axisym_poroelasticity_elements.h
Go to the documentation of this file.
1 // LIC// ====================================================================
2 // LIC// This file forms part of oomph-lib, the object-oriented,
3 // LIC// multi-physics finite-element library, available
4 // LIC// at http://www.oomph-lib.org.
5 // LIC//
6 // LIC// Copyright (C) 2006-2024 Matthias Heil and Andrew Hazel
7 // LIC//
8 // LIC// This library is free software; you can redistribute it and/or
9 // LIC// modify it under the terms of the GNU Lesser General Public
10 // LIC// License as published by the Free Software Foundation; either
11 // LIC// version 2.1 of the License, or (at your option) any later version.
12 // LIC//
13 // LIC// This library is distributed in the hope that it will be useful,
14 // LIC// but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // LIC// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
16 // LIC// Lesser General Public License for more details.
17 // LIC//
18 // LIC// You should have received a copy of the GNU Lesser General Public
19 // LIC// License along with this library; if not, write to the Free Software
20 // LIC// Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
21 // LIC// 02110-1301 USA.
22 // LIC//
23 // LIC// The authors may be contacted at oomph-lib@maths.man.ac.uk.
24 // LIC//
25 // LIC//====================================================================
26 #ifndef OOMPH_AXISYM_POROELASTICITY_ELEMENTS_HEADER
27 #define OOMPH_AXISYM_POROELASTICITY_ELEMENTS_HEADER
28 
29 // Config header generated by autoconfig
30 #ifdef HAVE_CONFIG_H
31 #include <oomph-lib-config.h>
32 #endif
33 
34 #include "../generic/elements.h"
35 #include "../generic/shape.h"
36 #include "../generic/error_estimator.h"
37 #include "../generic/projection.h"
38 
39 
40 namespace oomph
41 {
42  //=========================================================================
43  /// Class implementing the generic maths of the axisym poroelasticity
44  /// equations: axisym linear elasticity coupled with axisym Darcy
45  /// equations (using Raviart-Thomas elements with both edge and internal
46  /// degrees of freedom) including inertia in both.
47  //=========================================================================
49  : public virtual FiniteElement,
50  public virtual ElementWithZ2ErrorEstimator
51  {
52  public:
53  /// Source function pointer typedef
54  typedef void (*SourceFctPt)(const double& time,
55  const Vector<double>& x,
56  Vector<double>& f);
57 
58  /// Mass source function pointer typedef
59  typedef void (*MassSourceFctPt)(const double& time,
60  const Vector<double>& x,
61  double& f);
62 
63  /// Constructor
69  Nu_pt(0),
77  {
78  }
79 
80  /// Access function to non-dim Young's modulus (ratio of actual
81  /// Young's modulus to reference stress used to non-dim the equations.
82  /// (const version)
83  const double& youngs_modulus() const
84  {
85  return *Youngs_modulus_pt;
86  }
87 
88  /// Pointer to non-dim Young's modulus (ratio of actual
89  /// Young's modulus to reference stress used to non-dim the equations.
90  double*& youngs_modulus_pt()
91  {
92  return Youngs_modulus_pt;
93  }
94 
95  /// Access function for Poisson's ratio
96  const double& nu() const
97  {
98 #ifdef PARANOID
99  if (Nu_pt == 0)
100  {
101  std::ostringstream error_message;
102  error_message << "No pointer to Poisson's ratio set. Please set one!\n";
103  throw OomphLibError(error_message.str(),
104  OOMPH_CURRENT_FUNCTION,
105  OOMPH_EXCEPTION_LOCATION);
106  }
107 #endif
108  return *Nu_pt;
109  }
110 
111  /// Access function for pointer to Poisson's ratio
112  double*& nu_pt()
113  {
114  return Nu_pt;
115  }
116 
117  /// Access function for timescale ratio (nondim density)
118  const double& lambda_sq() const
119  {
120  return *Lambda_sq_pt;
121  }
122 
123  /// Access function for pointer to timescale ratio (nondim density)
124  double*& lambda_sq_pt()
125  {
126  return Lambda_sq_pt;
127  }
128 
129  /// Access function for the density ratio (fluid to solid)
130  const double& density_ratio() const
131  {
132  return *Density_ratio_pt;
133  }
134 
135  /// Access function for pointer to the density ratio (fluid to solid)
136  double*& density_ratio_pt()
137  {
138  return Density_ratio_pt;
139  }
140 
141  /// Access function for the nondim permeability
142  const double& permeability() const
143  {
144  return *Permeability_pt;
145  }
146 
147  /// Access function for pointer to the nondim permeability
148  double*& permeability_pt()
149  {
150  return Permeability_pt;
151  }
152 
153 
154  /// Access function for the ratio of the material's actual
155  /// permeability to the permeability used in the non-dimensionalisation of
156  /// the equations
157  const double& permeability_ratio() const
158  {
159  return *Permeability_ratio_pt;
160  }
161 
162  /// Access function for pointer to ratio of the material's actual
163  /// permeability to the permeability used in the non-dimensionalisation of
164  /// the equations
166  {
167  return Permeability_ratio_pt;
168  }
169 
170  /// Access function for alpha, the Biot parameter
171  const double& alpha() const
172  {
173  return *Alpha_pt;
174  }
175 
176  /// Access function for pointer to alpha, the Biot parameter
177  double*& alpha_pt()
178  {
179  return Alpha_pt;
180  }
181 
182  /// Access function for the porosity
183  const double& porosity() const
184  {
185  return *Porosity_pt;
186  }
187 
188  /// Access function for pointer to the porosity
189  double*& porosity_pt()
190  {
191  return Porosity_pt;
192  }
193 
194  /// Access function: Pointer to solid body force function
196  {
198  }
199 
200  /// Access function: Pointer to solid body force function (const version)
202  {
204  }
205 
206  /// Access function: Pointer to fluid force function
208  {
210  }
211 
212  /// Access function: Pointer to fluid force function (const version)
214  {
216  }
217 
218  /// Access function: Pointer to mass source function
220  {
221  return Mass_source_fct_pt;
222  }
223 
224  /// Access function: Pointer to mass source function (const version)
226  {
227  return Mass_source_fct_pt;
228  }
229 
230  /// Indirect access to the solid body force function - returns 0 if
231  /// no forcing function has been set
232  void solid_body_force(const double& time,
233  const Vector<double>& x,
234  Vector<double>& b) const
235  {
236  // If no function has been set, return zero vector
237  if (Solid_body_force_fct_pt == 0)
238  {
239  // Get spatial dimension of element
240  unsigned n = dim();
241  for (unsigned i = 0; i < n; i++)
242  {
243  b[i] = 0.0;
244  }
245  }
246  else
247  {
248  (*Solid_body_force_fct_pt)(time, x, b);
249  }
250  }
251 
252  /// Indirect access to the fluid body force function - returns 0 if
253  /// no forcing function has been set
254  void fluid_body_force(const double& time,
255  const Vector<double>& x,
256  Vector<double>& b) const
257  {
258  // If no function has been set, return zero vector
259  if (Fluid_body_force_fct_pt == 0)
260  {
261  // Get spatial dimension of element
262  unsigned n = dim();
263  for (unsigned i = 0; i < n; i++)
264  {
265  b[i] = 0.0;
266  }
267  }
268  else
269  {
270  (*Fluid_body_force_fct_pt)(time, x, b);
271  }
272  }
273 
274  /// Indirect access to the mass source function - returns 0 if no
275  /// mass source function has been set
276  void mass_source(const double& time,
277  const Vector<double>& x,
278  double& b) const
279  {
280  // If no function has been set, return zero vector
281  if (Mass_source_fct_pt == 0)
282  {
283  b = 0.0;
284  }
285  else
286  {
287  (*Mass_source_fct_pt)(time, x, b);
288  }
289  }
290 
291  /// Number of values required at node n
292  virtual unsigned required_nvalue(const unsigned& n) const = 0;
293 
294  /// Return the nodal index of the j-th solid displacement unknown
295  virtual unsigned u_index_axisym_poroelasticity(const unsigned& j) const = 0;
296 
297  /// Return the equation number of the j-th edge (flux) degree of freedom
298  virtual int q_edge_local_eqn(const unsigned& j) const = 0;
299 
300  /// Return the equation number of the j-th internal degree of freedom
301  virtual int q_internal_local_eqn(const unsigned& j) const = 0;
302 
303  /// Return vector of pointers to the Data objects that store the
304  /// edge flux values
305  virtual Vector<Data*> q_edge_data_pt() const = 0;
306 
307  /// Return pointer to the Data object that stores the internal flux values
308  virtual Data* q_internal_data_pt() const = 0;
309 
310  /// Return the nodal index at which the jth edge unknown is stored
311  virtual unsigned q_edge_index(const unsigned& j) const = 0;
312 
313  /// Return the index of the internal data where the q internal
314  /// degrees of freedom are stored
315  virtual unsigned q_internal_index() const = 0;
316 
317  /// Return the number of the node where the jth edge unknown is stored
318  virtual unsigned q_edge_node_number(const unsigned& j) const = 0;
319 
320  /// Return the values of the j-th edge (flux) degree of freedom
321  virtual double q_edge(const unsigned& j) const = 0;
322 
323  /// Return the values of the j-th edge (flux) degree of freedom at
324  /// time history level t
325  virtual double q_edge(const unsigned& t, const unsigned& j) const = 0;
326 
327  /// Return the face index associated with j-th edge flux degree of freedom
329  const unsigned& j) const = 0;
330 
331  /// Return the face index associated with specified edge
332  virtual unsigned face_index_of_edge(const unsigned& j) const = 0;
333 
334  /// Compute the face element coordinates of the nth flux
335  /// interpolation point along an edge
337  const unsigned& edge, const unsigned& n, Vector<double>& s) const = 0;
338 
339  /// Return the values of the j-th internal degree of freedom
340  virtual double q_internal(const unsigned& j) const = 0;
341 
342  /// Return the values of the j-th internal degree of freedom at
343  /// time history level t
344  virtual double q_internal(const unsigned& t, const unsigned& j) const = 0;
345 
346  /// Set the values of the j-th edge (flux) degree of freedom
347  virtual void set_q_edge(const unsigned& j, const double& value) = 0;
348 
349  /// Set the values of the j-th internal degree of freedom
350  virtual void set_q_internal(const unsigned& j, const double& value) = 0;
351 
352  /// Set the values of the j-th edge (flux) degree of freedom at
353  /// time history level t
354  virtual void set_q_edge(const unsigned& t,
355  const unsigned& j,
356  const double& value) = 0;
357 
358  /// Set the values of the j-th internal degree of freedom at
359  /// time history level t
360  virtual void set_q_internal(const unsigned& t,
361  const unsigned& j,
362  const double& value) = 0;
363 
364  /// Return the total number of computational basis functions for q
365  virtual unsigned nq_basis() const
366  {
367  return nq_basis_edge() + nq_basis_internal();
368  }
369 
370  /// Return the number of edge basis functions for q
371  virtual unsigned nq_basis_edge() const = 0;
372 
373  /// Return the number of internal basis functions for q
374  virtual unsigned nq_basis_internal() const = 0;
375 
376  /// Comute the local form of the q basis at local coordinate s
377  virtual void get_q_basis_local(const Vector<double>& s,
378  Shape& q_basis) const = 0;
379 
380  /// Compute the local form of the q basis and dbasis/ds at local coordinate
381  /// s
383  Shape& div_q_basis_ds) const = 0;
384 
385  /// Compute the transformed basis at local coordinate s
386  void get_q_basis(const Vector<double>& s, Shape& q_basis) const
387  {
388  const unsigned n_node = this->nnode();
389  Shape psi(n_node, 2);
390  const unsigned n_q_basis = this->nq_basis();
391  Shape q_basis_local(n_q_basis, 2);
392  this->get_q_basis_local(s, q_basis_local);
393  (void)this->transform_basis(s, q_basis_local, psi, q_basis);
394  }
395 
396  /// Returns the number of flux_interpolation points along each edge
397  /// of the element
398  virtual unsigned nedge_flux_interpolation_point() const = 0;
399 
400  /// Returns the local coordinate of the jth flux_interpolation point
401  /// along the specified edge
403  const unsigned& edge, const unsigned& j) const = 0;
404 
405  /// Compute the global coordinates of the jth flux_interpolation
406  /// point along an edge
408  const unsigned& edge, const unsigned& j, Vector<double>& x) const = 0;
409 
410  /// Pin the jth internal q value and set it to specified value
411  virtual void pin_q_internal_value(const unsigned& j,
412  const double& value) = 0;
413 
414  /// Pin the j-th edge (flux) degree of freedom and set it to specified value
415  virtual void pin_q_edge_value(const unsigned& j, const double& value) = 0;
416 
417  /// Return the equation number of the j-th pressure degree of freedom
418  virtual int p_local_eqn(const unsigned& j) const = 0;
419 
420  /// Return the jth pressure value
421  virtual double p_value(const unsigned& j) const = 0;
422 
423  /// Return the total number of pressure basis functions
424  virtual unsigned np_basis() const = 0;
425 
426  /// Compute the pressure basis
427  virtual void get_p_basis(const Vector<double>& s, Shape& p_basis) const = 0;
428 
429  /// Pin the jth pressure value and set it to p
430  virtual void pin_p_value(const unsigned& j, const double& p) = 0;
431 
432  /// Set the jth pressure value
433  virtual void set_p_value(const unsigned& j, const double& value) = 0;
434 
435  /// Return pointer to the Data object that stores the pressure values
436  virtual Data* p_data_pt() const = 0;
437 
438  /// Scale the edge basis to allow arbitrary edge mappings
439  virtual void scale_basis(Shape& basis) const = 0;
440 
441  /// Performs a div-conserving transformation of the vector basis
442  /// functions from the reference element to the actual element
443  double transform_basis(const Vector<double>& s,
444  const Shape& q_basis_local,
445  Shape& psi,
446  DShape& dpsi,
447  Shape& q_basis) const;
448 
449  /// Performs a div-conserving transformation of the vector basis
450  /// functions from the reference element to the actual element
452  const Shape& q_basis_local,
453  Shape& psi,
454  Shape& q_basis) const
455  {
456  const unsigned n_node = this->nnode();
457  DShape dpsi(n_node, 2);
458  return transform_basis(s, q_basis_local, psi, dpsi, q_basis);
459  }
460 
461  /// Fill in contribution to residuals for the Darcy equations
463  {
465  residuals, GeneralisedElement::Dummy_matrix, 0);
466  }
467 
468  /// Fill in the Jacobian matrix for the Newton method
470  DenseMatrix<double>& jacobian)
471  {
472  this->fill_in_generic_residual_contribution(residuals, jacobian, 1);
473  }
474 
475 
476  /// Calculate the FE representation of the divergence of the
477  /// skeleton velocity, div(du/dt), and its
478  /// components: 1/r diff(r*du_r/dt,r) and diff(du_z/dt,z).
480  Vector<double>& div_dudt_components) const
481  {
482  // Find number of nodes
483  unsigned n_node = nnode();
484 
485  // Local shape function
486  Shape psi(n_node);
487  DShape dpsidx(n_node, 2);
488 
489  // Find values of shape function
490  dshape_eulerian(s, psi, dpsidx);
491 
492  // Local coordinates
493  double r = interpolated_x(s, 0);
494 
495  // Assemble the "cartesian-like" contributions
496  for (unsigned i = 0; i < 2; i++)
497  {
498  // Initialise
499  div_dudt_components[i] = 0.0;
500 
501  // Loop over the local nodes and sum the "cartesian-like"
502  // contributions
503  for (unsigned l = 0; l < n_node; l++)
504  {
505  div_dudt_components[i] += du_dt(l, i) * dpsidx(l, i);
506  }
507  }
508 
509  // Radial skeleton veloc
510  double dur_dt = 0.0;
511  for (unsigned l = 0; l < n_node; l++)
512  {
513  dur_dt += du_dt(l, 0) * psi(l);
514  }
515 
516  // Add geometric component to radial contribution
517  div_dudt_components[0] += dur_dt / r;
518 
519  // Return sum
520  return div_dudt_components[0] + div_dudt_components[1];
521  }
522 
523 
524  /// Calculate the FE representation of the divergence of the
525  /// skeleton displ, div(u), and its
526  /// components: 1/r diff(r*u_r,r) and diff(u_z,z).
528  Vector<double>& div_u_components) const
529  {
530  // Find number of nodes
531  unsigned n_node = nnode();
532 
533  // Local shape function
534  Shape psi(n_node);
535  DShape dpsidx(n_node, 2);
536 
537  // Find values of shape function
538  dshape_eulerian(s, psi, dpsidx);
539 
540  // Local coordinates
541  double r = interpolated_x(s, 0);
542 
543  // Assemble the "cartesian-like" contributions
544  for (unsigned i = 0; i < 2; i++)
545  {
546  // Get nodal index at which i-th velocity is stored
547  unsigned u_nodal_index = u_index_axisym_poroelasticity(i);
548 
549  // Initialise
550  div_u_components[i] = 0.0;
551 
552  // Loop over the local nodes and sum the "cartesian-like"
553  // contributions
554  for (unsigned l = 0; l < n_node; l++)
555  {
556  div_u_components[i] += nodal_value(l, u_nodal_index) * dpsidx(l, i);
557  }
558  }
559 
560  // Radial skeleton displ
561  double ur = 0.0;
562  for (unsigned l = 0; l < n_node; l++)
563  {
564  ur += nodal_value(l, u_index_axisym_poroelasticity(0)) * psi(l);
565  }
566 
567  // Add geometric component to radial contribution
568  div_u_components[0] += ur / r;
569 
570  // Return sum
571  return div_u_components[0] + div_u_components[1];
572  }
573 
574 
575  /// Calculate the FE representation of u
576  void interpolated_u(const Vector<double>& s, Vector<double>& disp) const
577  {
578  // Find number of nodes
579  unsigned n_node = nnode();
580 
581  // Local shape function
582  Shape psi(n_node);
583 
584  // Find values of shape function
585  shape(s, psi);
586 
587  for (unsigned i = 0; i < 2; i++)
588  {
589  // Index at which the nodal value is stored
590  unsigned u_nodal_index = u_index_axisym_poroelasticity(i);
591 
592  // Initialise value of u
593  disp[i] = 0.0;
594 
595  // Loop over the local nodes and sum
596  for (unsigned l = 0; l < n_node; l++)
597  {
598  disp[i] += nodal_value(l, u_nodal_index) * psi[l];
599  }
600  }
601  }
602 
603  /// Calculate the FE representation of the i-th component of u
604  double interpolated_u(const Vector<double>& s, const unsigned& i) const
605  {
606  // Find number of nodes
607  unsigned n_node = nnode();
608 
609  // Local shape function
610  Shape psi(n_node);
611 
612  // Find values of shape function
613  shape(s, psi);
614 
615  // Get nodal index at which i-th velocity is stored
616  unsigned u_nodal_index = u_index_axisym_poroelasticity(i);
617 
618  // Initialise value of u
619  double interpolated_u = 0.0;
620 
621  // Loop over the local nodes and sum
622  for (unsigned l = 0; l < n_node; l++)
623  {
624  interpolated_u += nodal_value(l, u_nodal_index) * psi[l];
625  }
626 
627  return (interpolated_u);
628  }
629 
630 
631  /// Calculate the FE representation of the i-th component of u
632  /// at time level t (t=0: current)
633  double interpolated_u(const unsigned& t,
634  const Vector<double>& s,
635  const unsigned& i) const
636  {
637  // Find number of nodes
638  unsigned n_node = nnode();
639 
640  // Local shape function
641  Shape psi(n_node);
642 
643  // Find values of shape function
644  shape(s, psi);
645 
646  // Get nodal index at which i-th velocity is stored
647  unsigned u_nodal_index = u_index_axisym_poroelasticity(i);
648 
649  // Initialise value of u
650  double interpolated_u = 0.0;
651 
652  // Loop over the local nodes and sum
653  for (unsigned l = 0; l < n_node; l++)
654  {
655  interpolated_u += nodal_value(t, l, u_nodal_index) * psi[l];
656  }
657 
658  return (interpolated_u);
659  }
660 
661 
662  /// Calculate the FE representation of du_dt
664  Vector<double>& du_dt) const
665  {
666  // Find number of nodes
667  unsigned n_node = nnode();
668 
669  // Local shape function
670  Shape psi(n_node);
671 
672  // Find values of shape function
673  shape(s, psi);
674 
675  for (unsigned i = 0; i < 2; i++)
676  {
677  // Initialise value of u
678  du_dt[i] = 0.0;
679 
680  // Loop over the local nodes and sum
681  for (unsigned l = 0; l < n_node; l++)
682  {
683  du_dt[i] += this->du_dt(l, i) * psi[l];
684  }
685  }
686  }
687 
688  /// Calculate the FE representation of q
690  {
691  unsigned n_q_basis = nq_basis();
692  unsigned n_q_basis_edge = nq_basis_edge();
693  Shape q_basis(n_q_basis, 2);
694  get_q_basis(s, q_basis);
695  for (unsigned i = 0; i < 2; i++)
696  {
697  q[i] = 0.0;
698  for (unsigned l = 0; l < n_q_basis_edge; l++)
699  {
700  q[i] += q_edge(l) * q_basis(l, i);
701  }
702  for (unsigned l = n_q_basis_edge; l < n_q_basis; l++)
703  {
704  q[i] += q_internal(l - n_q_basis_edge) * q_basis(l, i);
705  }
706  }
707  }
708 
709  /// Calculate the FE representation of q
710  /// at time level t (t=0: current)
711  void interpolated_q(const unsigned& t,
712  const Vector<double>& s,
713  Vector<double>& q) const
714  {
715  unsigned n_q_basis = nq_basis();
716  unsigned n_q_basis_edge = nq_basis_edge();
717  Shape q_basis(n_q_basis, 2);
718  get_q_basis(s, q_basis);
719  for (unsigned i = 0; i < 2; i++)
720  {
721  q[i] = 0.0;
722  for (unsigned l = 0; l < n_q_basis_edge; l++)
723  {
724  q[i] += q_edge(t, l) * q_basis(l, i);
725  }
726  for (unsigned l = n_q_basis_edge; l < n_q_basis; l++)
727  {
728  q[i] += q_internal(t, l - n_q_basis_edge) * q_basis(l, i);
729  }
730  }
731  }
732 
733  /// Calculate the FE representation of the i-th component of q
734  double interpolated_q(const Vector<double>& s, const unsigned i) const
735  {
736  unsigned n_q_basis = nq_basis();
737  unsigned n_q_basis_edge = nq_basis_edge();
738 
739  Shape q_basis(n_q_basis, 2);
740 
741  get_q_basis(s, q_basis);
742  double q_i = 0.0;
743  for (unsigned l = 0; l < n_q_basis_edge; l++)
744  {
745  q_i += q_edge(l) * q_basis(l, i);
746  }
747  for (unsigned l = n_q_basis_edge; l < n_q_basis; l++)
748  {
749  q_i += q_internal(l - n_q_basis_edge) * q_basis(l, i);
750  }
751 
752  return q_i;
753  }
754 
755  /// Calculate the FE representation of the i-th component of q
756  /// at time level t (t=0: current)
757  double interpolated_q(const unsigned& t,
758  const Vector<double>& s,
759  const unsigned i) const
760  {
761  unsigned n_q_basis = nq_basis();
762  unsigned n_q_basis_edge = nq_basis_edge();
763 
764  Shape q_basis(n_q_basis, 2);
765 
766  get_q_basis(s, q_basis);
767  double q_i = 0.0;
768  for (unsigned l = 0; l < n_q_basis_edge; l++)
769  {
770  q_i += q_edge(t, l) * q_basis(l, i);
771  }
772  for (unsigned l = n_q_basis_edge; l < n_q_basis; l++)
773  {
774  q_i += q_internal(t, l - n_q_basis_edge) * q_basis(l, i);
775  }
776 
777  return q_i;
778  }
779 
780 
781  /// Calculate the FE representation of div u
782  void interpolated_div_q(const Vector<double>& s, double& div_q) const
783  {
784  // Zero the divergence
785  div_q = 0;
786 
787  // Get the number of nodes, q basis function, and q edge basis functions
788  unsigned n_node = nnode();
789  const unsigned n_q_basis = nq_basis();
790  const unsigned n_q_basis_edge = nq_basis_edge();
791 
792  // Storage for the divergence basis
793  Shape div_q_basis_ds(n_q_basis);
794 
795  // Storage for the geometric basis and it's derivatives
796  Shape psi(n_node);
797  DShape dpsi(n_node, 2);
798 
799  // Call the geometric shape functions and their derivatives
800  this->dshape_local(s, psi, dpsi);
801 
802  // Storage for the inverse of the geometric jacobian (just so we can call
803  // the local to eulerian mapping)
804  DenseMatrix<double> inverse_jacobian(2);
805 
806  // Get the determinant of the geometric mapping
807  double det = local_to_eulerian_mapping(dpsi, inverse_jacobian);
808 
809  // Get the divergence basis (wrt local coords) at local coords s
810  get_div_q_basis_local(s, div_q_basis_ds);
811 
812  // Add the contribution to the divergence from the edge basis functions
813  for (unsigned l = 0; l < n_q_basis_edge; l++)
814  {
815  div_q += 1.0 / det * div_q_basis_ds(l) * q_edge(l);
816  }
817 
818  // Add the contribution to the divergence from the internal basis
819  // functions
820  for (unsigned l = n_q_basis_edge; l < n_q_basis; l++)
821  {
822  div_q += 1.0 / det * div_q_basis_ds(l) * q_internal(l - n_q_basis_edge);
823  }
824 
825  // Extra term due to cylindrical coords
826  if (std::abs(interpolated_x(s, 0)) > 1e-10)
827  {
828  div_q += interpolated_q(s, 0) / interpolated_x(s, 0);
829  }
830  }
831 
832 
833  /// Calculate the FE representation of div q and return it
834  double interpolated_div_q(const Vector<double>& s) const
835  {
836  // Temporary storage for div q
837  double div_q = 0;
838 
839  // Get the intepolated divergence
840  interpolated_div_q(s, div_q);
841 
842  // Return it
843  return div_q;
844  }
845 
846  /// Calculate the FE representation of p
847  void interpolated_p(const Vector<double>& s, double& p) const
848  {
849  // Get the number of p basis functions
850  unsigned n_p_basis = np_basis();
851 
852  // Storage for the p basis
853  Shape p_basis(n_p_basis);
854 
855  // Call the p basis
856  get_p_basis(s, p_basis);
857 
858  // Zero the pressure
859  p = 0;
860 
861  // Add the contribution to the pressure from each basis function
862  for (unsigned l = 0; l < n_p_basis; l++)
863  {
864  p += p_value(l) * p_basis(l);
865  }
866  }
867 
868  /// Calculate the FE representation of p and return it
869  double interpolated_p(const Vector<double>& s) const
870  {
871  // Temporary storage for p
872  double p = 0;
873 
874  // Get the interpolated pressure
875  interpolated_p(s, p);
876 
877  // Return it
878  return p;
879  }
880 
881  /// du/dt at local node n
882  double du_dt(const unsigned& n, const unsigned& i) const
883  {
884  // Get the timestepper
886 
887  // Storage for the derivative - initialise to 0
888  double du_dt = 0.0;
889 
890  // If we are doing an unsteady solve then calculate the derivative
891  if (!time_stepper_pt->is_steady())
892  {
893  // Get the nodal index
894  const unsigned u_nodal_index = u_index_axisym_poroelasticity(i);
895 
896  // Get the number of values required to represent history
897  const unsigned n_time = time_stepper_pt->ntstorage();
898 
899  // Loop over history values
900  for (unsigned t = 0; t < n_time; t++)
901  {
902  // Add the contribution to the derivative
903  du_dt +=
904  time_stepper_pt->weight(1, t) * nodal_value(t, n, u_nodal_index);
905  }
906  }
907 
908  return du_dt;
909  }
910 
911  /// d^2u/dt^2 at local node n
912  double d2u_dt2(const unsigned& n, const unsigned& i) const
913  {
914  // Get the timestepper
916 
917  // Storage for the derivative - initialise to 0
918  double d2u_dt2 = 0.0;
919 
920  // If we are doing an unsteady solve then calculate the derivative
921  if (!time_stepper_pt->is_steady())
922  {
923  // Get the nodal index
924  const unsigned u_nodal_index = u_index_axisym_poroelasticity(i);
925 
926  // Get the number of values required to represent history
927  const unsigned n_time = time_stepper_pt->ntstorage();
928 
929  // Loop over history values
930  for (unsigned t = 0; t < n_time; t++)
931  {
932  // Add the contribution to the derivative
933  d2u_dt2 +=
934  time_stepper_pt->weight(2, t) * nodal_value(t, n, u_nodal_index);
935  }
936  }
937 
938  return d2u_dt2;
939  }
940 
941  /// dq_edge/dt for the n-th edge degree of freedom
942  double dq_edge_dt(const unsigned& n) const
943  {
944  unsigned node_num = q_edge_node_number(n);
945 
946  // get the timestepper
948 
949  // storage for the derivative - initialise to 0
950  double dq_dt = 0.0;
951 
952  // if we are doing an unsteady solve then calculate the derivative
953  if (!time_stepper_pt->is_steady())
954  {
955  // get the number of values required to represent history
956  const unsigned n_time = time_stepper_pt->ntstorage();
957 
958  // loop over history values
959  for (unsigned t = 0; t < n_time; t++)
960  {
961  // add the contribution to the derivative
962  dq_dt += time_stepper_pt->weight(1, t) * q_edge(t, n);
963  }
964  }
965 
966  return dq_dt;
967  }
968 
969  /// dq_internal/dt for the n-th internal degree of freedom
970  double dq_internal_dt(const unsigned& n) const
971  {
972  // get the internal data index for q
973  unsigned internal_index = q_internal_index();
974 
975  // get the timestepper
977  internal_data_pt(internal_index)->time_stepper_pt();
978 
979  // storage for the derivative - initialise to 0
980  double dq_dt = 0.0;
981 
982  // if we are doing an unsteady solve then calculate the derivative
983  if (!time_stepper_pt->is_steady())
984  {
985  // get the number of values required to represent history
986  const unsigned n_time = time_stepper_pt->ntstorage();
987 
988  // loop over history values
989  for (unsigned t = 0; t < n_time; t++)
990  {
991  // add the contribution to the derivative
992  dq_dt += time_stepper_pt->weight(1, t) * q_internal(t, n);
993  }
994  }
995 
996  return dq_dt;
997  }
998 
999  /// Set the timestepper of the q internal data object
1001  {
1002  unsigned q_index = q_internal_index();
1003  this->internal_data_pt(q_index)->set_time_stepper(time_stepper_pt, false);
1004  }
1005 
1006 
1007  /// Is Darcy flow switched off?
1009  {
1010  return Darcy_is_switched_off;
1011  }
1012 
1013 
1014  /// Switch off Darcy flow
1016  {
1017  Darcy_is_switched_off = true;
1018 
1019  // Pin pressures and set them to zero
1020  double p = 0.0;
1021  unsigned np = np_basis();
1022  for (unsigned j = 0; j < np; j++)
1023  {
1024  pin_p_value(j, p);
1025  }
1026 
1027  // Pin internal flux data and set it to zero
1028  double q = 0.0;
1029  unsigned nq = nq_basis_internal();
1030  for (unsigned j = 0; j < nq; j++)
1031  {
1032  pin_q_internal_value(j, q);
1033  }
1034 
1035  // Pin edge flux data and set it to zero
1036  nq = nq_basis_edge();
1037  for (unsigned j = 0; j < nq; j++)
1038  {
1039  pin_q_edge_value(j, q);
1040  }
1041  }
1042 
1043  /// Self test
1044  unsigned self_test()
1045  {
1046  return 0;
1047  }
1048 
1049 
1050  /// Number of scalars/fields output by this element. Reimplements
1051  /// broken virtual function in base class.
1052  unsigned nscalar_paraview() const
1053  {
1054  return 8;
1055  }
1056 
1057  /// Write values of the i-th scalar field at the plot points. Needs
1058  /// to be implemented for each new specific element type.
1059  void scalar_value_paraview(std::ofstream& file_out,
1060  const unsigned& i,
1061  const unsigned& nplot) const
1062  {
1063  // Vector of local coordinates
1064  Vector<double> s(2);
1065 
1066  // Loop over plot points
1067  unsigned num_plot_points = nplot_points_paraview(nplot);
1068  for (unsigned iplot = 0; iplot < num_plot_points; iplot++)
1069  {
1070  // Get local coordinates of plot point
1071  get_s_plot(iplot, nplot, s);
1072 
1073  // Skeleton velocity
1074  Vector<double> du_dt(2);
1076 
1077  // Displacements
1078  if (i < 2)
1079  {
1080  file_out << interpolated_u(s, i) << std::endl;
1081  }
1082  // Flux
1083  else if (i < 4)
1084  {
1085  file_out << interpolated_q(s, i - 2) << std::endl;
1086  }
1087  // Divergence of flux
1088  else if (i == 4)
1089  {
1090  file_out << interpolated_div_q(s) << std::endl;
1091  }
1092  else if (i == 5)
1093  {
1094  file_out << interpolated_p(s) << std::endl;
1095  }
1096  else if (i == 6)
1097  {
1098  file_out << du_dt[0] << std::endl;
1099  }
1100  else if (i == 7)
1101  {
1102  file_out << du_dt[1] << std::endl;
1103  }
1104  // Never get here
1105  else
1106  {
1107  std::stringstream error_stream;
1108  error_stream
1109  << "Axisymmetric poroelasticity elements only store 6 fields "
1110  << std::endl;
1111  throw OomphLibError(error_stream.str(),
1112  OOMPH_CURRENT_FUNCTION,
1113  OOMPH_EXCEPTION_LOCATION);
1114  }
1115  }
1116  }
1117 
1118  /// Name of the i-th scalar field. Default implementation
1119  /// returns V1 for the first one, V2 for the second etc. Can (should!) be
1120  /// overloaded with more meaningful names in specific elements.
1121  std::string scalar_name_paraview(const unsigned& i) const
1122  {
1123  switch (i)
1124  {
1125  case 0:
1126  return "radial displacement";
1127  break;
1128 
1129  case 1:
1130  return "axial displacement";
1131  break;
1132 
1133  case 2:
1134  return "radial flux";
1135  break;
1136 
1137  case 3:
1138  return "axial flux";
1139  break;
1140 
1141  case 4:
1142  return "divergence of flux";
1143  break;
1144 
1145  case 5:
1146  return "pore pressure";
1147  break;
1148 
1149  case 6:
1150  return "radial skeleton velocity";
1151  break;
1152 
1153  case 7:
1154  return "axial skeleton velocity";
1155  break;
1156 
1157  default:
1158 
1159  std::stringstream error_stream;
1160  error_stream
1161  << "AxisymmetricPoroelasticityEquations only store 8 fields "
1162  << std::endl;
1163  throw OomphLibError(error_stream.str(),
1164  OOMPH_CURRENT_FUNCTION,
1165  OOMPH_EXCEPTION_LOCATION);
1166 
1167  // Dummy return
1168  return " ";
1169  }
1170  }
1171 
1172  /// Output solution in data vector at local cordinates s:
1173  /// r,z,u_r,u_z,q_r,q_z,div_q,p,durdt,duzdt
1175  {
1176  // Output the components of the position
1177  for (unsigned i = 0; i < 2; i++)
1178  {
1179  data.push_back(interpolated_x(s, i));
1180  }
1181 
1182  // Output the components of the FE representation of u at s
1183  for (unsigned i = 0; i < 2; i++)
1184  {
1185  data.push_back(interpolated_u(s, i));
1186  }
1187 
1188  // Output the components of the FE representation of q at s
1189  for (unsigned i = 0; i < 2; i++)
1190  {
1191  data.push_back(interpolated_q(s, i));
1192  }
1193 
1194  // Output FE representation of div u at s
1195  data.push_back(interpolated_div_q(s));
1196 
1197  // Output FE representation of p at s
1198  data.push_back(interpolated_p(s));
1199 
1200  // Skeleton velocity
1201  Vector<double> du_dt(2);
1203  data.push_back(du_dt[0]);
1204  data.push_back(du_dt[1]);
1205 
1206  // Get divergence of skeleton velocity and its components
1207  Vector<double> div_dudt_components(2);
1208  data.push_back(interpolated_div_du_dt(s, div_dudt_components));
1209  data.push_back(div_dudt_components[0]);
1210  data.push_back(div_dudt_components[1]);
1211 
1212  // Get divergence of skeleton displacement and its components
1213  Vector<double> div_u_components(2);
1214  data.push_back(interpolated_div_u(s, div_u_components));
1215  data.push_back(div_u_components[0]);
1216  data.push_back(div_u_components[1]);
1217  }
1218 
1219 
1220  /// Output with default number of plot points
1221  void output(std::ostream& outfile)
1222  {
1223  unsigned nplot = 5;
1224  output(outfile, nplot);
1225  }
1226 
1227  /// Output FE representation of soln: x,y,u1,u2,div_q,p at
1228  /// Nplot^2 plot points
1229  void output(std::ostream& outfile, const unsigned& nplot);
1230 
1231  /// Output incl. projection of fluxes into direction of
1232  /// the specified unit vector
1233  void output_with_projected_flux(std::ostream& outfile,
1234  const unsigned& nplot,
1235  const Vector<double> unit_normal);
1236 
1237  /// Output FE representation of exact soln: x,y,u1,u2,div_q,p at
1238  /// Nplot^2 plot points
1239  void output_fct(std::ostream& outfile,
1240  const unsigned& nplot,
1242 
1243  /// Output FE representation of exact soln: x,y,u1,u2,div_q,p at
1244  /// Nplot^2 plot points. Unsteady version
1245  void output_fct(std::ostream& outfile,
1246  const unsigned& nplot,
1247  const double& time,
1249 
1250  /// Compute the error between the FE solution and the exact solution
1251  /// using the H(div) norm for q and L^2 norm for p
1252  void compute_error(std::ostream& outfile,
1254  Vector<double>& error,
1255  Vector<double>& norm);
1256 
1257  /// Compute the error between the FE solution and the exact solution
1258  /// using the H(div) norm for q and L^2 norm for p. Unsteady version
1259  void compute_error(std::ostream& outfile,
1261  const double& time,
1262  Vector<double>& error,
1263  Vector<double>& norm);
1264 
1265 
1266  // Z2 stuff -- currently based on Darcy flux
1267 
1268  /// Number off flux terms for Z2 error estimator (use Darcy flux)
1270  {
1271  return 2;
1272  }
1273 
1274  /// Z2 flux (use Darcy flux)
1276  {
1277  interpolated_q(s, flux);
1278  }
1279 
1280  protected:
1281  /// Compute the geometric basis, and the q, p and divergence basis
1282  /// functions and test functions at local coordinate s
1283  virtual double shape_basis_test_local(const Vector<double>& s,
1284  Shape& psi,
1285  DShape& dpsi,
1286  Shape& u_basis,
1287  Shape& u_test,
1288  DShape& du_basis_dx,
1289  DShape& du_test_dx,
1290  Shape& q_basis,
1291  Shape& q_test,
1292  Shape& p_basis,
1293  Shape& p_test,
1294  Shape& div_q_basis_ds,
1295  Shape& div_q_test_ds) const = 0;
1296 
1297  /// Compute the geometric basis, and the q, p and divergence basis
1298  /// functions and test functions at integration point ipt
1300  const unsigned& ipt,
1301  Shape& psi,
1302  DShape& dpsi,
1303  Shape& u_basis,
1304  Shape& u_test,
1305  DShape& du_basis_dx,
1306  DShape& du_test_dx,
1307  Shape& q_basis,
1308  Shape& q_test,
1309  Shape& p_basis,
1310  Shape& p_test,
1311  Shape& div_q_basis_ds,
1312  Shape& div_q_test_ds) const = 0;
1313 
1314  // fill in residuals and, if flag==true, jacobian
1316  Vector<double>& residuals, DenseMatrix<double>& jacobian, bool flag);
1317 
1318  private:
1319  /// Pointer to solid body force function
1321 
1322  /// Pointer to fluid source function
1324 
1325  /// Pointer to the mass source function
1327 
1328  /// Pointer to the nondim Young's modulus
1330 
1331  /// Pointer to Poisson's ratio
1332  double* Nu_pt;
1333 
1334  /// Timescale ratio (non-dim. density)
1335  double* Lambda_sq_pt;
1336 
1337  /// Density ratio
1339 
1340  /// permeability
1342 
1343  /// Ratio of the material's actual permeability to the permeability
1344  /// used in the non-dimensionalisation of the equations
1346 
1347  /// Alpha -- the biot parameter
1348  double* Alpha_pt;
1349 
1350  /// Porosity
1351  double* Porosity_pt;
1352 
1353  /// Boolean to record that darcy has been switched off
1355 
1356  /// Static default value for Young's modulus (1.0 -- for natural
1357  /// scaling, i.e. all stresses have been non-dimensionalised by
1358  /// the same reference Young's modulus. Setting the "non-dimensional"
1359  /// Young's modulus (obtained by de-referencing Youngs_modulus_pt)
1360  /// to a number larger than one means that the material is stiffer
1361  /// than assumed in the non-dimensionalisation.
1363 
1364  /// Static default value for timescale ratio
1366 
1367  /// Static default value for the density ratio
1369 
1370  /// Static default value for the permeability (1.0 for natural
1371  /// scaling; i.e. timescale is given by L^2/(k^* E)
1373 
1374  /// Static default value for the ratio of the material's actual
1375  /// permeability to the permeability used to non-dimensionalise the
1376  /// equations
1378 
1379  /// Static default value for alpha, the biot parameter
1380  static double Default_alpha_value;
1381 
1382  /// Static default value for the porosity
1383  static double Default_porosity_value;
1384  };
1385 
1386 
1387  /// /////////////////////////////////////////////////////////////////////
1388  /// /////////////////////////////////////////////////////////////////////
1389  /// /////////////////////////////////////////////////////////////////////
1390 
1391 
1392  //==========================================================
1393  /// Axisymmetric poro elasticity upgraded to become projectable
1394  //==========================================================
1395  template<class AXISYMMETRIC_POROELASTICITY_ELEMENT>
1397  : public virtual ProjectableElement<AXISYMMETRIC_POROELASTICITY_ELEMENT>,
1398  public virtual ProjectableElementBase
1399  {
1400  public:
1401  /// Constructor [this was only required explicitly
1402  /// from gcc 4.5.2 onwards...]
1404 
1405  /// Specify the values associated with field fld.
1406  /// The information is returned in a vector of pairs which comprise
1407  /// the Data object and the value within it, that correspond to field fld.
1409  {
1410 #ifdef PARANOID
1411  if (fld > 3)
1412  {
1413  std::stringstream error_stream;
1414  error_stream
1415  << "AxisymmetricPoroelasticity elements only store 4 fields so fld = "
1416  << fld << " is illegal \n";
1417  throw OomphLibError(
1418  error_stream.str(), OOMPH_CURRENT_FUNCTION, OOMPH_EXCEPTION_LOCATION);
1419  }
1420 #endif
1421 
1422  // Create the vector
1423  Vector<std::pair<Data*, unsigned>> data_values;
1424 
1425 
1426  // Pressure
1427  //---------
1428  if (fld == 2)
1429  {
1430  Data* dat_pt = this->p_data_pt();
1431  unsigned nvalue = dat_pt->nvalue();
1432  for (unsigned i = 0; i < nvalue; i++)
1433  {
1434  data_values.push_back(std::make_pair(dat_pt, i));
1435  }
1436  }
1437  // Darcy flux
1438  //-----------
1439  else if (fld == 3)
1440  {
1441  Vector<Data*> edge_dat_pt = this->q_edge_data_pt();
1442  unsigned n = edge_dat_pt.size();
1443  for (unsigned j = 0; j < n; j++)
1444  {
1445  unsigned nvalue = this->nedge_flux_interpolation_point();
1446  for (unsigned i = 0; i < nvalue; i++)
1447  {
1448  data_values.push_back(
1449  std::make_pair(edge_dat_pt[j], this->q_edge_index(i)));
1450  }
1451  }
1452  if (this->nq_basis_internal() > 0)
1453  {
1454  Data* int_dat_pt = this->q_internal_data_pt();
1455  unsigned nvalue = int_dat_pt->nvalue();
1456  for (unsigned i = 0; i < nvalue; i++)
1457  {
1458  data_values.push_back(std::make_pair(int_dat_pt, i));
1459  }
1460  }
1461  }
1462  // Solid displacements
1463  else
1464  {
1465  // Loop over all nodes
1466  unsigned nnod = this->nnode();
1467  for (unsigned j = 0; j < nnod; j++)
1468  {
1469  // Add the data value associated with the displacement components
1470  // (stored first)
1471  data_values.push_back(std::make_pair(
1472  this->node_pt(j), this->u_index_axisym_poroelasticity(fld)));
1473  }
1474  }
1475 
1476  // Return the vector
1477  return data_values;
1478  }
1479 
1480  /// Number of fields to be projected: 4 (two displacement components,
1481  /// pressure, Darcy flux)
1483  {
1484  return 4;
1485  }
1486 
1487  /// Number of history values to be stored for fld-th field.
1488  /// (Note: count includes current value!)
1489  unsigned nhistory_values_for_projection(const unsigned& fld)
1490  {
1491 #ifdef PARANOID
1492  if (fld > 3)
1493  {
1494  std::stringstream error_stream;
1495  error_stream
1496  << "AxisymmetricPoroelasticity elements only store 4 fields so fld = "
1497  << fld << " is illegal\n";
1498  throw OomphLibError(
1499  error_stream.str(), OOMPH_CURRENT_FUNCTION, OOMPH_EXCEPTION_LOCATION);
1500  }
1501 #endif
1502 
1503  // Displacements -- infer from first (vertex) node
1504  unsigned return_value = this->node_pt(0)->ntstorage();
1505 
1506  // Pressure: No history values (just present one!)
1507  if (fld == 2) return_value = 1;
1508 
1509  // Flux: infer from first midside node
1510  if (fld == 3)
1511  {
1512  return_value = this->node_pt(3)->ntstorage();
1513  }
1514  return return_value;
1515  }
1516 
1517  /// Number of positional history values
1518  /// (Note: count includes current value!)
1520  {
1521  return this->node_pt(0)->position_time_stepper_pt()->ntstorage();
1522  }
1523 
1524  /// Return Jacobian of mapping and shape functions of field fld
1525  /// at local coordinate s
1526  double jacobian_and_shape_of_field(const unsigned& fld,
1527  const Vector<double>& s,
1528  Shape& psi)
1529  {
1530 #ifdef PARANOID
1531  if (fld > 3)
1532  {
1533  std::stringstream error_stream;
1534  error_stream
1535  << "AxisymmetricPoroelasticity elements only store 4 fields so fld = "
1536  << fld << " is illegal.\n";
1537  throw OomphLibError(
1538  error_stream.str(), OOMPH_CURRENT_FUNCTION, OOMPH_EXCEPTION_LOCATION);
1539  }
1540 #endif
1541 
1542 
1543  // Get the number of geometric nodes, total number of basis functions,
1544  // and number of edges basis functions
1545  const unsigned n_dim = this->dim();
1546  const unsigned n_node = this->nnode();
1547  const unsigned n_q_basis = this->nq_basis();
1548  const unsigned n_p_basis = this->np_basis();
1549 
1550  // Storage for the geometric and computational bases and the test
1551  // functions
1552  Shape psi_geom(n_node), q_basis(n_q_basis, n_dim),
1553  q_test(n_q_basis, n_dim), p_basis(n_p_basis), p_test(n_p_basis),
1554  div_q_basis_ds(n_q_basis), div_q_test_ds(n_q_basis);
1555  DShape dpsidx_geom(n_node, n_dim);
1556  Shape u_basis(n_node);
1557  Shape u_test(n_node);
1558  DShape du_basis_dx(n_node, n_dim);
1559  DShape du_test_dx(n_node, n_dim);
1560  double J = this->shape_basis_test_local(s,
1561  psi_geom,
1562  dpsidx_geom,
1563  u_basis,
1564  u_test,
1565  du_basis_dx,
1566  du_test_dx,
1567  q_basis,
1568  q_test,
1569  p_basis,
1570  p_test,
1571  div_q_basis_ds,
1572  div_q_test_ds);
1573  // Pressure basis functions
1574  if (fld == 2)
1575  {
1576  unsigned n = p_basis.nindex1();
1577  for (unsigned i = 0; i < n; i++)
1578  {
1579  psi[i] = p_basis[i];
1580  }
1581  }
1582  // Flux basis functions
1583  else if (fld == 3)
1584  {
1585  unsigned n = q_basis.nindex1();
1586  unsigned m = q_basis.nindex2();
1587  for (unsigned i = 0; i < n; i++)
1588  {
1589  for (unsigned j = 0; j < m; j++)
1590  {
1591  psi(i, j) = q_basis(i, j);
1592  }
1593  }
1594  }
1595  // Displacement components
1596  else
1597  {
1598  for (unsigned j = 0; j < n_node; j++)
1599  {
1600  psi[j] = u_basis[j];
1601  }
1602  }
1603 
1604  return J;
1605  }
1606 
1607 
1608  /// Return interpolated field fld at local coordinate s, at time
1609  /// level t (t=0: present; t>0: history values)
1610  double get_field(const unsigned& t,
1611  const unsigned& fld,
1612  const Vector<double>& s)
1613  {
1614 #ifdef PARANOID
1615  if (fld > 3)
1616  {
1617  std::stringstream error_stream;
1618  error_stream
1619  << "AxisymmetricPoroelasticity elements only store 4 fields so fld = "
1620  << fld << " is illegal\n";
1621  throw OomphLibError(
1622  error_stream.str(), OOMPH_CURRENT_FUNCTION, OOMPH_EXCEPTION_LOCATION);
1623  }
1624 #endif
1625 
1626  double return_value = 0.0;
1627 
1628  // Pressure
1629  if (fld == 2)
1630  {
1631  // No time-dependence in here
1632 #ifdef PARANOID
1633  if (t != 0)
1634  {
1635  throw OomphLibError(
1636  "Pressure in AxisymmetricPoroelasticity has no time-dep.!",
1637  OOMPH_CURRENT_FUNCTION,
1638  OOMPH_EXCEPTION_LOCATION);
1639  }
1640 #endif
1641  this->interpolated_p(s, return_value);
1642  }
1643  // Darcy flux -- doesn't really work as it's a vector field
1644  else if (fld == 3)
1645  {
1646  throw OomphLibError(
1647  "Don't call this function for AxisymmetricPoroelasticity!",
1648  OOMPH_CURRENT_FUNCTION,
1649  OOMPH_EXCEPTION_LOCATION);
1650  }
1651  // Displacement components
1652  else
1653  {
1654  return_value = this->interpolated_u(t, s, fld);
1655  }
1656  return return_value;
1657  }
1658 
1659 
1660  /// Return number of values in field fld
1661  unsigned nvalue_of_field(const unsigned& fld)
1662  {
1663 #ifdef PARANOID
1664  if (fld > 3)
1665  {
1666  std::stringstream error_stream;
1667  error_stream
1668  << "AxisymmetricPoroelasticity elements only store 4 fields so fld = "
1669  << fld << " is illegal\n";
1670  throw OomphLibError(
1671  error_stream.str(), OOMPH_CURRENT_FUNCTION, OOMPH_EXCEPTION_LOCATION);
1672  }
1673 #endif
1674 
1675  unsigned return_value = 0;
1676  // Pressure
1677  if (fld == 2)
1678  {
1679  return_value = this->np_basis();
1680  }
1681  // Darcy flux
1682  else if (fld == 3)
1683  {
1684  return_value = this->nq_basis();
1685  }
1686  // Displacements
1687  else
1688  {
1689  return_value = this->nnode();
1690  }
1691 
1692  return return_value;
1693  }
1694 
1695 
1696  /// Return local equation number of value j in field fld.
1697  int local_equation(const unsigned& fld, const unsigned& j)
1698  {
1699 #ifdef PARANOID
1700  if (fld > 3)
1701  {
1702  std::stringstream error_stream;
1703  error_stream
1704  << "AxisymmetricPoroelasticity elements only store 4 fields so fld = "
1705  << fld << " is illegal\n";
1706  throw OomphLibError(
1707  error_stream.str(), OOMPH_CURRENT_FUNCTION, OOMPH_EXCEPTION_LOCATION);
1708  }
1709 #endif
1710 
1711  int return_value = 0;
1712 
1713  // Pressure
1714  if (fld == 2)
1715  {
1716  return_value = this->p_local_eqn(j);
1717  }
1718  // Darcy flux
1719  else if (fld == 3)
1720  {
1721  unsigned nedge = this->nq_basis_edge();
1722  if (j < nedge)
1723  {
1724  return_value = this->q_edge_local_eqn(j);
1725  }
1726  else
1727  {
1728  return_value = this->q_internal_local_eqn(j - nedge);
1729  }
1730  }
1731  // Displacement
1732  else
1733  {
1734  return_value =
1735  this->nodal_local_eqn(j, this->u_index_axisym_poroelasticity(fld));
1736  }
1737 
1738  return return_value;
1739  }
1740 
1741 
1742  /// Output FE representation of soln as in underlying element
1743  void output(std::ostream& outfile, const unsigned& nplot)
1744  {
1746  }
1747 
1748 
1749  /// Residual for the projection step. Flag indicates if we
1750  /// want the Jacobian (1) or not (0). Virtual so it can be
1751  /// overloaded if necessary
1753  DenseMatrix<double>& jacobian,
1754  const unsigned& flag)
1755  {
1756  // Am I a solid element
1757  SolidFiniteElement* solid_el_pt = dynamic_cast<SolidFiniteElement*>(this);
1758 
1759  unsigned n_dim = this->dim();
1760 
1761  // Allocate storage for local coordinates
1762  Vector<double> s(n_dim);
1763 
1764  // Current field
1765  unsigned fld = this->Projected_field;
1766 
1767  // Number of nodes
1768  const unsigned n_node = this->nnode();
1769 
1770  // Number of positional dofs
1771  const unsigned n_position_type = this->nnodal_position_type();
1772 
1773  // Number of dof for current field
1774  const unsigned n_value = nvalue_of_field(fld);
1775 
1776  // Set the value of n_intpt
1777  const unsigned n_intpt = this->integral_pt()->nweight();
1778 
1779  // Loop over the integration points
1780  for (unsigned ipt = 0; ipt < n_intpt; ipt++)
1781  {
1782  // Get the local coordinates of Gauss point
1783  for (unsigned i = 0; i < n_dim; i++)
1784  s[i] = this->integral_pt()->knot(ipt, i);
1785 
1786  // Get the integral weight
1787  double w = this->integral_pt()->weight(ipt);
1788 
1789  // Find same point in base mesh using external storage
1790  FiniteElement* other_el_pt = 0;
1791  other_el_pt = this->external_element_pt(0, ipt);
1792  Vector<double> other_s(n_dim);
1793  other_s = this->external_element_local_coord(0, ipt);
1795  dynamic_cast<
1797  other_el_pt);
1798 
1799  // Storage for the local equation and local unknown
1800  int local_eqn = 0, local_unknown = 0;
1801 
1802  // Now set up the three different projection problems
1803  switch (Projection_type)
1804  {
1805  case Lagrangian:
1806  {
1807  // If we don't have a solid element there is a problem
1808  if (solid_el_pt == 0)
1809  {
1810  throw OomphLibError("Trying to project Lagrangian coordinates in "
1811  "non-SolidElement\n",
1812  OOMPH_CURRENT_FUNCTION,
1813  OOMPH_EXCEPTION_LOCATION);
1814  }
1815 
1816  // Find the position shape functions
1817  Shape psi(n_node, n_position_type);
1818  // Get the position shape functions
1819  this->shape(s, psi);
1820  // Get the jacobian
1821  double J = this->J_eulerian(s);
1822 
1823  // Premultiply the weights and the Jacobian
1824  double W = w * J;
1825 
1826  // Get the value of the current position of the 0th coordinate
1827  // in the current element
1828  // at the current time level (which is the unkown)
1829  double interpolated_xi_proj = this->interpolated_x(s, 0);
1830 
1831  // Get the Lagrangian position in the other element
1832  double interpolated_xi_bar =
1833  dynamic_cast<SolidFiniteElement*>(cast_el_pt)
1834  ->interpolated_xi(other_s, Projected_lagrangian);
1835 
1836  // Now loop over the nodes and position dofs
1837  for (unsigned l = 0; l < n_node; ++l)
1838  {
1839  // Loop over position unknowns
1840  for (unsigned k = 0; k < n_position_type; ++k)
1841  {
1842  // The local equation is going to be the positional local
1843  // equation
1844  local_eqn = solid_el_pt->position_local_eqn(l, k, 0);
1845 
1846  // Now assemble residuals
1847  if (local_eqn >= 0)
1848  {
1849  // calculate residuals
1850  residuals[local_eqn] +=
1851  (interpolated_xi_proj - interpolated_xi_bar) * psi(l, k) *
1852  W;
1853 
1854  // Calculate the jacobian
1855  if (flag == 1)
1856  {
1857  for (unsigned l2 = 0; l2 < n_node; l2++)
1858  {
1859  // Loop over position dofs
1860  for (unsigned k2 = 0; k2 < n_position_type; k2++)
1861  {
1862  local_unknown =
1863  solid_el_pt->position_local_eqn(l2, k2, 0);
1864  if (local_unknown >= 0)
1865  {
1866  jacobian(local_eqn, local_unknown) +=
1867  psi(l2, k2) * psi(l, k) * W;
1868  }
1869  }
1870  }
1871  } // end of jacobian
1872  }
1873  }
1874  }
1875  } // End of Lagrangian coordinate case
1876 
1877  break;
1878 
1879  // Now the coordinate history case
1880  case Coordinate:
1881  {
1882  // Find the position shape functions
1883  Shape psi(n_node, n_position_type);
1884  // Get the position shape functions
1885  this->shape(s, psi);
1886  // Get the jacobian
1887  double J = this->J_eulerian(s);
1888 
1889  // Premultiply the weights and the Jacobian
1890  double W = w * J;
1891 
1892  // Get the value of the current position in the current element
1893  // at the current time level (which is the unkown)
1894  double interpolated_x_proj = 0.0;
1895  // If we are a solid element read it out directly from the data
1896  if (solid_el_pt != 0)
1897  {
1898  interpolated_x_proj =
1900  }
1901  // Otherwise it's the field value at the current time
1902  else
1903  {
1904  interpolated_x_proj = this->get_field(0, fld, s);
1905  }
1906 
1907  // Get the position in the other element
1908  double interpolated_x_bar = cast_el_pt->interpolated_x(
1910 
1911  // Now loop over the nodes and position dofs
1912  for (unsigned l = 0; l < n_node; ++l)
1913  {
1914  // Loop over position unknowns
1915  for (unsigned k = 0; k < n_position_type; ++k)
1916  {
1917  // If I'm a solid element
1918  if (solid_el_pt != 0)
1919  {
1920  // The local equation is going to be the positional local
1921  // equation
1922  local_eqn =
1923  solid_el_pt->position_local_eqn(l, k, Projected_coordinate);
1924  }
1925  // Otherwise just pick the local unknown of a field to
1926  // project into
1927  else
1928  {
1929  // Complain if using generalised position types
1930  // but this is not a solid element, because the storage
1931  // is then not clear
1932  if (n_position_type != 1)
1933  {
1934  throw OomphLibError("Trying to project generalised "
1935  "positions not in SolidElement\n",
1936  OOMPH_CURRENT_FUNCTION,
1937  OOMPH_EXCEPTION_LOCATION);
1938  }
1939  local_eqn = local_equation(fld, l);
1940  }
1941 
1942  // Now assemble residuals
1943  if (local_eqn >= 0)
1944  {
1945  // calculate residuals
1946  residuals[local_eqn] +=
1947  (interpolated_x_proj - interpolated_x_bar) * psi(l, k) * W;
1948 
1949  // Calculate the jacobian
1950  if (flag == 1)
1951  {
1952  for (unsigned l2 = 0; l2 < n_node; l2++)
1953  {
1954  // Loop over position dofs
1955  for (unsigned k2 = 0; k2 < n_position_type; k2++)
1956  {
1957  // If I'm a solid element
1958  if (solid_el_pt != 0)
1959  {
1960  local_unknown = solid_el_pt->position_local_eqn(
1961  l2, k2, Projected_coordinate);
1962  }
1963  else
1964  {
1965  local_unknown = local_equation(fld, l2);
1966  }
1967 
1968  if (local_unknown >= 0)
1969  {
1970  jacobian(local_eqn, local_unknown) +=
1971  psi(l2, k2) * psi(l, k) * W;
1972  }
1973  }
1974  }
1975  } // end of jacobian
1976  }
1977  }
1978  }
1979  } // End of coordinate case
1980  break;
1981 
1982  // Now the value case
1983  case Value:
1984  {
1985  // Pressure or displacements -- "normal" procedure
1986  if (fld <= 2)
1987  {
1988  // Field shape function
1989  Shape psi(n_value);
1990 
1991  // Calculate jacobian and shape functions for that field
1992  double J = jacobian_and_shape_of_field(fld, s, psi);
1993 
1994  // Premultiply the weights and the Jacobian
1995  double W = w * J;
1996 
1997  // Value of field in current element at current time level
1998  //(the unknown)
1999  unsigned now = 0;
2000  double interpolated_value_proj = this->get_field(now, fld, s);
2001 
2002  // Value of the interpolation of element located in base mesh
2003  double interpolated_value_bar =
2004  cast_el_pt->get_field(Time_level_for_projection, fld, other_s);
2005 
2006  // Loop over dofs of field fld
2007  for (unsigned l = 0; l < n_value; l++)
2008  {
2009  local_eqn = local_equation(fld, l);
2010  if (local_eqn >= 0)
2011  {
2012  // calculate residuals
2013  residuals[local_eqn] +=
2014  (interpolated_value_proj - interpolated_value_bar) *
2015  psi[l] * W;
2016 
2017  // Calculate the jacobian
2018  if (flag == 1)
2019  {
2020  for (unsigned l2 = 0; l2 < n_value; l2++)
2021  {
2022  local_unknown = local_equation(fld, l2);
2023  if (local_unknown >= 0)
2024  {
2025  jacobian(local_eqn, local_unknown) +=
2026  psi[l2] * psi[l] * W;
2027  }
2028  }
2029  } // end of jacobian
2030  }
2031  }
2032  }
2033  // Flux -- need inner product
2034  else if (fld == 3)
2035  {
2036  // Field shape function
2037  Shape psi(n_value, n_dim);
2038 
2039  // Calculate jacobian and shape functions for that field
2040  double J = jacobian_and_shape_of_field(fld, s, psi);
2041 
2042  // Premultiply the weights and the Jacobian
2043  double W = w * J;
2044 
2045  // Value of flux in current element at current time level
2046  //(the unknown)
2047  unsigned now = 0;
2048  Vector<double> q_proj(n_dim);
2049  this->interpolated_q(now, s, q_proj);
2050 
2051  // Value of the interpolation of element located in base mesh
2052  Vector<double> q_bar(n_dim);
2053  cast_el_pt->interpolated_q(
2054  Time_level_for_projection, other_s, q_bar);
2055 
2056  // Loop over dofs of field fld
2057  for (unsigned l = 0; l < n_value; l++)
2058  {
2059  local_eqn = local_equation(fld, l);
2060  if (local_eqn >= 0)
2061  {
2062  // Loop over spatial dimension for dot product
2063  for (unsigned i = 0; i < n_dim; i++)
2064  {
2065  // Add to residuals
2066  residuals[local_eqn] +=
2067  (q_proj[i] - q_bar[i]) * psi(l, i) * W;
2068 
2069  // Calculate the jacobian
2070  if (flag == 1)
2071  {
2072  for (unsigned l2 = 0; l2 < n_value; l2++)
2073  {
2074  local_unknown = local_equation(fld, l2);
2075  if (local_unknown >= 0)
2076  {
2077  jacobian(local_eqn, local_unknown) +=
2078  psi(l2, i) * psi(l, i) * W;
2079  }
2080  }
2081  } // end of jacobian
2082  }
2083  }
2084  }
2085  }
2086  else
2087  {
2088  throw OomphLibError(
2089  "Wrong field specified. This should never happen\n",
2090  OOMPH_CURRENT_FUNCTION,
2091  OOMPH_EXCEPTION_LOCATION);
2092  }
2093 
2094 
2095  break;
2096 
2097  default:
2098  throw OomphLibError("Wrong type specificied in Projection_type. "
2099  "This should never happen\n",
2100  OOMPH_CURRENT_FUNCTION,
2101  OOMPH_EXCEPTION_LOCATION);
2102  }
2103  } // End of the switch statement
2104 
2105  } // End of loop over ipt
2106 
2107  } // End of residual_for_projection function
2108  };
2109 
2110 
2111  //=======================================================================
2112  /// Face geometry for element is the same as that for the underlying
2113  /// wrapped element
2114  //=======================================================================
2115  template<class ELEMENT>
2117  : public virtual FaceGeometry<ELEMENT>
2118  {
2119  public:
2120  FaceGeometry() : FaceGeometry<ELEMENT>() {}
2121  };
2122 
2123 
2124  /// /////////////////////////////////////////////////////////////////////
2125  /// /////////////////////////////////////////////////////////////////////
2126  /// /////////////////////////////////////////////////////////////////////
2127 
2128 
2129 } // namespace oomph
2130 
2131 #endif
e
Definition: cfortran.h:571
static char t char * s
Definition: cfortran.h:568
cstr elem_len * i
Definition: cfortran.h:603
char t
Definition: cfortran.h:568
Class implementing the generic maths of the axisym poroelasticity equations: axisym linear elasticity...
static double Default_lambda_sq_value
Static default value for timescale ratio.
void get_Z2_flux(const Vector< double > &s, Vector< double > &flux)
Z2 flux (use Darcy flux)
void mass_source(const double &time, const Vector< double > &x, double &b) const
Indirect access to the mass source function - returns 0 if no mass source function has been set.
static double Default_youngs_modulus_value
Static default value for Young's modulus (1.0 – for natural scaling, i.e. all stresses have been non-...
virtual unsigned q_internal_index() const =0
Return the index of the internal data where the q internal degrees of freedom are stored.
double transform_basis(const Vector< double > &s, const Shape &q_basis_local, Shape &psi, Shape &q_basis) const
Performs a div-conserving transformation of the vector basis functions from the reference element to ...
void scalar_value_paraview(std::ofstream &file_out, const unsigned &i, const unsigned &nplot) const
Write values of the i-th scalar field at the plot points. Needs to be implemented for each new specif...
double * Lambda_sq_pt
Timescale ratio (non-dim. density)
virtual unsigned nedge_flux_interpolation_point() const =0
Returns the number of flux_interpolation points along each edge of the element.
double dq_internal_dt(const unsigned &n) const
dq_internal/dt for the n-th internal degree of freedom
void compute_error(std::ostream &outfile, FiniteElement::SteadyExactSolutionFctPt exact_soln_pt, Vector< double > &error, Vector< double > &norm)
Compute the error between the FE solution and the exact solution using the H(div) norm for q and L^2 ...
void point_output_data(const Vector< double > &s, Vector< double > &data)
Output solution in data vector at local cordinates s: r,z,u_r,u_z,q_r,q_z,div_q,p,...
unsigned num_Z2_flux_terms()
Number off flux terms for Z2 error estimator (use Darcy flux)
void output_with_projected_flux(std::ostream &outfile, const unsigned &nplot, const Vector< double > unit_normal)
Output incl. projection of fluxes into direction of the specified unit vector.
SourceFctPt & solid_body_force_fct_pt()
Access function: Pointer to solid body force function.
virtual void scale_basis(Shape &basis) const =0
Scale the edge basis to allow arbitrary edge mappings.
virtual unsigned u_index_axisym_poroelasticity(const unsigned &j) const =0
Return the nodal index of the j-th solid displacement unknown.
virtual Vector< Data * > q_edge_data_pt() const =0
Return vector of pointers to the Data objects that store the edge flux values.
unsigned nscalar_paraview() const
Number of scalars/fields output by this element. Reimplements broken virtual function in base class.
const double & porosity() const
Access function for the porosity.
virtual int q_edge_local_eqn(const unsigned &j) const =0
Return the equation number of the j-th edge (flux) degree of freedom.
void interpolated_u(const Vector< double > &s, Vector< double > &disp) const
Calculate the FE representation of u.
const double & youngs_modulus() const
Access function to non-dim Young's modulus (ratio of actual Young's modulus to reference stress used ...
virtual unsigned q_edge_node_number(const unsigned &j) const =0
Return the number of the node where the jth edge unknown is stored.
virtual void set_q_edge(const unsigned &t, const unsigned &j, const double &value)=0
Set the values of the j-th edge (flux) degree of freedom at time history level t.
virtual int q_internal_local_eqn(const unsigned &j) const =0
Return the equation number of the j-th internal degree of freedom.
double *& density_ratio_pt()
Access function for pointer to the density ratio (fluid to solid)
double interpolated_div_q(const Vector< double > &s) const
Calculate the FE representation of div q and return it.
double interpolated_u(const Vector< double > &s, const unsigned &i) const
Calculate the FE representation of the i-th component of u.
virtual double shape_basis_test_local_at_knot(const unsigned &ipt, Shape &psi, DShape &dpsi, Shape &u_basis, Shape &u_test, DShape &du_basis_dx, DShape &du_test_dx, Shape &q_basis, Shape &q_test, Shape &p_basis, Shape &p_test, Shape &div_q_basis_ds, Shape &div_q_test_ds) const =0
Compute the geometric basis, and the q, p and divergence basis functions and test functions at integr...
virtual void set_q_edge(const unsigned &j, const double &value)=0
Set the values of the j-th edge (flux) degree of freedom.
void interpolated_q(const Vector< double > &s, Vector< double > &q) const
Calculate the FE representation of q.
double interpolated_div_u(const Vector< double > &s, Vector< double > &div_u_components) const
Calculate the FE representation of the divergence of the skeleton displ, div(u), and its components: ...
void fill_in_contribution_to_residuals(Vector< double > &residuals)
Fill in contribution to residuals for the Darcy equations.
const double & permeability_ratio() const
Access function for the ratio of the material's actual permeability to the permeability used in the n...
static double Default_porosity_value
Static default value for the porosity.
void(* MassSourceFctPt)(const double &time, const Vector< double > &x, double &f)
Mass source function pointer typedef.
double * Alpha_pt
Alpha – the biot parameter.
virtual void set_q_internal(const unsigned &j, const double &value)=0
Set the values of the j-th internal degree of freedom.
virtual double shape_basis_test_local(const Vector< double > &s, Shape &psi, DShape &dpsi, Shape &u_basis, Shape &u_test, DShape &du_basis_dx, DShape &du_test_dx, Shape &q_basis, Shape &q_test, Shape &p_basis, Shape &p_test, Shape &div_q_basis_ds, Shape &div_q_test_ds) const =0
Compute the geometric basis, and the q, p and divergence basis functions and test functions at local ...
double du_dt(const unsigned &n, const unsigned &i) const
du/dt at local node n
virtual Data * p_data_pt() const =0
Return pointer to the Data object that stores the pressure values.
virtual unsigned q_edge_index(const unsigned &j) const =0
Return the nodal index at which the jth edge unknown is stored.
SourceFctPt Fluid_body_force_fct_pt
Pointer to fluid source function.
virtual void face_local_coordinate_of_flux_interpolation_point(const unsigned &edge, const unsigned &n, Vector< double > &s) const =0
Compute the face element coordinates of the nth flux interpolation point along an edge.
MassSourceFctPt mass_source_fct_pt() const
Access function: Pointer to mass source function (const version)
virtual unsigned face_index_of_q_edge_basis_fct(const unsigned &j) const =0
Return the face index associated with j-th edge flux degree of freedom.
double interpolated_q(const unsigned &t, const Vector< double > &s, const unsigned i) const
Calculate the FE representation of the i-th component of q at time level t (t=0: current)
double *& permeability_pt()
Access function for pointer to the nondim permeability.
static double Default_permeability_value
Static default value for the permeability (1.0 for natural scaling; i.e. timescale is given by L^2/(k...
double *& permeability_ratio_pt()
Access function for pointer to ratio of the material's actual permeability to the permeability used i...
void get_q_basis(const Vector< double > &s, Shape &q_basis) const
Compute the transformed basis at local coordinate s.
virtual unsigned face_index_of_edge(const unsigned &j) const =0
Return the face index associated with specified edge.
static double Default_permeability_ratio_value
Static default value for the ratio of the material's actual permeability to the permeability used to ...
void(* SourceFctPt)(const double &time, const Vector< double > &x, Vector< double > &f)
Source function pointer typedef.
virtual void pin_q_internal_value(const unsigned &j, const double &value)=0
Pin the jth internal q value and set it to specified value.
void interpolated_q(const unsigned &t, const Vector< double > &s, Vector< double > &q) const
Calculate the FE representation of q at time level t (t=0: current)
double *& nu_pt()
Access function for pointer to Poisson's ratio.
MassSourceFctPt Mass_source_fct_pt
Pointer to the mass source function.
void interpolated_div_q(const Vector< double > &s, double &div_q) const
Calculate the FE representation of div u.
double transform_basis(const Vector< double > &s, const Shape &q_basis_local, Shape &psi, DShape &dpsi, Shape &q_basis) const
Performs a div-conserving transformation of the vector basis functions from the reference element to ...
virtual unsigned np_basis() const =0
Return the total number of pressure basis functions.
virtual unsigned nq_basis() const
Return the total number of computational basis functions for q.
virtual double q_edge(const unsigned &t, const unsigned &j) const =0
Return the values of the j-th edge (flux) degree of freedom at time history level t.
virtual unsigned required_nvalue(const unsigned &n) const =0
Number of values required at node n.
virtual void edge_flux_interpolation_point_global(const unsigned &edge, const unsigned &j, Vector< double > &x) const =0
Compute the global coordinates of the jth flux_interpolation point along an edge.
const double & density_ratio() const
Access function for the density ratio (fluid to solid)
SourceFctPt & fluid_body_force_fct_pt()
Access function: Pointer to fluid force function.
double *& youngs_modulus_pt()
Pointer to non-dim Young's modulus (ratio of actual Young's modulus to reference stress used to non-d...
virtual void set_p_value(const unsigned &j, const double &value)=0
Set the jth pressure value.
const double & lambda_sq() const
Access function for timescale ratio (nondim density)
double * Youngs_modulus_pt
Pointer to the nondim Young's modulus.
virtual void pin_p_value(const unsigned &j, const double &p)=0
Pin the jth pressure value and set it to p.
double *& alpha_pt()
Access function for pointer to alpha, the Biot parameter.
virtual unsigned nq_basis_edge() const =0
Return the number of edge basis functions for q.
virtual double q_internal(const unsigned &j) const =0
Return the values of the j-th internal degree of freedom.
void interpolated_p(const Vector< double > &s, double &p) const
Calculate the FE representation of p.
void set_q_internal_timestepper(TimeStepper *const time_stepper_pt)
Set the timestepper of the q internal data object.
void interpolated_du_dt(const Vector< double > &s, Vector< double > &du_dt) const
Calculate the FE representation of du_dt.
virtual double p_value(const unsigned &j) const =0
Return the jth pressure value.
std::string scalar_name_paraview(const unsigned &i) const
Name of the i-th scalar field. Default implementation returns V1 for the first one,...
double interpolated_div_du_dt(const Vector< double > &s, Vector< double > &div_dudt_components) const
Calculate the FE representation of the divergence of the skeleton velocity, div(du/dt),...
const double & permeability() const
Access function for the nondim permeability.
SourceFctPt solid_body_force_fct_pt() const
Access function: Pointer to solid body force function (const version)
virtual void fill_in_generic_residual_contribution(Vector< double > &residuals, DenseMatrix< double > &jacobian, bool flag)
Fill in residuals and, if flag==true, jacobian.
double interpolated_p(const Vector< double > &s) const
Calculate the FE representation of p and return it.
virtual void get_div_q_basis_local(const Vector< double > &s, Shape &div_q_basis_ds) const =0
Compute the local form of the q basis and dbasis/ds at local coordinate s.
SourceFctPt fluid_body_force_fct_pt() const
Access function: Pointer to fluid force function (const version)
double interpolated_q(const Vector< double > &s, const unsigned i) const
Calculate the FE representation of the i-th component of q.
MassSourceFctPt & mass_source_fct_pt()
Access function: Pointer to mass source function.
double d2u_dt2(const unsigned &n, const unsigned &i) const
d^2u/dt^2 at local node n
static double Default_density_ratio_value
Static default value for the density ratio.
virtual double q_internal(const unsigned &t, const unsigned &j) const =0
Return the values of the j-th internal degree of freedom at time history level t.
const double & alpha() const
Access function for alpha, the Biot parameter.
bool Darcy_is_switched_off
Boolean to record that darcy has been switched off.
virtual void pin_q_edge_value(const unsigned &j, const double &value)=0
Pin the j-th edge (flux) degree of freedom and set it to specified value.
void output_fct(std::ostream &outfile, const unsigned &nplot, FiniteElement::SteadyExactSolutionFctPt exact_soln_pt)
Output FE representation of exact soln: x,y,u1,u2,div_q,p at Nplot^2 plot points.
SourceFctPt Solid_body_force_fct_pt
Pointer to solid body force function.
void fluid_body_force(const double &time, const Vector< double > &x, Vector< double > &b) const
Indirect access to the fluid body force function - returns 0 if no forcing function has been set.
static double Default_alpha_value
Static default value for alpha, the biot parameter.
double * Permeability_ratio_pt
Ratio of the material's actual permeability to the permeability used in the non-dimensionalisation of...
double interpolated_u(const unsigned &t, const Vector< double > &s, const unsigned &i) const
Calculate the FE representation of the i-th component of u at time level t (t=0: current)
void solid_body_force(const double &time, const Vector< double > &x, Vector< double > &b) const
Indirect access to the solid body force function - returns 0 if no forcing function has been set.
virtual Vector< double > edge_flux_interpolation_point(const unsigned &edge, const unsigned &j) const =0
Returns the local coordinate of the jth flux_interpolation point along the specified edge.
virtual Data * q_internal_data_pt() const =0
Return pointer to the Data object that stores the internal flux values.
virtual double q_edge(const unsigned &j) const =0
Return the values of the j-th edge (flux) degree of freedom.
const double & nu() const
Access function for Poisson's ratio.
double *& lambda_sq_pt()
Access function for pointer to timescale ratio (nondim density)
virtual void get_p_basis(const Vector< double > &s, Shape &p_basis) const =0
Compute the pressure basis.
void fill_in_contribution_to_jacobian(Vector< double > &residuals, DenseMatrix< double > &jacobian)
Fill in the Jacobian matrix for the Newton method.
double dq_edge_dt(const unsigned &n) const
dq_edge/dt for the n-th edge degree of freedom
double *& porosity_pt()
Access function for pointer to the porosity.
virtual void set_q_internal(const unsigned &t, const unsigned &j, const double &value)=0
Set the values of the j-th internal degree of freedom at time history level t.
virtual unsigned nq_basis_internal() const =0
Return the number of internal basis functions for q.
void output(std::ostream &outfile)
Output with default number of plot points.
virtual int p_local_eqn(const unsigned &j) const =0
Return the equation number of the j-th pressure degree of freedom.
virtual void get_q_basis_local(const Vector< double > &s, Shape &q_basis) const =0
Comute the local form of the q basis at local coordinate s.
A Class for the derivatives of shape functions The class design is essentially the same as Shape,...
Definition: shape.h:278
A class that represents a collection of data; each Data object may contain many different individual ...
Definition: nodes.h:86
TimeStepper *& time_stepper_pt()
Return the pointer to the timestepper.
Definition: nodes.h:238
unsigned nvalue() const
Return number of values stored in data object (incl pinned ones).
Definition: nodes.h:483
unsigned ntstorage() const
Return total number of doubles stored per value to record time history of each value (one for steady ...
Definition: nodes.cc:879
void set_time_stepper(TimeStepper *const &time_stepper_pt, const bool &preserve_existing_data)
Set a new timestepper by resizing the appropriate storage. If already assigned the equation numbering...
Definition: nodes.cc:406
Vector< double > & external_element_local_coord(const unsigned &interaction_index, const unsigned &ipt)
Access function to get source element's local coords for specified interaction index at specified int...
FiniteElement *& external_element_pt(const unsigned &interaction_index, const unsigned &ipt)
Access function to source element for specified interaction index at specified integration point.
Base class for finite elements that can compute the quantities that are required for the Z2 error est...
//////////////////////////////////////////////////////////////////// ////////////////////////////////...
Definition: elements.h:5002
A general Finite Element class.
Definition: elements.h:1317
virtual unsigned nplot_points_paraview(const unsigned &nplot) const
Return the number of actual plot points for paraview plot with parameter nplot. Broken virtual; can b...
Definition: elements.h:2866
virtual double J_eulerian(const Vector< double > &s) const
Return the Jacobian of mapping from local to global coordinates at local position s.
Definition: elements.cc:4133
Node *& node_pt(const unsigned &n)
Return a pointer to the local node n.
Definition: elements.h:2179
double nodal_value(const unsigned &n, const unsigned &i) const
Return the i-th value stored at local node n. Produces suitably interpolated values for hanging nodes...
Definition: elements.h:2597
unsigned nnodal_position_type() const
Return the number of coordinate types that the element requires to interpolate the geometry between t...
Definition: elements.h:2467
virtual void shape(const Vector< double > &s, Shape &psi) const =0
Calculate the geometric shape functions at local coordinate s. This function must be overloaded for e...
virtual double interpolated_x(const Vector< double > &s, const unsigned &i) const
Return FE interpolated coordinate x[i] at local coordinate s.
Definition: elements.cc:3992
int nodal_local_eqn(const unsigned &n, const unsigned &i) const
Return the local equation number corresponding to the i-th value at the n-th local node.
Definition: elements.h:1436
unsigned dim() const
Return the spatial dimension of the element, i.e. the number of local coordinates required to paramet...
Definition: elements.h:2615
unsigned nnode() const
Return the number of nodes.
Definition: elements.h:2214
void(* SteadyExactSolutionFctPt)(const Vector< double > &, Vector< double > &)
Function pointer for function that computes vector-valued steady "exact solution" as .
Definition: elements.h:1763
Integral *const & integral_pt() const
Return the pointer to the integration scheme (const version)
Definition: elements.h:1967
virtual void get_s_plot(const unsigned &i, const unsigned &nplot, Vector< double > &s, const bool &shifted_to_interior=false) const
Get cector of local coordinates of plot point i (when plotting nplot points in each "coordinate direc...
Definition: elements.h:3152
virtual double local_to_eulerian_mapping(const DShape &dpsids, DenseMatrix< double > &jacobian, DenseMatrix< double > &inverse_jacobian) const
Calculate the mapping from local to Eulerian coordinates, given the derivatives of the shape function...
Definition: elements.h:1512
double dshape_eulerian(const Vector< double > &s, Shape &psi, DShape &dpsidx) const
Compute the geometric shape functions and also first derivatives w.r.t. global coordinates at local c...
Definition: elements.cc:3328
virtual void dshape_local(const Vector< double > &s, Shape &psi, DShape &dpsids) const
Function to compute the geometric shape functions and derivatives w.r.t. local coordinates at local c...
Definition: elements.h:1985
void(* UnsteadyExactSolutionFctPt)(const double &, const Vector< double > &, Vector< double > &)
Function pointer for function that computes Vector-valued time-dependent function as .
Definition: elements.h:1769
Data *& internal_data_pt(const unsigned &i)
Return a pointer to i-th internal data object.
Definition: elements.h:622
static DenseMatrix< double > Dummy_matrix
Empty dense matrix used as a dummy argument to combined residual and jacobian functions in the case w...
Definition: elements.h:227
TimeStepper *& time_stepper_pt()
Access function for pointer to time stepper: Null if object is not time-dependent.
Definition: geom_objects.h:192
virtual double knot(const unsigned &i, const unsigned &j) const =0
Return local coordinate s[j] of i-th integration point.
virtual unsigned nweight() const =0
Return the number of integration points of the scheme.
virtual double weight(const unsigned &i) const =0
Return weight of i-th integration point.
TimeStepper *& position_time_stepper_pt()
Return a pointer to the position timestepper.
Definition: nodes.h:1022
An OomphLibError object which should be thrown when an run-time error is encountered....
///////////////////////////////////////////////////////////////////// ///////////////////////////////...
unsigned nhistory_values_for_coordinate_projection()
Number of positional history values (Note: count includes current value!)
int local_equation(const unsigned &fld, const unsigned &j)
Return local equation number of value j in field fld.
void residual_for_projection(Vector< double > &residuals, DenseMatrix< double > &jacobian, const unsigned &flag)
Residual for the projection step. Flag indicates if we want the Jacobian (1) or not (0)....
ProjectableAxisymmetricPoroelasticityElement()
Constructor [this was only required explicitly from gcc 4.5.2 onwards...].
double jacobian_and_shape_of_field(const unsigned &fld, const Vector< double > &s, Shape &psi)
Return Jacobian of mapping and shape functions of field fld at local coordinate s.
unsigned nfields_for_projection()
Number of fields to be projected: 4 (two displacement components, pressure, Darcy flux)
Vector< std::pair< Data *, unsigned > > data_values_of_field(const unsigned &fld)
Specify the values associated with field fld. The information is returned in a vector of pairs which ...
unsigned nvalue_of_field(const unsigned &fld)
Return number of values in field fld.
double get_field(const unsigned &t, const unsigned &fld, const Vector< double > &s)
Return interpolated field fld at local coordinate s, at time level t (t=0: present; t>0: history valu...
void output(std::ostream &outfile, const unsigned &nplot)
Output FE representation of soln as in underlying element.
unsigned nhistory_values_for_projection(const unsigned &fld)
Number of history values to be stored for fld-th field. (Note: count includes current value!...
Template-free Base class for projectable elements.
Definition: projection.h:55
unsigned Projected_lagrangian
When projecting the Lagrangain coordinates indicate which coordiante is to be projected.
Definition: projection.h:78
Projection_Type Projection_type
Variable to indicate if we're projecting the history values of the nodal coordinates (Coordinate) the...
Definition: projection.h:83
unsigned Time_level_for_projection
Time level we are projecting (0=current values; >0: history values)
Definition: projection.h:70
unsigned Projected_field
Field that is currently being projected.
Definition: projection.h:67
unsigned Projected_coordinate
When projecting the history values of the nodal coordinates, this is the coordinate we're projecting.
Definition: projection.h:74
virtual double get_field(const unsigned &time, const unsigned &fld, const Vector< double > &s)=0
Return the fld-th field at local coordinates s at time-level time (time=0: current value; time>0: his...
Wrapper class for projectable elements. Adds "projectability" to the underlying ELEMENT.
Definition: projection.h:183
A Class for shape functions. In simple cases, the shape functions have only one index that can be tho...
Definition: shape.h:76
unsigned nindex1() const
Return the range of index 1 of the shape function object.
Definition: shape.h:259
////////////////////////////////////////////////////////////////////// //////////////////////////////...
Definition: elements.h:3565
int position_local_eqn(const unsigned &n, const unsigned &k, const unsigned &j) const
Access function that returns the local equation number that corresponds to the j-th coordinate of the...
Definition: elements.h:4141
////////////////////////////////////////////////////////////////////// //////////////////////////////...
Definition: timesteppers.h:231
unsigned ntstorage() const
Return the number of doubles required to represent history (one for steady)
Definition: timesteppers.h:601
virtual double weight(const unsigned &i, const unsigned &j) const
Access function for j-th weight for the i-th derivative.
Definition: timesteppers.h:594
bool is_steady() const
Flag to indicate if a timestepper has been made steady (possibly temporarily to switch off time-depen...
Definition: timesteppers.h:389
void output()
Doc the command line arguments.
std::string string(const unsigned &i)
Return the i-th string or "" if the relevant string hasn't been defined.
//////////////////////////////////////////////////////////////////// ////////////////////////////////...