timesteppers.cc
Go to the documentation of this file.
1 // LIC// ====================================================================
2 // LIC// This file forms part of oomph-lib, the object-oriented,
3 // LIC// multi-physics finite-element library, available
4 // LIC// at http://www.oomph-lib.org.
5 // LIC//
6 // LIC// Copyright (C) 2006-2023 Matthias Heil and Andrew Hazel
7 // LIC//
8 // LIC// This library is free software; you can redistribute it and/or
9 // LIC// modify it under the terms of the GNU Lesser General Public
10 // LIC// License as published by the Free Software Foundation; either
11 // LIC// version 2.1 of the License, or (at your option) any later version.
12 // LIC//
13 // LIC// This library is distributed in the hope that it will be useful,
14 // LIC// but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // LIC// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
16 // LIC// Lesser General Public License for more details.
17 // LIC//
18 // LIC// You should have received a copy of the GNU Lesser General Public
19 // LIC// License along with this library; if not, write to the Free Software
20 // LIC// Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
21 // LIC// 02110-1301 USA.
22 // LIC//
23 // LIC// The authors may be contacted at oomph-lib@maths.man.ac.uk.
24 // LIC//
25 // LIC//====================================================================
26 // Include the header
27 #include "timesteppers.h"
28 
29 // Required so that we can delete the predictor.
30 #include "explicit_timesteppers.h"
31 
32 
33 namespace oomph
34 {
35  /// Destructor for time stepper, in .cc file so that we don't have to
36  /// include explicit_timesteppers.h in header.
38  {
39  // Make sure explicit predictor gets deleted if it was set
40  delete Explicit_predictor_pt;
42  }
43 
44 
45  /// /////////////////////////////////////////////////////////////////////
46  /// /////////////////////////////////////////////////////////////////////
47  // Static variables for steady timestepper
48  /// /////////////////////////////////////////////////////////////////////
49  /// /////////////////////////////////////////////////////////////////////
50 
51  template<unsigned NSTEPS>
52  double Steady<NSTEPS>::One = 1.0;
53 
54  template<unsigned NSTEPS>
55  double Steady<NSTEPS>::Zero = 0.0;
56 
57  template<unsigned NSTEPS>
59 
60  // Force the instantiation for all NSTEPS values that may be
61  // required in other timesteppers
62  template class Steady<0>;
63  template class Steady<1>;
64  template class Steady<2>;
65  template class Steady<3>;
66  template class Steady<4>;
67 
68 
69  /// /////////////////////////////////////////////////////////////////////
70  /// /////////////////////////////////////////////////////////////////////
71  // Weights for specific bdf schemes
72  /// /////////////////////////////////////////////////////////////////////
73  /// /////////////////////////////////////////////////////////////////////
74 
75 
76  //=======================================================================
77  /// Assign the values of the weights
78  //=======================================================================
79  template<>
81  {
82  double dt = Time_pt->dt(0);
83  Weight(1, 0) = 1.0 / dt;
84  Weight(1, 1) = -1.0 / dt;
85  }
86 
87 
88  //======================================================================
89  /// Set the predictor weights (Gresho and Sani pg. 270)
90  //======================================================================
91  template<>
93  {
94  // If it's adaptive set the predictor weights
95  if (adaptive_flag())
96  {
97  double dt = Time_pt->dt(0);
98 
99  // Set the predictor weights
100  Predictor_weight[0] = 0.0;
101  Predictor_weight[1] = 1.0;
102 
103  // Velocity weight
104  Predictor_weight[2] = dt;
105  }
106  }
107 
108 
109  //=======================================================================
110  /// Calculate the predicted values and store them at the appropriate
111  /// location in the data structure
112  /// This function must be called after the time-values have been shifted!
113  //=======================================================================
114  template<>
116  {
117  // If it's adaptive calculate the values
118  if (adaptive_flag())
119  {
120  // Find number of values
121  unsigned n_value = data_pt->nvalue();
122  // Loop over the values
123  for (unsigned j = 0; j < n_value; j++)
124  {
125  // If the value is not copied
126  if (data_pt->is_a_copy(j) == false)
127  {
128  // Now Initialise the predictor to zero
129  double predicted_value = 0.0;
130  // Now loop over all the stored data and add appropriate values
131  // to the predictor
132  for (unsigned i = 1; i < 3; i++)
133  {
134  predicted_value += data_pt->value(i, j) * Predictor_weight[i];
135  }
136  // Store the predicted value
137  data_pt->set_value(Predictor_storage_index, j, predicted_value);
138  }
139  }
140  }
141  }
142 
143 
144  //=======================================================================
145  /// Calculate predictions for the positions
146  //=======================================================================
147  template<>
149  {
150  // Only do this if adaptive
151  if (adaptive_flag())
152  {
153  // Find number of dimensions of the problem
154  unsigned n_dim = node_pt->ndim();
155  // Loop over the dimensions
156  for (unsigned j = 0; j < n_dim; j++)
157  {
158  // If the node is not copied
159  if (node_pt->position_is_a_copy(j) == false)
160  {
161  // Initialise the predictor to zero
162  double predicted_value = 0.0;
163  // Now loop over all the stored data and add appropriate values
164  // to the predictor
165  for (unsigned i = 1; i < 3; i++)
166  {
167  predicted_value += node_pt->x(i, j) * Predictor_weight[i];
168  }
169  // Store the predicted value
170  node_pt->x(Predictor_storage_index, j) = predicted_value;
171  }
172  }
173  }
174  }
175 
176 
177  //=======================================================================
178  /// Set the error weights (Gresho and Sani pg. 270)
179  //=======================================================================
180  template<>
182  {
183  Error_weight = 0.5;
184  }
185 
186  //===================================================================
187  /// Function to compute the error in position i at node
188  //===================================================================
189  template<>
190  double BDF<1>::temporal_error_in_position(Node* const& node_pt,
191  const unsigned& i)
192  {
193  if (adaptive_flag())
194  {
195  // Just return the error
196  return Error_weight *
197  (node_pt->x(i) - node_pt->x(Predictor_storage_index, i));
198  }
199  else
200  {
201  return 0.0;
202  }
203  }
204 
205 
206  //=========================================================================
207  /// Function to calculate the error in the data value i
208  //=========================================================================
209  template<>
210  double BDF<1>::temporal_error_in_value(Data* const& data_pt,
211  const unsigned& i)
212  {
213  if (adaptive_flag())
214  {
215  // Just return the error
216  return Error_weight *
217  (data_pt->value(i) - data_pt->value(Predictor_storage_index, i));
218  }
219  else
220  {
221  return 0.0;
222  }
223  }
224 
225  //=======================================================================
226  /// Assign the values of the weights. The scheme used is from Gresho &
227  /// Sani, Incompressible Flow and the Finite Element Method
228  /// (advection-diffusion and isothermal laminar flow), 1998, pg. 715 (with
229  /// some algebraic rearrangement).
