most recent iteration. More...
 
Vector< double > Max_res
 Maximum residuals at start and after each newton iteration. More...
 
double Max_residuals
 Maximum desired residual: if the maximum residual exceeds this value, the program will exit. More...
 
bool Time_adaptive_newton_crash_on_solve_fail
 Bool to specify what to do if a Newton solve fails within a time adaptive solve. Default (false) is to half the step and try again. If true then crash instead. More...
 
bool Jacobian_reuse_is_enabled
 Is re-use of Jacobian in Newton iteration enabled? Default: false. More...
 
bool Jacobian_has_been_computed
 Has a Jacobian been computed (and can therefore be re-used if required)? Default: false. More...
 
bool Problem_is_nonlinear
 Boolean flag indicating if we're dealing with a linear or nonlinear Problem – if set to false the Newton solver will not check the residual before or after the linear solve. Set to true by default; can be over-written in specific Problem class. More...
 
bool Pause_at_end_of_sparse_assembly
 Protected boolean flag to halt program execution during sparse assemble process to assess peak memory usage. Initialised to false (obviously!) More...
 
bool Doc_time_in_distribute
 Protected boolean flag to provide comprehensive timimings during problem distribution. Initialised to false. More...
 
unsigned Sparse_assembly_method
 Flag to determine which sparse assembly method to use By default we use assembly by vectors of pairs. More...
 
unsigned Sparse_assemble_with_arrays_initial_allocation
 the number of elements to initially allocate for a matrix row within the sparse_assembly_with_two_arrays(...) method (if a matrix of this size has not been assembled already). If a matrix of this size has been assembled then the number of elements in each row in that matrix is used as the initial allocation More...
 
unsigned Sparse_assemble_with_arrays_allocation_increment
 the number of elements to add to a matrix row when the initial allocation is exceeded within the sparse_assemble_with_two_arrays(...) method. More...
 
Vector< Vector< unsigned > > Sparse_assemble_with_arrays_previous_allocation
 the number of elements in each row of a compressed matrix in the previous matrix assembly. More...
 
double Numerical_zero_for_sparse_assembly
 A tolerance used to determine whether the entry in a sparse matrix is zero. If it is then storage need not be allocated. More...
 
double FD_step_used_in_get_hessian_vector_products
 
bool Mass_matrix_reuse_is_enabled
 Is re-use of the mass matrix in explicit timestepping enabled Default:false. More...
 
bool Mass_matrix_has_been_computed
 Has the mass matrix been computed (and can therefore be reused) Default: false. More...
 
bool Discontinuous_element_formulation
 Is the problem a discontinuous one, i.e. can the elemental contributions be treated independently. Default: false. More...
 
double Minimum_dt
 Minimum desired dt: if dt falls below this value, exit. More...
 
double Maximum_dt
 Maximum desired dt. More...
 
double DTSF_max_increase
 Maximum possible increase of dt between time-steps in adaptive schemes. More...
 
double DTSF_min_decrease
 Minimum allowed decrease of dt between time-steps in adaptive schemes. Lower scaling values will reject the time-step (and retry with a smaller dt). More...
 
double Target_error_safety_factor
 Safety factor to ensure we are aiming for a target error, TARGET, that is below our tolerance: TARGET = Target_error_safety_factor * TOL For this to make sense Target_error_safety_factor should be <1.0. If Keep_temporal_error_below_tolerance is set to true (default) then, without this, timesteps suggested by the adaptive time-stepper can be expected to lead to rejection (because the error exceeds TOL) about half of the time. Harier et al. (1993, ISBN:978-3-540-56670-0, p168) suggest a value around 0.25-0.40 to be the most efficient, however this is highly problem and timestepper dependent and sometimes as high as 0.95 may be effective at improving the robustness of timestep prediction. More...
 
double Minimum_dt_but_still_proceed
 If Minimum_dt_but_still_proceed positive, then dt will not be reduced below this value during adaptive timestepping and the computation will continue with this value, accepting the larger errors that this will incur). Note: This option is disabled by default as this value is initialised to -1.0. More...
 
bool Scale_arc_length
 Boolean to control whether arc-length should be scaled. More...
 
double Desired_proportion_of_arc_length
 Proportion of the arc-length to taken by the parameter. More...
 
double Theta_squared
 Value of the scaling parameter required so that the parameter occupies the desired proportion of the arc length. NOTE: If you wish to change this then make sure to set the value of Scale_arc_length to false to ensure the value of this isn't overwritten during the arc-length process. Instead of changing this variable, it's better to actually update the Desired_proportion_of_arc_length value. More...
 
int Sign_of_jacobian
 Storage for the sign of the global Jacobian. More...
 
double Continuation_direction
 The direction of the change in parameter that will ensure that a branch is followed in one direction only. More...
 
double Parameter_derivative
 Storage for the derivative of the global parameter wrt arc-length. More...
 
double Parameter_current
 Storage for the present value of the global parameter. More...
 
bool Use_continuation_timestepper
 Boolean to control original or new storage of dof stuff. More...
 
unsigned Dof_derivative_offset
 Storage for the offset for the continuation derivatives from the original dofs (default is 1, but this will be differnet when continuing bifurcations and periodic orbits) More...
 
unsigned Dof_current_offset
 Storage for the offset for the current values of dofs from the original dofs (default is 2, but this will be differnet when continuing bifurcations and periodic orbits) More...
 
Vector< double > Dof_derivative
 Storage for the derivative of the problem variables wrt arc-length. More...
 
Vector< double > Dof_current
 Storage for the present values of the variables. More...
 
double Ds_current
 Storage for the current step value. More...
 
unsigned Desired_newton_iterations_ds
 The desired number of Newton Steps to reach convergence at each step along the arc. More...
 
double Minimum_ds
 Minimum desired value of arc-length. More...
 
bool Bifurcation_detection
 Boolean to control bifurcation detection via determinant of Jacobian. More...
 
bool Bisect_to_find_bifurcation
 Boolean to control wheter bisection is used to located bifurcation. More...
 
bool First_jacobian_sign_change
 Boolean to indicate whether a sign change has occured in the Jacobian. More...
 
bool Arc_length_step_taken
 Boolean to indicate whether an arc-length step has been taken. More...
 
bool Use_finite_differences_for_continuation_derivatives
 Boolean to specify which scheme to use to calculate the continuation derivatievs. More...
 
bool Problem_has_been_distributed
 Has the problem been distributed amongst multiple processors? More...
 
bool Bypass_increase_in_dof_check_during_pruning
 Boolean to bypass check of increase in dofs during pruning. More...
 
OomphCommunicatorCommunicator_pt
 The communicator for this problem. More...
 
bool Always_take_one_newton_step
 Boolean to indicate whether a Newton step should be taken even if the initial residuals are below the required tolerance. More...
 
double Timestep_reduction_factor_after_nonconvergence
 What it says: If temporally adaptive Newton solver fails to to converge, reduce timestep by this factor and try again; defaults to 1/2; can be over-written by user in derived problem. More...
 
bool Keep_temporal_error_below_tolerance
 Boolean to decide if a timestep is to be rejected if the error estimate post-solve (computed by global_temporal_error_norm()) exceeds the tolerance required in the call to adaptive_unsteady_newton_solve(...). Defaults to true. More...
 
- Static Protected Attributes inherited from oomph::Problem
static ContinuationStorageScheme Continuation_time_stepper
 Storage for the single static continuation timestorage object. More...
 

Detailed Description

///////////////////////////////////////////////////////////////////// /////////////////////////////////////////////////////////////////////

IC problem for an elastic body discretised on a given (sub)-mesh. We switch the elements' residuals and Jacobians to the system of equations that forces the wall shape to become that of a specified "initial condition object".

Boundary conditions for all data items associated with the mesh's elements' are temporarily overwritten so that all positional dofs (and only those!) become free while all other data (nodal data and the element's internal and external data) are either pinned (for nodal and internal data) or completely removed (for pointers to external data). The complete removal of the (pointers to the) external data is necessary because in FSI problems, positional data of certain elements can feature as external data of others. Hence pinning them in their incarnation as external data would also pin them in their incarnation as positional data.

All data and its pinned-status are restored at the end of the call to setup_ic().

Definition at line 87 of file elastic_problems.h.