230  //=======================================================================
231  template<>
233  {
234  double dt = Time_pt->dt(0);
235  double dtprev = Time_pt->dt(1);
236  Weight(1, 0) = 1.0 / dt + 1.0 / (dt + dtprev);
237  Weight(1, 1) = -(dt + dtprev) / (dt * dtprev);
238  Weight(1, 2) = dt / ((dt + dtprev) * dtprev);
239 
240  if (adaptive_flag())
241  {
242  Weight(1, 3) = 0.0;
243  Weight(1, 4) = 0.0;
244  }
245  }
246 
247  //========================================================================
248  /// Calculate the predictor weights. The scheme used is from Gresho &
249  /// Sani, Incompressible Flow and the Finite Element Method
250  /// (advection-diffusion and isothermal laminar flow), 1998, pg. 715.
251  //========================================================================
252  template<>
254  {
255  // If it's adaptive set the predictor weights
256  if (adaptive_flag())
257  {
258  // Read the value of the previous timesteps
259  double dt = Time_pt->dt(0);
260  double dtprev = Time_pt->dt(1);
261 
262  // Set the predictor weights
263  Predictor_weight[0] = 0.0;
264  Predictor_weight[1] = 1.0 - (dt * dt) / (dtprev * dtprev);
265  Predictor_weight[2] = (dt * dt) / (dtprev * dtprev);
266  // Acceleration term
267  Predictor_weight[3] = (1.0 + dt / dtprev) * dt;
268  }
269  }
270 
271  //=======================================================================
272  /// Calculate the predicted values and store them at the appropriate
273  /// location in the data structure
274  /// This function must be called after the time-values have been shifted!
275  //=======================================================================
276  template<>
278  {
279  // If it's adaptive calculate the values
280  if (adaptive_flag())
281  {
282  // Find number of values
283  unsigned n_value = data_pt->nvalue();
284  // Loop over the values
285  for (unsigned j = 0; j < n_value; j++)
286  {
287  // If the value is not copied
288  if (data_pt->is_a_copy(j) == false)
289  {
290  // Now Initialise the predictor to zero
291  double predicted_value = 0.0;
292  // Now loop over all the stored data and add appropriate values
293  // to the predictor
294  for (unsigned i = 1; i < 4; i++)
295  {
296  predicted_value += data_pt->value(i, j) * Predictor_weight[i];
297  }
298  // Store the predicted value
299  // Note that predictor is stored as the FIFTH entry in this scheme
300  data_pt->set_value(Predictor_storage_index, j, predicted_value);
301  }
302  }
303  }
304  }
305 
306  //=======================================================================
307  /// Calculate predictions for the positions
308  //=======================================================================
309  template<>
311  {
312  // Only do this if adaptive
313  if (adaptive_flag())
314  {
315  // Find number of dimensions of the problem
316  unsigned n_dim = node_pt->ndim();
317  // Loop over the dimensions
318  for (unsigned j = 0; j < n_dim; j++)
319  {
320  // If the node is not copied
321  if (node_pt->position_is_a_copy(j) == false)
322  {
323  // Initialise the predictor to zero
324  double predicted_value = 0.0;
325  // Now loop over all the stored data and add appropriate values
326  // to the predictor
327  for (unsigned i = 1; i < 4; i++)
328  {
329  predicted_value += node_pt->x(i, j) * Predictor_weight[i];
330  }
331  // Store the predicted value
332  node_pt->x(Predictor_storage_index, j) = predicted_value;
333  }
334  }
335  }
336  }
337 
338 
339  //=======================================================================
340  /// Function that sets the error weights
341  //=======================================================================
342  template<>
344  {
345  if (adaptive_flag())
346  {
347  double dt = Time_pt->dt(0);
348  double dtprev = Time_pt->dt(1);
349  // Calculate the error weight
350  Error_weight =
351  pow((1.0 + dtprev / dt), 2.0) /
352  (1.0 + 3.0 * (dtprev / dt) + 4.0 * pow((dtprev / dt), 2.0) +
353  2.0 * pow((dtprev / dt), 3.0));
354  }
355  }
356 
357 
358  //===================================================================
359  /// Function to compute the error in position i at node
360  //===================================================================
361  template<>
362  double BDF<2>::temporal_error_in_position(Node* const& node_pt,
363  const unsigned& i)
364  {
365  if (adaptive_flag())
366  {
367  // Just return the error
368  return Error_weight *
369  (node_pt->x(i) - node_pt->x(Predictor_storage_index, i));
370  }
371  else
372  {
373  return 0.0;
374  }
375  }
376 
377 
378  //=========================================================================
379  /// Function to calculate the error in the data value i
380  //=========================================================================
381  template<>
382  double BDF<2>::temporal_error_in_value(Data* const& data_pt,
383  const unsigned& i)
384  {
385  if (adaptive_flag())
386  {
387  // Just return the error
388  return Error_weight *
389  (data_pt->value(i) - data_pt->value(Predictor_storage_index, i));
390  }
391  else
392  {
393  return 0.0;
394  }
395  }
396 
397 
398  //====================================================================
399  /// Assign the values of the weights; pass the value of the timestep
400  //====================================================================
401  template<>
403  {
404 #ifdef PARANOID
405  double dt0 = Time_pt->dt(0);
406  for (unsigned i = 0; i < Time_pt->ndt(); i++)
407  {
408  if (dt0 != Time_pt->dt(i))
409  {
410  throw OomphLibError("BDF4 currently only works for fixed timesteps \n",
411  OOMPH_CURRENT_FUNCTION,
412  OOMPH_EXCEPTION_LOCATION);
413  }
414  }
415 #endif
416  double dt = Time_pt->dt(0);
417  Weight(1, 0) = 25.0 / 12.0 / dt;
418  Weight(1, 1) = -48.0 / 12.0 / dt;
419  Weight(1, 2) = 36.0 / 12.0 / dt;
420  Weight(1, 3) = -16.0 / 12.0 / dt;
421  Weight(1, 4) = 3.0 / 12.0 / dt;
422  }
423 
424 
425  //======================================================================
426  /// Calculate the predictor weights
427  //======================================================================
428  template<>
430  {
431  // Read the value of the previous timesteps
432  // double dt=Time_pt->dt(0);
433  // double dtprev=Time_pt->dt(1);
434 
435  throw OomphLibError(
436  "Not implemented yet", OOMPH_CURRENT_FUNCTION, OOMPH_EXCEPTION_LOCATION);
437  }
438 
439  //=======================================================================
440  /// Calculate the predicted values and store them at the appropriate
441  /// location in the data structure
442  /// This function must be called after the time-values have been shifted!