Constructor & Destructor Documentation

◆ SolidICProblem() [1/2]

oomph::SolidICProblem::SolidICProblem ( )
inline

Constructor. Initialise pointer to IC object to NULL. Create a dummy mesh that can be deleted when static problem finally goes out of scope at end of program execution.

Create dummy mesh

Definition at line 94 of file elastic_problems.h.

References Max_residual_after_consistent_newton_ic, and oomph::Problem::mesh_pt().

◆ SolidICProblem() [2/2]

oomph::SolidICProblem::SolidICProblem ( const SolidICProblem )
delete

Broken copy constructor.

Member Function Documentation

◆ actions_after_newton_solve()

void oomph::SolidICProblem::actions_after_newton_solve ( )
inlinevirtual

Update after solve (empty)

Reimplemented from oomph::Problem.

Definition at line 111 of file elastic_problems.h.

◆ actions_before_newton_solve()

void oomph::SolidICProblem::actions_before_newton_solve ( )
inlinevirtual

Update the problem specs before solve. (empty)

Reimplemented from oomph::Problem.

Definition at line 114 of file elastic_problems.h.

◆ backup_original_state()

void oomph::SolidICProblem::backup_original_state ( )
private

◆ max_residual_after_consistent_newton_ic()

double& oomph::SolidICProblem::max_residual_after_consistent_newton_ic ( )
inline

Max. tolerated residual after application of consistent Newmark IC. Used to check if we have specified the correct timescale ratio (non-dim density).

Definition at line 172 of file elastic_problems.h.

References Max_residual_after_consistent_newton_ic.

◆ operator=()

void oomph::SolidICProblem::operator= ( const SolidICProblem )
delete

Broken assignment operator.

◆ reset_original_state()

void oomph::SolidICProblem::reset_original_state ( )
private

◆ set_newmark_initial_condition_consistently()

template<class TIMESTEPPER >
void oomph::SolidICProblem::set_newmark_initial_condition_consistently ( Problem problem_pt,
Mesh mesh_pt,
TIMESTEPPER *  timestepper_pt,
SolidInitialCondition ic_pt,
const double &  dt,
SolidFiniteElement::MultiplierFctPt  multiplier_fct_pt = 0 
)

Setup initial condition for time-integration with Newmark's method. Past displacements and velocities are assigned directly (consistent with the idea that a second order ODE can take ICs up to 1st order, while the history value for the previous acceleration is determined by the condition that the weak equation is satisfied at the initial time.) The multiplier function needs to specify the factor that multiplies the inertia terms – typically this is a constant, given by the ratio $ \Lambda^2 $ of the problem's intrinsic timescale to the time used to non-dimensionalise the equations. If the function (pointer) is not specified the multiplier is assumed to be equal to 1.0 – appropriate for a non-dimensionalisation based on the problem's intrinsic timescale.

Setup initial condition for time-integration with Newmark's method. Past displacements and velocities are assigned directly (consistent with the idea that a second order ODE can take ICs up to 1st order, while the history value for the previous acceleration is determined by the condition that that the weak equation is satisfied at the initial time. The multiplier function needs to specify the factor that multiplies the inertia terms – typically this is a constant, given by the ratio $ \Lambda^2 $ of the problem's intrinsic timescale to the time used to non-dimensionalise the equations. If the function (pointer) is not specified, the multiplier is assumed to be equal to 1.0 – appropriate for a non-dimensionalisation based on the problem's intrinsic timescale.

Pointer to member type solver

Definition at line 356 of file elastic_problems.h.

References oomph::Problem::assign_eqn_numbers(), backup_original_state(), oomph::Mesh::element_pt(), oomph::SolidFiniteElement::enable_solve_for_consistent_newmark_accel(), oomph::Data::eqn_number(), oomph::SolidInitialCondition::geom_object_pt(), oomph::Problem::get_residuals(), i, IC_pt, oomph::SolidInitialCondition::ic_time_deriv(), oomph::Problem::linear_solver_pt(), oomph::DoubleVector::max(), Max_residual_after_consistent_newton_ic, oomph::Problem::mesh_pt(), oomph::SolidFiniteElement::multiplier_fct_pt(), oomph::Mesh::nelement(), oomph::Problem::newton_solve(), oomph::Mesh::nnode(), oomph::Mesh::node_pt(), oomph::TimeStepper::nprev_values(), oomph::TimeStepper::ntstorage(), oomph::Data::nvalue(), oomph::oomph_info, reset_original_state(), oomph::Data::set_value(), setup_problem(), oomph::SolidFiniteElement::solid_ic_pt(), oomph::LinearSolver::solve(), oomph::Time::time(), oomph::TimeStepper::time_pt(), oomph::GeomObject::time_stepper_pt(), oomph::Data::value(), and oomph::Data::value_pt().