443  //=======================================================================
444  template<>
446  {
447  throw OomphLibError(
448  "Not implemented yet", OOMPH_CURRENT_FUNCTION, OOMPH_EXCEPTION_LOCATION);
449  }
450 
451  /// Calculate predictions for the positions
452  template<>
454  {
455  throw OomphLibError(
456  "Not implemented yet", OOMPH_CURRENT_FUNCTION, OOMPH_EXCEPTION_LOCATION);
457  }
458 
459  /// Function that sets the error weights
460  template<>
462  {
463  throw OomphLibError(
464  "Not implemented yet", OOMPH_CURRENT_FUNCTION, OOMPH_EXCEPTION_LOCATION);
465  }
466 
467  //===================================================================
468  /// Function to compute the error in position i at node
469  //===================================================================
470  template<>
471  double BDF<4>::temporal_error_in_position(Node* const& node_pt,
472  const unsigned& i)
473  {
474  throw OomphLibError(
475  "Not implemented yet", OOMPH_CURRENT_FUNCTION, OOMPH_EXCEPTION_LOCATION);
476  return 0.0;
477  }
478 
479 
480  //=========================================================================
481  /// Function to calculate the error in the data value i
482  //=========================================================================
483  template<>
484  double BDF<4>::temporal_error_in_value(Data* const& data_pt,
485  const unsigned& i)
486  {
487  throw OomphLibError(
488  "Not implemented yet", OOMPH_CURRENT_FUNCTION, OOMPH_EXCEPTION_LOCATION);
489  return 0.0;
490  }
491 
492 
493  /// //////////////////////////////////////////////////////////////////
494  /// //////////////////////////////////////////////////////////////////
495  /// //////////////////////////////////////////////////////////////////
496 
497 
498  //=========================================================================
499  /// Initialise the time-history for the values,
500  /// corresponding to an impulsive start.
501  //=========================================================================
502  template<unsigned NSTEPS>
504  {
505  // Find number of values stored in Data object
506  unsigned n_value = data_pt->nvalue();
507 
508  // Loop over values
509  for (unsigned j = 0; j < n_value; j++)
510  {
511  // Set previous values to the initial value, if not a copy
512  if (data_pt->is_a_copy(j) == false)
513  {
514  for (unsigned t = 1; t <= NSTEPS; t++)
515  {
516  data_pt->set_value(t, j, data_pt->value(j));
517  }
518  }
519 
520  // Initial velocity and initial acceleration are zero
521  data_pt->set_value(NSTEPS + 1, j, 0.0);
522  data_pt->set_value(NSTEPS + 2, j, 0.0);
523  }
524  }
525 
526 
527  //=========================================================================
528  /// Initialise the time-history for the values,
529  /// corresponding to an impulsive start.
530  //=========================================================================
531  template<unsigned NSTEPS>
533  {
534  // Find the number of coordinates
535  unsigned n_dim = node_pt->ndim();
536  // Find the number of position types
537  unsigned n_position_type = node_pt->nposition_type();
538 
539  // Loop over values
540  for (unsigned i = 0; i < n_dim; i++)
541  {
542  // If not a copy
543  if (node_pt->position_is_a_copy(i) == false)
544  {
545  // Loop over the position types
546  for (unsigned k = 0; k < n_position_type; k++)
547  {
548  // Set previous value to the initial value, if not a copy
549  for (unsigned t = 1; t <= NSTEPS; t++)
550  {
551  node_pt->x_gen(t, k, i) = node_pt->x_gen(k, i);
552  }
553 
554  // Initial velocity and initial acceleration are zero
555  node_pt->x_gen(NSTEPS + 1, k, i) = 0.0;
556  node_pt->x_gen(NSTEPS + 2, k, i) = 0.0;
557  }
558  }
559  }
560  }
561 
562 
563  //=========================================================================
564  /// Initialise the time-history for the Data values,
565  /// so that the Newmark representations for current veloc and
566  /// acceleration are exact.
567  //=========================================================================
568  template<unsigned NSTEPS>
570  Data* const& data_pt,
571  Vector<InitialConditionFctPt> initial_value_fct,
572  Vector<InitialConditionFctPt> initial_veloc_fct,
573  Vector<InitialConditionFctPt> initial_accel_fct)
574  {
575  // Set weights
576  set_weights();
577 
578 #ifdef PARANOID
579  // Check if the 3 vectors of functions have the same size
580  if (initial_value_fct.size() != initial_veloc_fct.size() ||
581  initial_value_fct.size() != initial_accel_fct.size())
582  {
583  throw OomphLibError("The Vectors of fcts for values, velocities and "
584  "acceleration must be the same size",
585  OOMPH_CURRENT_FUNCTION,
586  OOMPH_EXCEPTION_LOCATION);
587  }
588 #endif
589 
590  // The number of functions in each vector (they should be the same)
591  unsigned n_fcts = initial_value_fct.size();
592 
593 #ifdef PARANOID
594 
595  // If there are more data values at the node than functions, issue a warning
596  unsigned n_value = data_pt->nvalue();
597  if (n_value > n_fcts && !Shut_up_in_assign_initial_data_values)
598  {
599  std::stringstream message;
600  message << "There are more data values than initial value fcts.\n";
601  message << "Only the first " << n_fcts << " data values will be set\n";
603  message.str(), OOMPH_CURRENT_FUNCTION, OOMPH_EXCEPTION_LOCATION);
604  }
605 #endif
606 
607  // Loop over elements of the function vectors
608  for (unsigned j = 0; j < n_fcts; j++)
609  {
610  if (initial_value_fct[j] == 0)
611  {
612 #ifdef PARANOID
613  if (!Shut_up_in_assign_initial_data_values)
614  {
615  std::stringstream message;
616  message << "Ignoring value " << j << " in assignment of ic.\n";
617  OomphLibWarning(message.str(),
618  "Newmark<NSTEPS>::assign_initial_data_values",
619  OOMPH_EXCEPTION_LOCATION);
620  }
621 #endif
622  }
623  else
624  {
625  // Value itself at current and previous times
626  for (unsigned t = 0; t <= NSTEPS; t++)
627  {
628  double time_local = Time_pt->time(t);
629  data_pt->set_value(t, j, initial_value_fct[j](time_local));
630  }
631 
632  // Now, rather than assigning the values for veloc and accel
633  // in the Newmark scheme directly, we solve a linear system
634  // to determine the values required to make the Newmark
635  // representations of the veloc and accel at the current (!)
636  // time are exact.
637 
638  // Initial time: The value itself
639  double time_ = Time_pt->time();
640  double U = initial_value_fct[j](time_);
641 
642  // Value itself at previous time
643  time_ = Time_pt->time(1);
644  double U0 = initial_value_fct[j](time_);
645 
646  // Veloc (time deriv) at present time -- this is what the
647  // Newmark scheme should return!
648  time_ = Time_pt->time(0);
649  double Udot = initial_veloc_fct[j](time_);
650 
651  // Acccel (2nd time deriv) at present time -- this is what the
652  // Newmark scheme should return!
653  time_ = Time_pt->time(0);
654  double Udotdot = initial_accel_fct[j](time_);
655 
656  Vector<double> vect(2);
657  vect[0] = Udotdot - Weight(2, 0) * U - Weight(2, 1) * U0;
658  vect[1] = Udot - Weight(1, 0) * U - Weight(1, 1) * U0;
659 
660  DenseDoubleMatrix matrix(2, 2);
661  matrix(0, 0) = Weight(2, NSTEPS + 1);
662  matrix(0, 1) = Weight(2, NSTEPS + 2);
663  matrix(1, 0) = Weight(1, NSTEPS + 1);
664  matrix(1, 1) = Weight(1, NSTEPS + 2);
665 
666  matrix.solve(vect);
667 
668  // Discrete veloc (time deriv) at previous time , to be entered into the
669  // Newmark scheme so that its prediction for the *current* veloc
670  // and accel is correct.
671  data_pt->set_value(NSTEPS + 1, j, vect[0]);
672 
673  // Discrete veloc (2nd time deriv) at previous time, to be entered into
674  // the Newmark scheme so that its prediction for the *current* veloc
675  // and accel is correct.
676  data_pt->set_value(NSTEPS + 2, j, vect[1]);
677  }
678  }
679  }
680 
681 
682  //=========================================================================
683  /// Initialise the time-history for the Data values,
684  /// so that the Newmark representations for current veloc and
685  /// acceleration are exact.
686  //=========================================================================
687  template<unsigned NSTEPS>
689  Node* const& node_pt,
690  Vector<NodeInitialConditionFctPt> initial_value_fct,
691  Vector<NodeInitialConditionFctPt> initial_veloc_fct,
692  Vector<NodeInitialConditionFctPt> initial_accel_fct)
693  {
694  // Set weights
695  set_weights();
696 
697 
698 #ifdef PARANOID
699  // Check if the 3 vectors of functions have the same size
700  if (initial_value_fct.size() != initial_veloc_fct.size() ||
701  initial_value_fct.size() != initial_accel_fct.size())
702  {
703  throw OomphLibError("The Vectors of fcts for values, velocities and "
704  "acceleration must be the same size",
705  "Newmark<NSTEPS>::assign_initial_data_values",
706  OOMPH_EXCEPTION_LOCATION);
707  }
708 #endif
709 
710  // The number of functions in each vector (they should be the same)
711  unsigned n_fcts = initial_value_fct.size();
712 
713 #ifdef PARANOID
714 
715  // If there are more data values at the node than functions, issue a warning
716  unsigned n_value = node_pt->nvalue();
717  if (n_value > n_fcts && !Shut_up_in_assign_initial_data_values)
718  {
719  std::stringstream message;
720  message << "There are more nodal values than initial value fcts.\n";
721  message << "Only the first " << n_fcts << " nodal values will be set\n";
723  message.str(), OOMPH_CURRENT_FUNCTION, OOMPH_EXCEPTION_LOCATION);
724  }
725 #endif
726 
727  // Get current nodal coordinates
728  unsigned n_dim = node_pt->ndim();
729  Vector<double> x(n_dim);
730  for (unsigned i = 0; i < n_dim; i++) x[i] = node_pt->x(i);
731 
732  // Loop over values
733  for (unsigned j = 0; j < n_fcts; j++)
734  {
735  if (initial_value_fct[j] == 0)
736  {
737 #ifdef PARANOID
738  if (!Shut_up_in_assign_initial_data_values)
739  {
740  std::stringstream message;
741  message << "Ignoring value " << j << " in assignment of ic.\n";
743  message.str(), OOMPH_CURRENT_FUNCTION, OOMPH_EXCEPTION_LOCATION);
744  }
745 #endif
746  }
747  else
748  {
749  // Value itself at current and previous times
750  for (unsigned t = 0; t <= NSTEPS; t++)
751  {
752  double time_local = Time_pt->time(t);
753  node_pt->set_value(t, j, initial_value_fct[j](time_local, x));
754  }
755 
756  // Now, rather than assigning the values for veloc and accel
757  // in the Newmark scheme directly, we solve a linear system
758  // to determine the values required to make the Newmark
759  // representations of the veloc and accel at the current (!)
760  // time are exact.
761 
762  // Initial time: The value itself
763  double time_ = Time_pt->time();
764  double U = initial_value_fct[j](time_, x);
765 
766  // Value itself at previous time
767  time_ = Time_pt->time(1);
768  double U0 = initial_value_fct[j](time_, x);
769 
770  // Veloc (time deriv) at present time -- this is what the
771  // Newmark scheme should return!
772  time_ = Time_pt->time(0);
773  double Udot = initial_veloc_fct[j](time_, x);
774 
775  // Acccel (2nd time deriv) at present time -- this is what the
776  // Newmark scheme should return!
777  time_ = Time_pt->time(0);
778  double Udotdot = initial_accel_fct[j](time_, x);
779 
780  Vector<double> vect(2);
781  vect[0] = Udotdot - Weight(2, 0) * U - Weight(2, 1) * U0;
782  vect[1] = Udot - Weight(1, 0) * U - Weight(1, 1) * U0;
783 
784  DenseDoubleMatrix matrix(2, 2);
785  matrix(0, 0) = Weight(2, NSTEPS + 1);
786  matrix(0, 1) = Weight(2, NSTEPS + 2);
787  matrix(1, 0) = Weight(1, NSTEPS + 1);
788  matrix(1, 1) = Weight(1, NSTEPS + 2);
789 
790  matrix.solve(vect);
791 
792  // Discrete veloc (time deriv) at previous time , to be entered into the
793  // Newmark scheme so that its prediction for the *current* veloc
794  // and accel is correct.
795  node_pt->set_value(NSTEPS + 1, j, vect[0]);
796 
797  // Discrete veloc (2nd time deriv) at previous time, to be entered into
798  // the Newmark scheme so that its prediction for the *current* veloc
799  // and accel is correct.
800  node_pt->set_value(NSTEPS + 2, j, vect[1]);
801  }
802  }
803  }
804 
805 
806  //=========================================================================
807  /// First step in a two-stage procedure to assign
808  /// the history values for the Newmark scheme so
809  /// that the veloc and accel that are computed by the scheme
810  /// are correct at the current time.
811  ///
812  /// Call this function for t_deriv=0,1,2,3.
813  /// When calling with
814  /// - t_deriv=0 : data_pt(0,*) should contain the values at the
815  /// previous timestep
816  /// - t_deriv=1 : data_pt(0,*) should contain the current values;
817  /// they get stored (temporarily) in data_pt(1,*).
818  /// - t_deriv=2 : data_pt(0,*) should contain the current velocities
819  /// (first time derivs); they get stored (temporarily)
820  /// in data_pt(NSTEPS+1,*).
821  /// - t_deriv=3 : data_pt(0,*) should contain the current accelerations
822  /// (second time derivs); they get stored (temporarily)
823  /// in data_pt(NSTEPS+2,*).
824  /// .
825  /// Follow this by calls to
826  /// \code
827  /// assign_initial_data_values_stage2(...)
828  /// \endcode
829  //=========================================================================
830  template<unsigned NSTEPS>
832  const unsigned t_deriv, Data* const& data_pt)
833  {
834  // Find number of values stored
835  unsigned n_value = data_pt->nvalue();
836 
837  // Loop over values
838  for (unsigned j = 0; j < n_value; j++)
839  {
840  // Which deriv are we dealing with?
841  switch (t_deriv)
842  {
843  // 0-th deriv: the value itself at present time
844  case 0:
845 
846  data_pt->set_value(1, j, data_pt->value(j));
847  break;
848 
849  // 1st deriv: the veloc at present time
850  case 1:
851 
852  data_pt->set_value(NSTEPS + 1, j, data_pt->value(j));
853  break;
854 
855  // 2nd deriv: the accel at present time
856  case 2:
857 
858  data_pt->set_value(NSTEPS + 2, j, data_pt->value(j));
859  break;
860 
861 
862  // None other are possible!
863  default:
864 
865  std::ostringstream error_message_stream;
866  error_message_stream << "t_deriv " << t_deriv
867  << " is not possible with a Newmark scheme "
868  << std::endl;
869 
870  throw OomphLibError(error_message_stream.str(),
871  OOMPH_CURRENT_FUNCTION,
872  OOMPH_EXCEPTION_LOCATION);
873  }
874  }
875  }
876 
877  //=========================================================================
878  /// Second step in a two-stage procedure to assign
879  /// the history values for the Newmark scheme so
880  /// that the veloc and accel that are computed by the scheme
881  /// are correct at the current time.
882  ///
883  /// This assigns appropriate values for the "previous
884  /// velocities and accelerations" so that their current
885  /// values, which were defined in assign_initial_data_values_stage1(...),
886  /// are represented exactly by the Newmark scheme.
887  //=========================================================================
888  template<unsigned NSTEPS>
890  {
891  // Find number of values stored
892  unsigned n_value = data_pt->nvalue();
893 
894  // Loop over values
895  for (unsigned j = 0; j < n_value; j++)
896  {
897  // Rather than assigning the previous veloc and accel
898  // directly, solve linear system to determine their values
899  // so that the Newmark representations are exact.
900 
901  // The exact value at present time (stored in stage 1)
902  double U = data_pt->value(1, j);
903 
904  // Exact value at previous time
905  double U0 = data_pt->value(0, j);
906 
907  // Veloc (1st time deriv) at present time (stored in stage 1)
908  double Udot = data_pt->value(NSTEPS + 1, j);
909 
910  // Acccel (2nd time deriv) at present time (stored in stage 1)
911  double Udotdot = data_pt->value(NSTEPS + 2, j);
912 
913  Vector<double> vect(2);
914  vect[0] = Udotdot - Weight(2, 0) * U - Weight(2, 1) * U0;
915  vect[1] = Udot - Weight(1, 0) * U - Weight(1, 1) * U0;
916 
917  DenseDoubleMatrix matrix(2, 2);
918  matrix(0, 0) = Weight(2, NSTEPS + 1);
919  matrix(0, 1) = Weight(2, NSTEPS + 2);
920  matrix(1, 0) = Weight(1, NSTEPS + 1);
921  matrix(1, 1) = Weight(1, NSTEPS + 2);
922 
923  matrix.solve(vect);
924 
925 
926  // Now assign the discrete coefficients
927  // so that the Newmark scheme returns the correct
928  // results for the present values, and 1st and 2nd derivatives:
929 
930  // Value at present time
931  data_pt->set_value(0, j, U);
932 
933  // Value at previous time
934  data_pt->set_value(1, j, U0);
935 
936  // Veloc (time deriv) at previous time
937  data_pt->set_value(NSTEPS + 1, j, vect[0]);
938 
939  // Acccel (2nd time deriv) at previous time
940  data_pt->set_value(NSTEPS + 2, j, vect[1]);
941  }
942  }
943 
944 
945  //=========================================================================
946  /// This function updates the Data's time history so that
947  /// we can advance to the next timestep.
948  //=========================================================================
949  template<unsigned NSTEPS>
951  {
952  // Find number of values stored
953  unsigned n_value = data_pt->nvalue();
954 
955  Vector<double> veloc(n_value);
956  time_derivative(1, data_pt, veloc);
957 
958  Vector<double> accel(n_value);
959  time_derivative(2, data_pt, accel);
960 
961  // Loop over values
962  for (unsigned j = 0; j < n_value; j++)
963  {
964  // Set previous values/veloc/accel to present values/veloc/accel,
965  // if not a copy
966  if (data_pt->is_a_copy(j) == false)
967  {
968  for (unsigned t = NSTEPS; t > 0; t--)
969  {
970  data_pt->set_value(t, j, data_pt->value(t - 1, j));
971  }
972  data_pt->set_value(NSTEPS + 1, j, veloc[j]);
973  data_pt->set_value(NSTEPS + 2, j, accel[j]);
974  }
975  }
976  }
977 
978  //=========================================================================
979  /// This function updates a nodal time history so that
980  /// we can advance to the next timestep.
981  //=========================================================================
982  template<unsigned NSTEPS>
984  {
985  // Find the number of coordinates
986  unsigned n_dim = node_pt->ndim();
987  // Find the number of position types
988  unsigned n_position_type = node_pt->nposition_type();
989 
990  // Storage for the velocity and acceleration
991  double veloc[n_position_type][n_dim];
992  double accel[n_position_type][n_dim];
993 
994  // Find number of stored time values
995  unsigned n_tstorage = ntstorage();
996 
997  // Loop over the variables
998  for (unsigned i = 0; i < n_dim; i++)
999  {
1000  for (unsigned k = 0; k < n_position_type; k++)
1001  {
1002  veloc[k][i] = accel[k][i] = 0.0;
1003  // Loop over all the history data
1004  for (unsigned t = 0; t < n_tstorage; t++)
1005  {
1006  veloc[k][i] += weight(1, t) * node_pt->x_gen(t, k, i);
1007  accel[k][i] += weight(2, t) * node_pt->x_gen(t, k, i);
1008  }
1009  }
1010  }
1011 
1012  // Loop over the position variables
1013  for (unsigned i = 0; i < n_dim; i++)
1014  {
1015  // If not a copy
1016  if (node_pt->position_is_a_copy(i) == false)
1017  {
1018  // Loop over position types
1019  for (unsigned k = 0; k < n_position_type; k++)
1020  {
1021  // Set previous values/veloc/accel to present values/veloc/accel,
1022  // if not a copy
1023  for (unsigned t = NSTEPS; t > 0; t--)
1024  {
1025  node_pt->x_gen(t, k, i) = node_pt->x_gen(t - 1, k, i);
1026  }
1027 
1028  node_pt->x_gen(NSTEPS + 1, k, i) = veloc[k][i];
1029  node_pt->x_gen(NSTEPS + 2, k, i) = accel[k][i];
1030  }
1031  }
1032  }
1033  }
1034 
1035  //=========================================================================
1036  /// Set weights
1037  //=========================================================================
1038  template<unsigned NSTEPS>
1040  {
1041  double dt = Time_pt->dt(0);
1042 
1043  // Weights for second derivs
1044  Weight(2, 0) = 2.0 / (Beta2 * dt * dt);
1045  Weight(2, 1) = -2.0 / (Beta2 * dt * dt);
1046  for (unsigned t = 2; t <= NSTEPS; t++)
1047  {
1048  Weight(2, t) = 0.0;
1049  }
1050  Weight(2, NSTEPS + 1) = -2.0 / (dt * Beta2);
1051  Weight(2, NSTEPS + 2) = (Beta2 - 1.0) / Beta2;
1052 
1053  // Weights for first derivs.
1054  Weight(1, 0) = Beta1 * dt * Weight(2, 0);
1055  Weight(1, 1) = Beta1 * dt * Weight(2, 1);
1056  for (unsigned t = 2; t <= NSTEPS; t++)
1057  {
1058  Weight(1, t) = 0.0;
1059  }
1060  Weight(1, NSTEPS + 1) = 1.0 + Beta1 * dt * Weight(2, NSTEPS + 1);
1061  Weight(1, NSTEPS + 2) =
1062  dt * (1.0 - Beta1) + Beta1 * dt * Weight(2, NSTEPS + 2);
1063  }
1064 
1065 
1066  //===================================================================
1067  // Force build of templates: These are all the ones that might be
1068  // needed if Newmark is used together with BDF schemes (they require
1069  // up to 4 previous timesteps)
1070  //===================================================================
1071  template class Newmark<1>;
1072  template class Newmark<2>;
1073  template class Newmark<3>;
1074  template class Newmark<4>;
1075 
1076 
1077  //=========================================================================
1078  /// This function updates the Data's time history so that
1079  /// we can advance to the next timestep.
1080  //=========================================================================
1081  template<unsigned NSTEPS>
1083  {
1084  // Find number of values stored
1085  unsigned n_value = data_pt->nvalue();
1086 
1087  // Storage for the velocity and acceleration
1088  Vector<double> veloc(n_value, 0.0);
1089  Vector<double> accel(n_value, 0.0);
1090 
1091  // Find number of stored time values
1092  unsigned n_tstorage = this->ntstorage();
1093 
1094  // Loop over the variables
1095  for (unsigned i = 0; i < n_value; i++)
1096  {
1097  // Loop over all the history data
1098  for (unsigned t = 0; t < n_tstorage; t++)
1099  {
1100  veloc[i] += Newmark_veloc_weight[t] * data_pt->value(t, i);
1101  accel[i] += this->weight(2, t) * data_pt->value(t, i);
1102  }
1103  }
1104 
1105 
1106  // Loop over values
1107  for (unsigned j = 0; j < n_value; j++)
1108  {
1109  // Set previous values/veloc/accel to present values/veloc/accel,
1110  // if not a copy
1111  if (data_pt->is_a_copy(j) == false)
1112  {
1113  for (unsigned t = NSTEPS; t > 0; t--)
1114  {
1115  data_pt->set_value(t, j, data_pt->value(t - 1, j));
1116  }
1117  data_pt->set_value(NSTEPS + 1, j, veloc[j]);
1118  data_pt->set_value(NSTEPS + 2, j, accel[j]);
1119  }
1120  }
1121  }
1122 
1123  //=========================================================================
1124  /// This function updates a nodal time history so that
1125  /// we can advance to the next timestep.
1126  //=========================================================================
1127  template<unsigned NSTEPS>
1129  {
1130  // Find the number of coordinates
1131  unsigned n_dim = node_pt->ndim();
1132  // Find the number of position types
1133  unsigned n_position_type = node_pt->nposition_type();
1134 
1135  // Storage for the velocity and acceleration
1136  double veloc[n_position_type][n_dim];
1137  double accel[n_position_type][n_dim];
1138 
1139  // Find number of stored time values
1140  unsigned n_tstorage = this->ntstorage();
1141 
1142  // Loop over the variables
1143  for (unsigned i = 0; i < n_dim; i++)
1144  {
1145  for (unsigned k = 0; k < n_position_type; k++)
1146  {
1147  veloc[k][i] = accel[k][i] = 0.0;
1148  // Loop over all the history data
1149  for (unsigned t = 0; t < n_tstorage; t++)
1150  {
1151  veloc[k][i] += Newmark_veloc_weight[t] * node_pt->x_gen(t, k, i);
1152  accel[k][i] += this->weight(2, t) * node_pt->x_gen(t, k, i);
1153  }
1154  }
1155  }
1156 
1157  // Loop over the position variables
1158  for (unsigned i = 0; i < n_dim; i++)
1159  {
1160  // If not a copy
1161  if (node_pt->position_is_a_copy(i) == false)
1162  {
1163  // Loop over position types
1164  for (unsigned k = 0; k < n_position_type; k++)
1165  {
1166  // Set previous values/veloc/accel to present values/veloc/accel,
1167  // if not a copy
1168  for (unsigned t = NSTEPS; t > 0; t--)
1169  {
1170  node_pt->x_gen(t, k, i) = node_pt->x_gen(t - 1, k, i);
1171  }
1172 
1173  node_pt->x_gen(NSTEPS + 1, k, i) = veloc[k][i];
1174  node_pt->x_gen(NSTEPS + 2, k, i) = accel[k][i];
1175  }
1176  }
1177  }
1178  }
1179 
1180 
1181  //=========================================================================
1182  /// Set weights
1183  //=========================================================================
1184  template<>
1186  {
1187  // Set Newmark weights for second derivatives
1188  double dt = Time_pt->dt(0);
1189  Weight(2, 0) = 2.0 / (Beta2 * dt * dt);
1190  Weight(2, 1) = -2.0 / (Beta2 * dt * dt);
1191  Weight(2, 2) = -2.0 / (dt * Beta2);
1192  Weight(2, 3) = (Beta2 - 1.0) / Beta2;
1193 
1194  // Set BDF weights for first derivatives
1195  Weight(1, 0) = 1.0 / dt;
1196  Weight(1, 1) = -1.0 / dt;
1197  Weight(1, 2) = 0.0;
1198  Weight(1, 3) = 0.0;
1199 
1200  // Orig Newmark weights for first derivs.
1201  set_newmark_veloc_weights(dt);
1202  }
1203 
1204  //=========================================================================
1205  /// Set weights
1206  //=========================================================================
1207  template<>
1209  {
1210  // Set Newmark weights for second derivatives
1211  double dt = Time_pt->dt(0);
1212  Weight(2, 0) = 2.0 / (Beta2 * dt * dt);
1213  Weight(2, 1) = -2.0 / (Beta2 * dt * dt);
1214  Weight(2, 2) = 0.0;
1215  Weight(2, 3) = -2.0 / (dt * Beta2);
1216  Weight(2, 4) = (Beta2 - 1.0) / Beta2;
1217 
1218  // Set BDF weights for first derivatives
1219  if (Degrade_to_bdf1_for_first_derivs)
1220  {
1221  this->Weight(1, 0) = 1.0 / dt;
1222  this->Weight(1, 1) = -1.0 / dt;
1223  unsigned nweights = this->Weight.ncol();
1224  for (unsigned i = 2; i < nweights; i++)
1225  {
1226  this->Weight(1, i) = 0.0;
1227  }
1228  }
1229  else
1230  {
1231  double dtprev = Time_pt->dt(1);
1232  Weight(1, 0) = 1.0 / dt + 1.0 / (dt + dtprev);
1233  Weight(1, 1) = -(dt + dtprev) / (dt * dtprev);
1234  Weight(1, 2) = dt / ((dt + dtprev) * dtprev);
1235  Weight(1, 3) = 0.0;
1236  Weight(1, 4) = 0.0;
1237  }
1238 
1239  // Orig Newmark weights for first derivs.
1240  set_newmark_veloc_weights(dt);
1241  }
1242 
1243  //=========================================================================
1244  /// Set weights
1245  //=========================================================================
1246  template<>
1248  {
1249  // Set Newmark weights for second derivatives
1250  double dt = Time_pt->dt(0);
1251  Weight(2, 0) = 2.0 / (Beta2 * dt * dt);
1252  Weight(2, 1) = -2.0 / (Beta2 * dt * dt);
1253  Weight(2, 2) = 0.0;
1254  Weight(2, 3) = 0.0;
1255  Weight(2, 4) = 0.0;
1256  Weight(2, 5) = -2.0 / (dt * Beta2);
1257  Weight(2, 6) = (Beta2 - 1.0) / Beta2;
1258 
1259  // Set BDF weights for first derivatives
1260 #ifdef PARANOID
1261  for (unsigned i = 0; i < Time_pt->ndt(); i++)
1262  {
1263  if (dt != Time_pt->dt(i))
1264  {
1265  throw OomphLibError("BDF4 currently only works for fixed timesteps \n",
1266  OOMPH_CURRENT_FUNCTION,
1267  OOMPH_EXCEPTION_LOCATION);
1268  }
1269  }
1270 #endif
1271 
1272  // Set BDF weights for first derivatives
1273  if (Degrade_to_bdf1_for_first_derivs)
1274  {
1275  this->Weight(1, 0) = 1.0 / dt;
1276  this->Weight(1, 1) = -1.0 / dt;
1277  unsigned nweights = this->Weight.ncol();
1278  for (unsigned i = 2; i < nweights; i++)
1279  {
1280  this->Weight(1, i) = 0.0;
1281  }
1282  }
1283  else
1284  {
1285  Weight(1, 0) = 25.0 / 12.0 / dt;
1286  Weight(1, 1) = -48.0 / 12.0 / dt;
1287  Weight(1, 2) = 36.0 / 12.0 / dt;
1288  Weight(1, 3) = -16.0 / 12.0 / dt;
1289  Weight(1, 4) = 3.0 / 12.0 / dt;
1290  Weight(1, 5) = 0.0;
1291  Weight(1, 6) = 0.0;
1292  }
1293 
1294  // Orig Newmark weights for first derivs.
1295  set_newmark_veloc_weights(dt);
1296  }
1297 
1298  //===================================================================
1299  // Force build of templates.
1300  //===================================================================
1301  template class NewmarkBDF<1>;
1302  template class NewmarkBDF<2>;
1303  template class NewmarkBDF<4>;
1304 
1305 
1306 } // namespace oomph
cstr elem_len * i
Definition: cfortran.h:603
char t
Definition: cfortran.h:568
void calculate_predicted_positions(Node *const &node_pt)
Function to calculate predicted positions at a node.
void calculate_predicted_values(Data *const &data_pt)
Function to calculate predicted data values in a Data object.
void set_weights()
Set the weights.
void set_predictor_weights()
Function to set the predictor weights.
double temporal_error_in_value(Data *const &data_pt, const unsigned &i)
Compute the error in the value i in a Data structure.
double temporal_error_in_position(Node *const &node_pt, const unsigned &i)
Compute the error in the position i at a node.
void set_error_weights()
Function to set the error weights.
A class that represents a collection of data; each Data object may contain many different individual ...
Definition: nodes.h:86
void set_value(const unsigned &i, const double &value_)
Set the i-th stored data value to specified value. The only reason that we require an explicit set fu...
Definition: nodes.h:271
virtual bool is_a_copy() const
Return a boolean to indicate whether the Data objact contains any copied values. A base Data object c...
Definition: nodes.h:253
unsigned nvalue() const
Return number of values stored in data object (incl pinned ones).
Definition: nodes.h:483
double value(const unsigned &i) const
Return i-th stored value. This function is not virtual so that it can be inlined. This means that if ...
Definition: nodes.h:293
Class of matrices containing doubles, and stored as a DenseMatrix<double>, but with solving functiona...
Definition: matrices.h:1271
void solve(DoubleVector &rhs)
Complete LU solve (replaces matrix by its LU decomposition and overwrites RHS with solution)....
Definition: matrices.cc:50
////////////////////////////////////////////////////////////////////// //////////////////////////////...
void set_weights()
Set weights.
void shift_time_values(Data *const &data_pt)
This function updates the Data's time history so that we can advance to the next timestep.
void shift_time_positions(Node *const &node_pt)
This function updates a nodal time history so that we can advance to the next timestep.
////////////////////////////////////////////////////////////////////// //////////////////////////////...
Definition: timesteppers.h:912
void shift_time_values(Data *const &data_pt)
This function updates the Data's time history so that we can advance to the next timestep.
void assign_initial_data_values_stage1(const unsigned t_deriv, Data *const &data_pt)
First step in a two-stage procedure to assign the history values for the Newmark scheme so that the v...
void assign_initial_data_values_stage2(Data *const &data_pt)
Second step in a two-stage procedure to assign the history values for the Newmark scheme so that the ...
void assign_initial_positions_impulsive(Node *const &node_pt)
Initialise the time-history for the values, corresponding to an impulsive start.
void assign_initial_values_impulsive(Data *const &data_pt)
Initialise the time-history for the values, corresponding to an impulsive start.
void assign_initial_data_values(Data *const &data_pt, Vector< InitialConditionFctPt > initial_value_fct, Vector< InitialConditionFctPt > initial_veloc_fct, Vector< InitialConditionFctPt > initial_accel_fct)
Initialise the time-history for the Data values, so that the Newmark representations for current velo...
void set_weights()
Set weights.
void shift_time_positions(Node *const &node_pt)
This function updates a nodal time history so that we can advance to the next timestep.
Nodes are derived from Data, but, in addition, have a definite (Eulerian) position in a space of a gi...
Definition: nodes.h:906
double & x(const unsigned &i)
Return the i-th nodal coordinate.
Definition: nodes.h:1060
double & x_gen(const unsigned &k, const unsigned &i)
Reference to the generalised position x(k,i). ‘Type’: k; Coordinate direction: i.
Definition: nodes.h:1126
unsigned ndim() const
Return (Eulerian) spatial dimension of the node.
Definition: nodes.h:1054
virtual bool position_is_a_copy() const
Return whether any position coordinate has been copied (always false)
Definition: nodes.h:1113
unsigned nposition_type() const
Number of coordinate types needed in the mapping between local and global coordinates.
Definition: nodes.h:1016
An OomphLibError object which should be thrown when an run-time error is encountered....
An OomphLibWarning object which should be created as a temporary object to issue a warning....
////////////////////////////////////////////////////////////////////// //////////////////////////////...
Definition: timesteppers.h:681
static Time Dummy_time
Definition: timesteppers.h:888
virtual ~TimeStepper()
virtual destructor
Definition: timesteppers.cc:37
ExplicitTimeStepper * Explicit_predictor_pt
Pointer to explicit time stepper to use as predictor if Predict_by_explicit_step is set....
Definition: timesteppers.h:265
Class to keep track of discrete/continous time. It is essential to have a single Time object when usi...
Definition: timesteppers.h:63
A slight extension to the standard template vector class so that we can include "graceful" array rang...
Definition: Vector.h:58
//////////////////////////////////////////////////////////////////// ////////////////////////////////...