◆ set_newmark_initial_condition_directly()

template<class TIMESTEPPER >
void oomph::SolidICProblem::set_newmark_initial_condition_directly ( Problem problem_pt,
Mesh mesh_pt,
TIMESTEPPER *  timestepper_pt,
SolidInitialCondition ic_pt,
const double &  dt 
)

◆ set_static_initial_condition() [1/2]

void oomph::SolidICProblem::set_static_initial_condition ( Problem problem_pt,
Mesh mesh_pt,
SolidInitialCondition ic_pt 
)
inline

Force the elastic structure that is discretised on the specified mesh to deform in the shape of the initial condition object (wrapper)

Definition at line 126 of file elastic_problems.h.

References oomph::Problem::mesh_pt(), set_static_initial_condition(), and oomph::Problem::time().

◆ set_static_initial_condition() [2/2]

void oomph::SolidICProblem::set_static_initial_condition ( Problem problem_pt,
Mesh mesh_pt,
SolidInitialCondition ic_pt,
const double &  time 
)

◆ setup_problem()

void oomph::SolidICProblem::setup_problem ( )
private

Change pinned status of all data associated with mesh so that the IC problem can be solved.

/////////////////////////////////////////////////////////////////////// ///////////////////////////////////////////////////////////////////////

Setup IC problem by:

  • Pinning all nodal values in the mesh
  • Pinning the internal data of all elements.
  • Freeing/unpinnning all positional data.
  • Flushing the pointers to the elements' external data.
  • Setting the pointer to the IC object for all elements to ensure that the correct residuals/Jacobians are computed.

Definition at line 48 of file elastic_problems.cc.

References oomph::Problem::assign_eqn_numbers(), oomph::Mesh::element_pt(), oomph::GeneralisedElement::flush_external_data(), oomph::SolidFiniteElement::has_internal_solid_data(), i, IC_pt, oomph::GeneralisedElement::internal_data_pt(), oomph::Problem::mesh_pt(), oomph::Node::ndim(), oomph::Mesh::nelement(), oomph::GeneralisedElement::ninternal_data(), oomph::FiniteElement::nnodal_position_type(), oomph::Mesh::nnode(), oomph::Mesh::node_pt(), oomph::Data::nvalue(), oomph::oomph_info, oomph::Data::pin(), oomph::SolidFiniteElement::solid_ic_pt(), oomph::Global_string_for_annotation::string(), and oomph::SolidNode::unpin_position().

Referenced by set_newmark_initial_condition_consistently(), set_newmark_initial_condition_directly(), and set_static_initial_condition().

Member Data Documentation

◆ Backup_ext_data

Vector<Vector<Data*> > oomph::SolidICProblem::Backup_ext_data
private

Vector of Vectors to store pointers to exernal data in the elements.

Definition at line 196 of file elastic_problems.h.

Referenced by backup_original_state(), and reset_original_state().

◆ Backup_pinned

Vector<int> oomph::SolidICProblem::Backup_pinned
private

Vector to store pinned status of all data.

Definition at line 193 of file elastic_problems.h.

Referenced by backup_original_state(), and reset_original_state().

◆ IC_pt

SolidInitialCondition* oomph::SolidICProblem::IC_pt
private

◆ Max_residual_after_consistent_newton_ic

double oomph::SolidICProblem::Max_residual_after_consistent_newton_ic
private

Max. tolerated residual after application of consistent Newmark IC. Used to check if we have specified the correct timescale ratio (non-dim density).

Definition at line 201 of file elastic_problems.h.

Referenced by max_residual_after_consistent_newton_ic(), set_newmark_initial_condition_consistently(), and SolidICProblem().


The documentation for this class was generated from the following files: