shell_elements.cc
Go to the documentation of this file.
1 // LIC// ====================================================================
2 // LIC// This file forms part of oomph-lib, the object-oriented,
3 // LIC// multi-physics finite-element library, available
4 // LIC// at http://www.oomph-lib.org.
5 // LIC//
6 // LIC// Copyright (C) 2006-2024 Matthias Heil and Andrew Hazel
7 // LIC//
8 // LIC// This library is free software; you can redistribute it and/or
9 // LIC// modify it under the terms of the GNU Lesser General Public
10 // LIC// License as published by the Free Software Foundation; either
11 // LIC// version 2.1 of the License, or (at your option) any later version.
12 // LIC//
13 // LIC// This library is distributed in the hope that it will be useful,
14 // LIC// but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // LIC// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
16 // LIC// Lesser General Public License for more details.
17 // LIC//
18 // LIC// You should have received a copy of the GNU Lesser General Public
19 // LIC// License along with this library; if not, write to the Free Software
20 // LIC// Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
21 // LIC// 02110-1301 USA.
22 // LIC//
23 // LIC// The authors may be contacted at oomph-lib@maths.man.ac.uk.
24 // LIC//
25 // LIC//====================================================================
26 // Non-inline functions for Kirchhoff Love shell elements
27 #include "shell_elements.h"
28 
29 
30 namespace oomph
31 {
32  //====================================================================
33  /// Default value for the Poisson ratio: 0.49 for no particular reason
34  //====================================================================
36 
37  //=======================================================================
38  /// Static default value for timescale ratio (1.0 for natural scaling)
39  //=======================================================================
41 
42  //====================================================================
43  /// Static default value for non-dim wall thickness (1/20)
44  //===================================================================
46 
47  //=======================================================================
48  /// Default load function (zero traction)
49  //=======================================================================
51  const Vector<double>& x,
52  const Vector<double>& N,
53  Vector<double>& load)
54  {
55  unsigned n_dim = load.size();
56  for (unsigned i = 0; i < n_dim; i++)
57  {
58  load[i] = 0.0;
59  }
60  }
61 
62 
63  //=======================================================================
64  /// Static default for prestress (set to zero)
65  //=======================================================================
67 
68 
69  //======================================================================
70  /// Get normal to the shell
71  //=====================================================================
74  {
75  // Set the dimension of the coordinates
76  const unsigned n_dim = 3;
77 
78  // Set the number of lagrangian coordinates
79  const unsigned n_lagrangian = 2;
80 
81  // Find out how many nodes there are
82  const unsigned n_node = nnode();
83 
84  // Find out how many positional dofs there are
85  const unsigned n_position_type = nnodal_position_type();
86 
87  // Set up memory for the shape functions
88  Shape psi(n_node, n_position_type);
89  DShape dpsidxi(n_node, n_position_type, n_lagrangian);
90 
91  // Could/Should we make this more general?
92  DShape d2psidxi(n_node, n_position_type, 3);
93 
94 
95  // Call the derivatives of the shape functions:
96  // d2psidxi(i,0) = \f$ \partial^2 \psi_j / \partial^2 \xi_0^2 \f$
97  // d2psidxi(i,1) = \f$ \partial^2 \psi_j / \partial^2 \xi_1^2 \f$
98  // d2psidxi(i,2) = \f$ \partial^2 \psi_j/\partial \xi_0 \partial \xi_1 \f$
99  (void)dshape_lagrangian(s, psi, dpsidxi);
100 
101  // Calculate local values of lagrangian position and
102  // the derivative of global position wrt lagrangian coordinates
103  DenseMatrix<double> interpolated_A(2, 3);
104 
105  // Initialise to zero
106  for (unsigned i = 0; i < n_dim; i++)
107  {
108  for (unsigned j = 0; j < n_lagrangian; j++)
109  {
110  interpolated_A(j, i) = 0.0;
111  }
112  }
113 
114  // Calculate displacements and derivatives
115  for (unsigned l = 0; l < n_node; l++)
116  {
117  // Loop over positional dofs
118  for (unsigned k = 0; k < n_position_type; k++)
119  {
120  // Loop over displacement components (deformed position)
121  for (unsigned i = 0; i < n_dim; i++)
122  {
123  double x_value = raw_nodal_position_gen(l, k, i);
124 
125  // Loop over derivative directions
126  for (unsigned j = 0; j < n_lagrangian; j++)
127  {
128  interpolated_A(j, i) += x_value * dpsidxi(l, k, j);
129  }
130  }
131  }
132  }
133 
134  // Unscaled normal
135  N[0] = (interpolated_A(0, 1) * interpolated_A(1, 2) -
136  interpolated_A(0, 2) * interpolated_A(1, 1));
137  N[1] = (interpolated_A(0, 2) * interpolated_A(1, 0) -
138  interpolated_A(0, 0) * interpolated_A(1, 2));
139  N[2] = (interpolated_A(0, 0) * interpolated_A(1, 1) -
140  interpolated_A(0, 1) * interpolated_A(1, 0));
141 
142  // Normalise
143  double norm = 1.0 / sqrt(N[0] * N[0] + N[1] * N[1] + N[2] * N[2]);
144  for (unsigned i = 0; i < 3; i++)
145  {
146  N[i] *= norm;
147  }
148  }
149 
150 
151  //======================================================================
152  /// Get strain and bending tensors
153  //=====================================================================
155  const Vector<double>& s, DenseDoubleMatrix& strain, DenseDoubleMatrix& bend)
156  {
157  // Set the dimension of the coordinates
158  const unsigned n_dim = 3;
159 
160  // Set the number of lagrangian coordinates
161  const unsigned n_lagrangian = 2;
162 
163  // Find out how many nodes there are
164  const unsigned n_node = nnode();
165 
166  // Find out how many positional dofs there are
167  const unsigned n_position_type = nnodal_position_type();
168 
169  // Set up memory for the shape functions
170  Shape psi(n_node, n_position_type);
171  DShape dpsidxi(n_node, n_position_type, n_lagrangian);
172 
173  // Could/Should we make this more general?
174  DShape d2psidxi(n_node, n_position_type, 3);
175 
176 
177  // Call the derivatives of the shape functions:
178  // d2psidxi(i,0) = \f$ \partial^2 \psi_j / \partial^2 \xi_0^2 \f$
179  // d2psidxi(i,1) = \f$ \partial^2 \psi_j / \partial^2 \xi_1^2 \f$
180  // d2psidxi(i,2) = \f$ \partial^2 \psi_j/\partial \xi_0 \partial \xi_1 \f$
181  (void)d2shape_lagrangian(s, psi, dpsidxi, d2psidxi);
182 
183  // Calculate local values of lagrangian position and
184  // the derivative of global position wrt lagrangian coordinates
186  Vector<double> accel(3, 0.0);
187  DenseMatrix<double> interpolated_A(2, 3);
188  DenseMatrix<double> interpolated_dAdxi(3);
189 
190  // Initialise to zero
191  for (unsigned i = 0; i < n_dim; i++)
192  {
193  for (unsigned j = 0; j < n_lagrangian; j++)
194  {
195  interpolated_A(j, i) = 0.0;
196  }
197  for (unsigned j = 0; j < 3; j++)
198  {
199  interpolated_dAdxi(i, j) = 0.0;
200  }
201  }
202 
203  // Calculate displacements and derivatives
204  for (unsigned l = 0; l < n_node; l++)
205  {
206  // Loop over positional dofs
207  for (unsigned k = 0; k < n_position_type; k++)
208  {
209  // Loop over lagrangian coordinate directions
210  for (unsigned i = 0; i < n_lagrangian; i++)
211  {
212  interpolated_xi[i] +=
213  raw_lagrangian_position_gen(l, k, i) * psi(l, k);
214  }
215 
216  // Loop over displacement components (deformed position)
217  for (unsigned i = 0; i < n_dim; i++)
218  {
219  double x_value = raw_nodal_position_gen(l, k, i);
220 
221  // Calculate interpolated (deformed) position
222  interpolated_x[i] += x_value * psi(l, k);
223 
224  // Calculate the acceleration
225  accel[i] += raw_dnodal_position_gen_dt(2, l, k, i) * psi(l, k);
226 
227  // Loop over derivative directions
228  for (unsigned j = 0; j < n_lagrangian; j++)
229  {
230  interpolated_A(j, i) += x_value * dpsidxi(l, k, j);
231  }
232  // Loop over the second derivative directions
233  for (unsigned j = 0; j < 3; j++)
234  {
235  interpolated_dAdxi(j, i) += x_value * d2psidxi(l, k, j);
236  }
237  }
238  }
239  }
240 
241  // Get the values of the undeformed parameters
242  Vector<double> interpolated_R(3);
243  DenseMatrix<double> interpolated_a(2, 3);
244  RankThreeTensor<double> dadxi(2, 2, 3);
245 
246  // Read out the undeformed position from the geometric object
248  interpolated_xi, interpolated_R, interpolated_a, dadxi);
249 
250  // Copy the values of the second derivatives into a slightly
251  // different data structure, where the mixed derivatives [0][1] and [1][0]
252  // are given by the single index [2]
253  DenseMatrix<double> interpolated_dadxi(3);
254  for (unsigned i = 0; i < 3; i++)
255  {
256  interpolated_dadxi(0, i) = dadxi(0, 0, i);
257  interpolated_dadxi(1, i) = dadxi(1, 1, i);
258  interpolated_dadxi(2, i) = dadxi(0, 1, i);
259  }
260 
261  // Declare and calculate the undeformed and deformed metric tensor
262  double a[2][2], A[2][2], aup[2][2], Aup[2][2];
263 
264  // Assign values of A and gamma
265  for (unsigned al = 0; al < 2; al++)
266  {
267  for (unsigned be = 0; be < 2; be++)
268  {
269  // Initialise a(al,be) and A(al,be) to zero
270  a[al][be] = 0.0;
271  A[al][be] = 0.0;
272  // Now calculate the dot product
273  for (unsigned k = 0; k < 3; k++)
274  {
275  a[al][be] += interpolated_a(al, k) * interpolated_a(be, k);
276  A[al][be] += interpolated_A(al, k) * interpolated_A(be, k);
277  }
278  // Calculate strain tensor
279  strain(al, be) = 0.5 * (A[al][be] - a[al][be]);
280  }
281  }
282 
283  // Calculate the contravariant metric tensor
284  double adet = calculate_contravariant(a, aup);
285  double Adet = calculate_contravariant(A, Aup);
286 
287  // Square roots are expensive, so let's do them once here
288  double sqrt_adet = sqrt(adet);
289  double sqrt_Adet = sqrt(Adet);
290 
291  // Calculate the normal Vectors
292  Vector<double> n(3), N(3);
293  n[0] = (interpolated_a(0, 1) * interpolated_a(1, 2) -
294  interpolated_a(0, 2) * interpolated_a(1, 1)) /
295  sqrt_adet;
296  n[1] = (interpolated_a(0, 2) * interpolated_a(1, 0) -
297  interpolated_a(0, 0) * interpolated_a(1, 2)) /
298  sqrt_adet;
299  n[2] = (interpolated_a(0, 0) * interpolated_a(1, 1) -
300  interpolated_a(0, 1) * interpolated_a(1, 0)) /
301  sqrt_adet;
302  N[0] = (interpolated_A(0, 1) * interpolated_A(1, 2) -
303  interpolated_A(0, 2) * interpolated_A(1, 1)) /
304  sqrt_Adet;
305  N[1] = (interpolated_A(0, 2) * interpolated_A(1, 0) -
306  interpolated_A(0, 0) * interpolated_A(1, 2)) /
307  sqrt_Adet;
308  N[2] = (interpolated_A(0, 0) * interpolated_A(1, 1) -
309  interpolated_A(0, 1) * interpolated_A(1, 0)) /
310  sqrt_Adet;
311 
312 
313  // Calculate the curvature tensors
314  double b[2][2], B[2][2];
315 
316  b[0][0] = n[0] * interpolated_dadxi(0, 0) +
317  n[1] * interpolated_dadxi(0, 1) + n[2] * interpolated_dadxi(0, 2);
318 
319  // Off-diagonal terms are the same
320  b[0][1] = b[1][0] = n[0] * interpolated_dadxi(2, 0) +
321  n[1] * interpolated_dadxi(2, 1) +
322  n[2] * interpolated_dadxi(2, 2);
323 
324  b[1][1] = n[0] * interpolated_dadxi(1, 0) +
325  n[1] * interpolated_dadxi(1, 1) + n[2] * interpolated_dadxi(1, 2);
326 
327  // Deformed curvature tensor
328  B[0][0] = N[0] * interpolated_dAdxi(0, 0) +
329  N[1] * interpolated_dAdxi(0, 1) + N[2] * interpolated_dAdxi(0, 2);
330 
331  // Off-diagonal terms are the same
332  B[0][1] = B[1][0] = N[0] * interpolated_dAdxi(2, 0) +
333  N[1] * interpolated_dAdxi(2, 1) +
334  N[2] * interpolated_dAdxi(2, 2);
335 
336  B[1][1] = N[0] * interpolated_dAdxi(1, 0) +
337  N[1] * interpolated_dAdxi(1, 1) + N[2] * interpolated_dAdxi(1, 2);
338 
339  // Set up the change of curvature tensor
340  for (unsigned i = 0; i < 2; i++)
341  {
342  for (unsigned j = 0; j < 2; j++)
343  {
344  bend(i, j) = b[i][j] - B[i][j];
345  }
346  }
347 
348  // Return undeformed and deformed determinant of in-plane metric
349  // tensor
350  return std::make_pair(adet, Adet);
351  }
352 
353 
354  //====================================================================
355  /// Return the residuals for the equations of KL shell theory
356  //====================================================================
358  Vector<double>& residuals)
359  {
360  // Set the dimension of the coordinates
361  const unsigned n_dim = 3;
362 
363  // Set the number of lagrangian coordinates
364  const unsigned n_lagrangian = 2;
365 
366  // Find out how many nodes there are
367  const unsigned n_node = nnode();
368 
369  // Find out how many positional dofs there are
370  const unsigned n_position_type = nnodal_position_type();
371 
372  // Set up memory for the shape functions
373  Shape psi(n_node, n_position_type);
374  DShape dpsidxi(n_node, n_position_type, n_lagrangian);
375 
376  // Could/Should we make this more general?
377  DShape d2psidxi(n_node, n_position_type, 3);
378 
379  // Set the value of n_intpt
380  const unsigned n_intpt = integral_pt()->nweight();
381 
382  // Get Physical Variables from Element
383  // External pressure, Poisson ratio , and non-dim thickness h
384  const double nu_cached = nu();
385  const double h_cached = h();
386  const double lambda_sq_cached = lambda_sq();
387 
388  // Integers used to store the local equation numbers
389  int local_eqn = 0;
390 
391  const double bending_scale = (1.0 / 12.0) * h_cached * h_cached;
392 
393  // Loop over the integration points
394  for (unsigned ipt = 0; ipt < n_intpt; ipt++)
395  {
396  // Get the integral weight
397  double w = integral_pt()->weight(ipt);
398 
399  // Call the derivatives of the shape functions:
400  // d2psidxi(i,0) = \f$ \partial^2 \psi_j / \partial^2 \xi_0^2 \f$
401  // d2psidxi(i,1) = \f$ \partial^2 \psi_j / \partial^2 \xi_1^2 \f$
402  // d2psidxi(i,2) = \f$ \partial^2 \psi_j/\partial \xi_0 \partial \xi_1 \f$
403  double J = d2shape_lagrangian_at_knot(ipt, psi, dpsidxi, d2psidxi);
404 
405  // Premultiply the weights and the Jacobian
406  double W = w * J;
407 
408  // Calculate local values of lagrangian position and
409  // the derivative of global position wrt lagrangian coordinates
411  Vector<double> accel(3, 0.0);
412  DenseMatrix<double> interpolated_A(2, 3);
413  DenseMatrix<double> interpolated_dAdxi(3);
414 
415  // Initialise to zero
416  for (unsigned i = 0; i < n_dim; i++)
417  {
418  for (unsigned j = 0; j < n_lagrangian; j++)
419  {
420  interpolated_A(j, i) = 0.0;
421  }
422  for (unsigned j = 0; j < 3; j++)
423  {
424  interpolated_dAdxi(i, j) = 0.0;
425  }
426  }
427 
428  // Calculate displacements and derivatives
429  for (unsigned l = 0; l < n_node; l++)
430  {
431  // Loop over positional dofs
432  for (unsigned k = 0; k < n_position_type; k++)
433  {
434  // Loop over lagrangian coordinate directions
435  for (unsigned i = 0; i < n_lagrangian; i++)
436  {
437  interpolated_xi[i] +=
438  raw_lagrangian_position_gen(l, k, i) * psi(l, k);
439  }
440 
441  // Loop over displacement components (deformed position)
442  for (unsigned i = 0; i < n_dim; i++)
443  {
444  double x_value = raw_nodal_position_gen(l, k, i);
445 
446  // Calculate interpolated (deformed) position
447  interpolated_x[i] += x_value * psi(l, k);
448 
449  // Calculate the acceleration
450  accel[i] += raw_dnodal_position_gen_dt(2, l, k, i) * psi(l, k);
451 
452  // Loop over derivative directions
453  for (unsigned j = 0; j < n_lagrangian; j++)
454  {
455  interpolated_A(j, i) += x_value * dpsidxi(l, k, j);
456  }
457  // Loop over the second derivative directions
458  for (unsigned j = 0; j < 3; j++)
459  {
460  interpolated_dAdxi(j, i) += x_value * d2psidxi(l, k, j);
461  }
462  }
463  }
464  }
465 
466  // Get the values of the undeformed parameters
467  Vector<double> interpolated_R(3);
468  DenseMatrix<double> interpolated_a(2, 3);
469  RankThreeTensor<double> dadxi(2, 2, 3);
470 
471  // Read out the undeformed position from the geometric object
473  interpolated_xi, interpolated_R, interpolated_a, dadxi);
474 
475  // Copy the values of the second derivatives into a slightly
476  // different data structure, where the mixed derivatives [0][1] and [1][0]
477  // are given by the single index [2]
478  DenseMatrix<double> interpolated_dadxi(3);
479  for (unsigned i = 0; i < 3; i++)
480  {
481  interpolated_dadxi(0, i) = dadxi(0, 0, i);
482  interpolated_dadxi(1, i) = dadxi(1, 1, i);
483  interpolated_dadxi(2, i) = dadxi(0, 1, i);
484  }
485 
486  // Declare and calculate the undeformed and deformed metric tensor,
487  // the strain tensor
488  double a[2][2], A[2][2], aup[2][2], Aup[2][2], gamma[2][2];
489 
490  // Assign values of A and gamma
491  for (unsigned al = 0; al < 2; al++)
492  {
493  for (unsigned be = 0; be < 2; be++)
494  {
495  // Initialise a(al,be) and A(al,be) to zero
496  a[al][be] = 0.0;
497  A[al][be] = 0.0;
498  // Now calculate the dot product
499  for (unsigned k = 0; k < 3; k++)
500  {
501  a[al][be] += interpolated_a(al, k) * interpolated_a(be, k);
502  A[al][be] += interpolated_A(al, k) * interpolated_A(be, k);
503  }
504  // Calculate strain tensor
505  gamma[al][be] = 0.5 * (A[al][be] - a[al][be]);
506  }
507  }
508 
509  // Calculate the contravariant metric tensor
510  double adet = calculate_contravariant(a, aup);
511  double Adet = calculate_contravariant(A, Aup);
512 
513  // Square roots are expensive, so let's do them once here
514  double sqrt_adet = sqrt(adet);
515  double sqrt_Adet = sqrt(Adet);
516 
517  // Calculate the normal Vectors
518  Vector<double> n(3), N(3);
519  n[0] = (interpolated_a(0, 1) * interpolated_a(1, 2) -
520  interpolated_a(0, 2) * interpolated_a(1, 1)) /
521  sqrt_adet;
522  n[1] = (interpolated_a(0, 2) * interpolated_a(1, 0) -
523  interpolated_a(0, 0) * interpolated_a(1, 2)) /
524  sqrt_adet;
525  n[2] = (interpolated_a(0, 0) * interpolated_a(1, 1) -
526  interpolated_a(0, 1) * interpolated_a(1, 0)) /
527  sqrt_adet;
528  N[0] = (interpolated_A(0, 1) * interpolated_A(1, 2) -
529  interpolated_A(0, 2) * interpolated_A(1, 1)) /
530  sqrt_Adet;
531  N[1] = (interpolated_A(0, 2) * interpolated_A(1, 0) -
532  interpolated_A(0, 0) * interpolated_A(1, 2)) /
533  sqrt_Adet;
534  N[2] = (interpolated_A(0, 0) * interpolated_A(1, 1) -
535  interpolated_A(0, 1) * interpolated_A(1, 0)) /
536  sqrt_Adet;
537 
538 
539  // Calculate the curvature tensors
540  double b[2][2], B[2][2];
541 
542  b[0][0] = n[0] * interpolated_dadxi(0, 0) +
543  n[1] * interpolated_dadxi(0, 1) +
544  n[2] * interpolated_dadxi(0, 2);
545 
546  // Off-diagonal terms are the same
547  b[0][1] = b[1][0] = n[0] * interpolated_dadxi(2, 0) +
548  n[1] * interpolated_dadxi(2, 1) +
549  n[2] * interpolated_dadxi(2, 2);
550 
551  b[1][1] = n[0] * interpolated_dadxi(1, 0) +
552  n[1] * interpolated_dadxi(1, 1) +
553  n[2] * interpolated_dadxi(1, 2);
554 
555  // Deformed curvature tensor
556  B[0][0] = N[0] * interpolated_dAdxi(0, 0) +
557  N[1] * interpolated_dAdxi(0, 1) +
558  N[2] * interpolated_dAdxi(0, 2);
559 
560  // Off-diagonal terms are the same
561  B[0][1] = B[1][0] = N[0] * interpolated_dAdxi(2, 0) +
562  N[1] * interpolated_dAdxi(2, 1) +
563  N[2] * interpolated_dAdxi(2, 2);
564 
565  B[1][1] = N[0] * interpolated_dAdxi(1, 0) +
566  N[1] * interpolated_dAdxi(1, 1) +
567  N[2] * interpolated_dAdxi(1, 2);
568 
569  // Set up the change of curvature tensor
570  double kappa[2][2];
571 
572  for (unsigned i = 0; i < 2; i++)
573  {
574  for (unsigned j = 0; j < 2; j++)
575  {
576  kappa[i][j] = b[i][j] - B[i][j];
577  }
578  }
579 
580  // Calculate the plane stress stiffness tensor
581  double Et[2][2][2][2];
582 
583  // Premultiply some constants
584  // NOTE C2 has 1.0-Nu in the denominator
585  // double C1 = 1.0/(2.0*(1.0+nu_cached)), C2
586  // = 2.0*nu_cached/(1.0-nu_cached);
587 
588  // Some constants
589  double C1 = 0.5 * (1.0 - nu_cached);
590  double C2 = nu_cached;
591 
592  // Loop over first index
593  for (unsigned i = 0; i < 2; i++)
594  {
595  for (unsigned j = 0; j < 2; j++)
596  {
597  for (unsigned k = 0; k < 2; k++)
598  {
599  for (unsigned l = 0; l < 2; l++)
600  {
601  // Et[i][j][k][l] = C1*(aup[i][k]*aup[j][l] + aup[i][l]*aup[j][k]
602  // + C2*aup[i][j]*aup[k][l]);
603  Et[i][j][k][l] =
604  C1 * (aup[i][k] * aup[j][l] + aup[i][l] * aup[j][k]) +
605  C2 * aup[i][j] * aup[k][l];
606  }
607  }
608  }
609  }
610 
611  // Define the load Vector
612  Vector<double> f(3);
613  // Determine the load
615 
616  // Scale the load by the bending stiffness scale
617  // for(unsigned i=0;i<3;i++){f[i] *=
618  // bending_scale/(1.0-nu_cached*nu_cached);}
619 
620  // Allocate storage for variations of the the normal vector
621  double normal_var[3][3];
622 
623  //=====EQUATIONS OF ELASTICITY FROM PRINCIPLE OF VIRTUAL
624  // DISPLACEMENTS========
625 
626  // Little tensor to handle the mixed derivative terms
627  unsigned mix[2][2] = {{0, 2}, {2, 1}};
628 
629  // Loop over the number of nodes
630  for (unsigned l = 0; l < n_node; l++)
631  {
632  // Loop over the type of degree of freedom
633  for (unsigned k = 0; k < n_position_type; k++)
634  {
635  // Setup components of variations in the normal vector
636  normal_var[0][0] = 0.0;
637  normal_var[0][1] = (-interpolated_A(1, 2) * dpsidxi(l, k, 0) +
638  interpolated_A(0, 2) * dpsidxi(l, k, 1)) /
639  sqrt_Adet;
640  normal_var[0][2] = (interpolated_A(1, 1) * dpsidxi(l, k, 0) -
641  interpolated_A(0, 1) * dpsidxi(l, k, 1)) /
642  sqrt_Adet;
643 
644  normal_var[1][0] = (interpolated_A(1, 2) * dpsidxi(l, k, 0) -
645  interpolated_A(0, 2) * dpsidxi(l, k, 1)) /
646  sqrt_Adet;
647  normal_var[1][1] = 0.0;
648  normal_var[1][2] = (-interpolated_A(1, 0) * dpsidxi(l, k, 0) +
649  interpolated_A(0, 0) * dpsidxi(l, k, 1)) /
650  sqrt_Adet;
651 
652  normal_var[2][0] = (-interpolated_A(1, 1) * dpsidxi(l, k, 0) +
653  interpolated_A(0, 1) * dpsidxi(l, k, 1)) /
654  sqrt_Adet;
655  normal_var[2][1] = (interpolated_A(1, 0) * dpsidxi(l, k, 0) -
656  interpolated_A(0, 0) * dpsidxi(l, k, 1)) /
657  sqrt_Adet;
658  normal_var[2][2] = 0.0;
659 
660  // Loop over the coordinate direction
661  for (unsigned i = 0; i < 3; i++)
662  {
663  // Get the local equation number
664  local_eqn = position_local_eqn(l, k, i);
665 
666  // If it's not a boundary condition
667  if (local_eqn >= 0)
668  {
669  // Temporary to hold a common part of the bending terms
670  double bending_dot_product_multiplier =
671  ((A[1][1] * interpolated_A(0, i) -
672  A[1][0] * interpolated_A(1, i)) *
673  dpsidxi(l, k, 0) +
674  (A[0][0] * interpolated_A(1, i) -
675  A[0][1] * interpolated_A(0, i)) *
676  dpsidxi(l, k, 1)) /
677  Adet;
678 
679  // Combine the cross and dot product bending terms
680  for (unsigned i2 = 0; i2 < 3; i2++)
681  {
682  normal_var[i][i2] -= N[i2] * bending_dot_product_multiplier;
683  }
684 
685  // Add in external forcing
686  residuals[local_eqn] -=
687  f[i] / h_cached * psi(l, k) * W * sqrt_Adet;
688 
689  // Storage for all residual terms that are multipled by the
690  // Jacobian and area of the undeformed shell
691  // Start with the acceleration term
692  double other_residual_terms =
693  lambda_sq_cached * accel[i] * psi(l, k);
694 
695  // Now need the loops over the Greek indicies
696  for (unsigned al = 0; al < 2; al++)
697  {
698  for (unsigned be = 0; be < 2; be++)
699  {
700  // Membrane prestress
701  other_residual_terms += *Prestress_pt(al, be) *
702  interpolated_A(al, i) *
703  dpsidxi(l, k, be);
704 
705  // Remaining terms
706  for (unsigned ga = 0; ga < 2; ga++)
707  {
708  for (unsigned de = 0; de < 2; de++)
709  {
711  {
712  // Pure membrane term
713  other_residual_terms +=
714  Et[al][be][ga][de] * gamma[al][be] *
715  interpolated_A(ga, i) * dpsidxi(l, k, de);
716  }
717 
718  // Bending terms
719  other_residual_terms -=
720  bending_scale * Et[al][be][ga][de] * kappa[al][be] *
721  (N[i] * d2psidxi(l, k, mix[ga][de])
722  // Cross and dot product terms
723  +
724  normal_var[i][0] * interpolated_dAdxi(mix[ga][de], 0) +
725  normal_var[i][1] * interpolated_dAdxi(mix[ga][de], 1) +
726  normal_var[i][2] * interpolated_dAdxi(mix[ga][de], 2));
727  }
728  }
729  }
730  }
731 
732  residuals[local_eqn] += other_residual_terms * W * sqrt_adet;
733  }
734  }
735  }
736  }
737 
738  } // End of loop over the integration points
739  }
740 
741  //=========================================================================
742  /// Return the jacobian is calculated by finite differences by default,
743  //=========================================================================
745  Vector<double>& residuals, DenseMatrix<double>& jacobian)
746  {
747  // Call the element's residuals vector
749 
750  // Solve for the consistent acceleration in Newmark scheme?
752  {
754  return;
755  }
756 
757  // Allocate storage for the full residuals of the element
758  unsigned n_dof = ndof();
759  Vector<double> full_residuals(n_dof);
760 
761  // Call the full residuals
762  get_residuals(full_residuals);
763 
764  // Get the solid entries in the jacobian using finite differences
766  full_residuals, jacobian);
767 
768  // Get the entries from the external data, usually load terms
770  jacobian);
771  }
772 
773  //=======================================================================
774  /// Compute the potential (strain) and kinetic energy of the
775  /// element.
776  //=======================================================================
777  void KirchhoffLoveShellEquations::get_energy(double& pot_en, double& kin_en)
778  {
779  // Initialise
780  pot_en = 0.0;
781  kin_en = 0.0;
782 
783  // Set the dimension of the coordinates
784  const unsigned n_dim = Undeformed_midplane_pt->ndim();
785 
786  // Set the number of lagrangian coordinates
787  const unsigned n_lagrangian = Undeformed_midplane_pt->nlagrangian();
788 
789  // Find out how many nodes there are
790  const unsigned n_node = nnode();
791 
792  // Find out how many positional dofs there are
793  const unsigned n_position_type = nnodal_position_type();
794 
795  // Set up memory for the shape functions
796  Shape psi(n_node, n_position_type);
797  DShape dpsidxi(n_node, n_position_type, n_lagrangian);
798  DShape d2psidxi(n_node, n_position_type, 3);
799 
800  // Set the value of n_intpt
801  const unsigned n_intpt = integral_pt()->nweight();
802 
803  // Get Physical Variables from Element
804  // External pressure, Poisson ratio , and non-dim thickness h
805  const double nu_cached = nu();
806  const double h_cached = h();
807  const double lambda_sq_cached = lambda_sq();
808 
809 #ifdef PARANOID
810  // Check for non-zero prestress
811  if ((prestress(0, 0) != 0) || (prestress(1, 0) != 0) ||
812  (prestress(1, 1) != 0))
813  {
814  std::string error_message =
815  "Warning: Not sure if the energy is computed correctly\n";
816  error_message += " for nonzero prestress\n";
817 
818  oomph_info << error_message << std::endl;
819 
820  // throw OomphLibWarning(error_message,
821  // "KirchhoffLoveShellEquations::get_energy()",
822  // OOMPH_EXCEPTION_LOCATION);
823  }
824 #endif
825 
826  // Setup storage for various quantities
827  Vector<double> veloc(n_dim);
828  Vector<double> interpolated_xi(n_lagrangian);
829  DenseMatrix<double> interpolated_A(n_lagrangian, n_dim);
830  DenseMatrix<double> interpolated_dAdxi(3);
831 
832  const double bending_scale = (1.0 / 12.0) * h_cached * h_cached;
833 
834  // Loop over the integration points
835  for (unsigned ipt = 0; ipt < n_intpt; ipt++)
836  {
837  // Get the integral weight
838  double w = integral_pt()->weight(ipt);
839 
840  // Call the derivatives of the shape functions:
841  double J = d2shape_lagrangian_at_knot(ipt, psi, dpsidxi, d2psidxi);
842 
843  // Premultiply the weights and the Jacobian
844  double W = w * J;
845 
846  // Initialise values to zero
847  for (unsigned i = 0; i < n_dim; i++)
848  {
849  veloc[i] = 0.0;
850  for (unsigned j = 0; j < n_lagrangian; j++)
851  {
852  interpolated_A(j, i) = 0.0;
853  }
854  for (unsigned j = 0; j < 3; j++)
855  {
856  interpolated_dAdxi(i, j) = 0.0;
857  }
858  }
859  for (unsigned j = 0; j < n_lagrangian; j++)
860  {
861  interpolated_xi[j] = 0.0;
862  }
863 
864  // Calculate velocity and derivatives
865  for (unsigned l = 0; l < n_node; l++)
866  {
867  // Loop over positional dofs
868  for (unsigned k = 0; k < n_position_type; k++)
869  {
870  // Loop over lagrangian coordinate directions
871  for (unsigned i = 0; i < n_lagrangian; i++)
872  {
873  interpolated_xi[i] += lagrangian_position_gen(l, k, i) * psi(l, k);
874  }
875 
876  // Loop over displacement components
877  for (unsigned i = 0; i < n_dim; i++)
878  {
879  veloc[i] += dnodal_position_gen_dt(1, l, k, i) * psi(l, k);
880 
881  double x_value = nodal_position_gen(l, k, i);
882 
883  // Loop over derivative directions
884  for (unsigned j = 0; j < n_lagrangian; j++)
885  {
886  interpolated_A(j, i) += x_value * dpsidxi(l, k, j);
887  }
888  // Loop over the second derivative directions
889  for (unsigned j = 0; j < 3; j++)
890  {
891  interpolated_dAdxi(j, i) += x_value * d2psidxi(l, k, j);
892  }
893  }
894  }
895  }
896 
897  // Get square of veloc
898  double veloc_sq = 0;
899  for (unsigned i = 0; i < n_dim; i++)
900  {
901  veloc_sq += veloc[i] * veloc[i];
902  }
903 
904  // Get the values of the undeformed parameters
905  Vector<double> interpolated_r(n_dim);
906  DenseMatrix<double> interpolated_a(n_lagrangian, n_dim);
907  RankThreeTensor<double> dadxi(n_lagrangian, n_lagrangian, n_dim);
908 
909  // Read out the undeformed position from the geometric object
911  interpolated_xi, interpolated_r, interpolated_a, dadxi);
912 
913  // Copy the values of the second derivatives into a slightly
914  // different data structure, where the mixed derivatives [0][1] and [1][0]
915  // are given by the single index [2]
916  DenseMatrix<double> interpolated_dadxi(3);
917  for (unsigned i = 0; i < 3; i++)
918  {
919  interpolated_dadxi(0, i) = dadxi(0, 0, i);
920  interpolated_dadxi(1, i) = dadxi(1, 1, i);
921  interpolated_dadxi(2, i) = dadxi(0, 1, i);
922  }
923 
924  // Declare and calculate the undeformed and deformed metric tensor,
925  // the strain tensor
926  double a[2][2], A[2][2], aup[2][2], Aup[2][2], gamma[2][2];
927 
928  // Assign values of A and gamma
929  for (unsigned al = 0; al < 2; al++)
930  {
931  for (unsigned be = 0; be < 2; be++)
932  {
933  // Initialise a(al,be) and A(al,be) to zero
934  a[al][be] = 0.0;
935  A[al][be] = 0.0;
936  // Now calculate the dot product
937  for (unsigned k = 0; k < n_dim; k++)
938  {
939  a[al][be] += interpolated_a(al, k) * interpolated_a(be, k);
940  A[al][be] += interpolated_A(al, k) * interpolated_A(be, k);
941  }
942  // Calculate strain tensor
943  gamma[al][be] = 0.5 * (A[al][be] - a[al][be]);
944  }
945  }
946 
947  // Calculate the contravariant metric tensor
948  double adet = calculate_contravariant(a, aup);
949  double Adet = calculate_contravariant(A, Aup);
950 
951  // Square roots are expensive, so let's do them once here
952  double sqrt_adet = sqrt(adet);
953  double sqrt_Adet = sqrt(Adet);
954 
955  // Calculate the normal Vectors
956  Vector<double> n(3), N(3);
957  n[0] = (interpolated_a(0, 1) * interpolated_a(1, 2) -
958  interpolated_a(0, 2) * interpolated_a(1, 1)) /
959  sqrt_adet;
960  n[1] = (interpolated_a(0, 2) * interpolated_a(1, 0) -
961  interpolated_a(0, 0) * interpolated_a(1, 2)) /
962  sqrt_adet;
963  n[2] = (interpolated_a(0, 0) * interpolated_a(1, 1) -
964  interpolated_a(0, 1) * interpolated_a(1, 0)) /
965  sqrt_adet;
966  N[0] = (interpolated_A(0, 1) * interpolated_A(1, 2) -
967  interpolated_A(0, 2) * interpolated_A(1, 1)) /
968  sqrt_Adet;
969  N[1] = (interpolated_A(0, 2) * interpolated_A(1, 0) -
970  interpolated_A(0, 0) * interpolated_A(1, 2)) /
971  sqrt_Adet;
972  N[2] = (interpolated_A(0, 0) * interpolated_A(1, 1) -
973  interpolated_A(0, 1) * interpolated_A(1, 0)) /
974  sqrt_Adet;
975 
976 
977  // Calculate the curvature tensors
978  double b[2][2], B[2][2];
979 
980  b[0][0] = n[0] * interpolated_dadxi(0, 0) +
981  n[1] * interpolated_dadxi(0, 1) +
982  n[2] * interpolated_dadxi(0, 2);
983 
984  // Off-diagonal terms are the same
985  b[0][1] = b[1][0] = n[0] * interpolated_dadxi(2, 0) +
986  n[1] * interpolated_dadxi(2, 1) +
987  n[2] * interpolated_dadxi(2, 2);
988 
989  b[1][1] = n[0] * interpolated_dadxi(1, 0) +
990  n[1] * interpolated_dadxi(1, 1) +
991  n[2] * interpolated_dadxi(1, 2);
992 
993  // Deformed curvature tensor
994  B[0][0] = N[0] * interpolated_dAdxi(0, 0) +
995  N[1] * interpolated_dAdxi(0, 1) +
996  N[2] * interpolated_dAdxi(0, 2);
997 
998  // Off-diagonal terms are the same
999  B[0][1] = B[1][0] = N[0] * interpolated_dAdxi(2, 0) +
1000  N[1] * interpolated_dAdxi(2, 1) +
1001  N[2] * interpolated_dAdxi(2, 2);
1002 
1003  B[1][1] = N[0] * interpolated_dAdxi(1, 0) +
1004  N[1] * interpolated_dAdxi(1, 1) +
1005  N[2] * interpolated_dAdxi(1, 2);
1006 
1007  // Set up the change of curvature tensor
1008  double kappa[2][2];
1009 
1010  for (unsigned i = 0; i < 2; i++)
1011  {
1012  for (unsigned j = 0; j < 2; j++)
1013  {
1014  kappa[i][j] = b[i][j] - B[i][j];
1015  }
1016  }
1017 
1018  // Calculate the plane stress stiffness tensor
1019  double Et[2][2][2][2];
1020 
1021  // Some constants
1022  double C1 = 0.5 * (1.0 - nu_cached);
1023  double C2 = nu_cached;
1024 
1025  // Loop over first index
1026  for (unsigned i = 0; i < 2; i++)
1027  {
1028  for (unsigned j = 0; j < 2; j++)
1029  {
1030  for (unsigned k = 0; k < 2; k++)
1031  {
1032  for (unsigned l = 0; l < 2; l++)
1033  {
1034  Et[i][j][k][l] =
1035  C1 * (aup[i][k] * aup[j][l] + aup[i][l] * aup[j][k]) +
1036  C2 * aup[i][j] * aup[k][l];
1037  }
1038  }
1039  }
1040  }
1041 
1042  // Add contributions to potential energy
1043  double pot_en_cont = 0.0;
1044 
1045  for (unsigned i = 0; i < 2; i++)
1046  {
1047  for (unsigned j = 0; j < 2; j++)
1048  {
1049  for (unsigned k = 0; k < 2; k++)
1050  {
1051  for (unsigned l = 0; l < 2; l++)
1052  {
1053  pot_en_cont +=
1054  Et[i][j][k][l] * (gamma[i][j] * gamma[k][l] +
1055  bending_scale * kappa[i][j] * kappa[k][l]);
1056  }
1057  }
1058  }
1059  }
1060  pot_en += pot_en_cont * 0.5 * W * sqrt_adet;
1061 
1062  // Add contribution to kinetic energy
1063  kin_en += 0.5 * lambda_sq_cached * veloc_sq * W * sqrt_adet;
1064 
1065  } // End of loop over the integration points
1066  }
1067 
1068 
1069  //===================================================================
1070  /// Get integral of instantaneous rate of work done on
1071  /// the wall due to the load returned by the virtual
1072  /// function load_vector_for_rate_of_work_computation(...).
1073  /// In the current class
1074  /// the latter function simply de-references the external
1075  /// load but this can be overloaded in derived classes
1076  /// (e.g. in FSI elements) to determine the rate of work done
1077  /// by individual constituents of this load (e.g. the fluid load
1078  /// in an FSI problem).
1079  //===================================================================
1081  {
1082  // Initialise
1083  double rate_of_work_integral = 0.0;
1084 
1085  // The number of dimensions
1086  const unsigned n_dim = 3;
1087 
1088  // The number of lagrangian coordinates
1089  const unsigned n_lagrangian = 2;
1090 
1091  // The number of nodes
1092  const unsigned n_node = nnode();
1093 
1094  // Number of integration points
1095  unsigned n_intpt = integral_pt()->nweight();
1096 
1097  // Find out how many positional dofs there are
1098  unsigned n_position_type = nnodal_position_type();
1099 
1100  // Vector to hold local coordinate in element
1101  Vector<double> s(n_lagrangian);
1102 
1103  // Set up storage for shape functions and derivatives of shape functions
1104  Shape psi(n_node, n_position_type);
1105  DShape dpsidxi(n_node, n_position_type, n_lagrangian);
1106 
1107  // Storage for jacobian of mapping from local to Lagrangian coords
1108  DenseMatrix<double> jacobian(n_lagrangian);
1109 
1110  // Storage for velocity vector
1111  Vector<double> velocity(n_dim);
1112 
1113  // Storage for load vector
1114  Vector<double> load(n_dim);
1115 
1116  // Storage for normal vector
1117  Vector<double> normal(n_dim);
1118 
1119  // Storage for Lagrangian and Eulerian coordinates
1120  Vector<double> xi(n_lagrangian);
1121  Vector<double> x(n_dim);
1122 
1123  // Storage for covariant vectors
1124  DenseMatrix<double> interpolated_A(n_lagrangian, n_dim);
1125 
1126  // Loop over the integration points
1127  for (unsigned ipt = 0; ipt < n_intpt; ipt++)
1128  {
1129  // Get the integral weight
1130  double w = integral_pt()->weight(ipt);
1131 
1132  // Get local coords at knot
1133  for (unsigned i = 0; i < n_lagrangian; i++)
1134  {
1135  s[i] = integral_pt()->knot(ipt, i);
1136  }
1137 
1138  // Get shape functions, derivatives, determinant of Jacobian of mapping
1139  double J = dshape_lagrangian(s, psi, dpsidxi);
1140 
1141  // Premultiply the weights and the Jacobian
1142  double W = w * J;
1143 
1144  // Initialise velocity, x and interpolated_A to zero
1145  for (unsigned i = 0; i < n_dim; i++)
1146  {
1147  velocity[i] = 0.0;
1148  x[i] = 0.0;
1149  for (unsigned j = 0; j < n_lagrangian; j++)
1150  {
1151  interpolated_A(j, i) = 0.0;
1152  }
1153  }
1154 
1155  // Initialise xi to zero
1156  for (unsigned i = 0; i < n_lagrangian; i++)
1157  {
1158  xi[i] = 0.0;
1159  }
1160 
1161  // Calculate velocity, coordinates and derivatives
1162  for (unsigned l = 0; l < n_node; l++)
1163  {
1164  // Loop over positional dofs
1165  for (unsigned k = 0; k < n_position_type; k++)
1166  {
1167  // Loop over lagrangian coordinate directions
1168  for (unsigned i = 0; i < n_lagrangian; i++)
1169  {
1170  xi[i] += lagrangian_position_gen(l, k, i) * psi(l, k);
1171  }
1172 
1173  // Loop over displacement components
1174  for (unsigned i = 0; i < n_dim; i++)
1175  {
1176  velocity[i] += dnodal_position_gen_dt(1, l, k, i) * psi(l, k);
1177 
1178  double x_value = nodal_position_gen(l, k, i);
1179  x[i] += x_value * psi(l, k);
1180 
1181  // Loop over derivative directions
1182  for (unsigned j = 0; j < n_lagrangian; j++)
1183  {
1184  interpolated_A(j, i) += x_value * dpsidxi(l, k, j);
1185  }
1186  }
1187  }
1188  }
1189 
1190  // Get deformed metric tensor
1191  double A[2][2];
1192  for (unsigned al = 0; al < 2; al++)
1193  {
1194  for (unsigned be = 0; be < 2; be++)
1195  {
1196  // Initialise A(al,be) to zero
1197  A[al][be] = 0.0;
1198  // Calculate the dot product
1199  for (unsigned k = 0; k < n_dim; k++)
1200  {
1201  A[al][be] += interpolated_A(al, k) * interpolated_A(be, k);
1202  }
1203  }
1204  }
1205 
1206  // Get determinant of metric tensor
1207  double A_det = A[0][0] * A[1][1] - A[0][1] * A[1][0];
1208 
1209  // Get outer unit normal
1210  get_normal(s, normal);
1211 
1212  // Get load vector
1213  load_vector_for_rate_of_work_computation(ipt, xi, x, normal, load);
1214 
1215  // Local rate of work:
1216  double rate_of_work = 0.0;
1217  for (unsigned i = 0; i < n_dim; i++)
1218  {
1219  rate_of_work += load[i] * velocity[i];
1220  }
1221 
1222  // Add rate of work
1223  rate_of_work_integral += rate_of_work / h() * W * A_det;
1224  }
1225 
1226  return rate_of_work_integral;
1227  }
1228 
1229 
1230  //===================================================================
1231  /// The output function: position, veloc and accel.
1232  //===================================================================
1234  std::ostream& outfile, const unsigned& n_plot)
1235  {
1236  // Local variables
1237  Vector<double> s(2);
1238 
1239  // Tecplot header info
1240  outfile << "ZONE I=" << n_plot << ", J=" << n_plot << std::endl;
1241 
1242  // Loop over plot points
1243  for (unsigned l2 = 0; l2 < n_plot; l2++)
1244  {
1245  s[1] = -1.0 + l2 * 2.0 / (n_plot - 1);
1246  for (unsigned l1 = 0; l1 < n_plot; l1++)
1247  {
1248  s[0] = -1.0 + l1 * 2.0 / (n_plot - 1);
1249 
1250  // Output
1251  outfile << interpolated_x(s, 0) << " " << interpolated_x(s, 1) << " "
1252  << interpolated_x(s, 2) << " " << interpolated_dxdt(s, 0, 1)
1253  << " " << interpolated_dxdt(s, 1, 1) << " "
1254  << interpolated_dxdt(s, 2, 1) << " "
1255  << interpolated_dxdt(s, 0, 2) << " "
1256  << interpolated_dxdt(s, 1, 2) << " "
1257  << interpolated_dxdt(s, 2, 2) << " " << std::endl;
1258  }
1259  }
1260  outfile << std::endl;
1261  }
1262 
1263 
1264  //===================================================================
1265  /// The output function
1266  //===================================================================
1267  void HermiteShellElement::output(std::ostream& outfile,
1268  const unsigned& n_plot)
1269  {
1270  // Local variables
1271  Vector<double> s(2);
1272 
1273  // Tecplot header info
1274  outfile << "ZONE I=" << n_plot << ", J=" << n_plot << std::endl;
1275 
1276  // Loop over plot points
1277  for (unsigned l2 = 0; l2 < n_plot; l2++)
1278  {
1279  s[1] = -1.0 + l2 * 2.0 / (n_plot - 1);
1280  for (unsigned l1 = 0; l1 < n_plot; l1++)
1281  {
1282  s[0] = -1.0 + l1 * 2.0 / (n_plot - 1);
1283 
1284  // Output the x and y positions
1285  outfile << interpolated_x(s, 0) << " " << interpolated_x(s, 1) << " "
1286  << interpolated_x(s, 2) << " ";
1287  outfile << interpolated_xi(s, 0) << " " << interpolated_xi(s, 1)
1288  << std::endl;
1289  }
1290  }
1291  outfile << std::endl;
1292  }
1293 
1294 
1295  //===================================================================
1296  /// The output function
1297  //===================================================================
1298  void HermiteShellElement::output(FILE* file_pt, const unsigned& n_plot)
1299  {
1300  // Local variables
1301  Vector<double> s(2);
1302 
1303  // Tecplot header info
1304  fprintf(file_pt, "ZONE I=%i, J=%i \n", n_plot, n_plot);
1305 
1306  // Loop over plot points
1307  for (unsigned l2 = 0; l2 < n_plot; l2++)
1308  {
1309  s[1] = -1.0 + l2 * 2.0 / (n_plot - 1);
1310  for (unsigned l1 = 0; l1 < n_plot; l1++)
1311  {
1312  s[0] = -1.0 + l1 * 2.0 / (n_plot - 1);
1313 
1314  // Output the x and y positions
1315  fprintf(file_pt,
1316  "%g %g %g ",
1317  interpolated_x(s, 0),
1318  interpolated_x(s, 1),
1319  interpolated_x(s, 2));
1320  fprintf(
1321  file_pt, "%g %g \n ", interpolated_xi(s, 0), interpolated_xi(s, 1));
1322  }
1323  }
1324  fprintf(file_pt, "\n");
1325  }
1326 
1327 
1328  //=========================================================================
1329  /// Define the dposition function. This is used to set no-slip boundary
1330  /// conditions in some FSI problems.
1331  //=========================================================================
1333  const Vector<double>& s, DenseMatrix<double>& drdxi) const
1334  {
1335 #ifdef PARANOID
1336  if (Undeformed_midplane_pt == 0)
1337  {
1338  throw OomphLibError("Undeformed_midplane_pt has not been set",
1339  "FSIDiagHermiteShellElement::dposition_dlagrangian_"
1340  "at_local_coordinate()",
1341  OOMPH_EXCEPTION_LOCATION);
1342  }
1343 #endif
1344 
1345  // Find the dimension of the global coordinate
1346  unsigned n_dim = Undeformed_midplane_pt->ndim();
1347 
1348  // Find the number of lagrangian coordinates
1349  unsigned n_lagrangian = Undeformed_midplane_pt->nlagrangian();
1350 
1351  // Find out how many nodes there are
1352  unsigned n_node = nnode();
1353 
1354  // Find out how many positional dofs there are
1355  unsigned n_position_type = this->nnodal_position_type();
1356 
1357  // Set up memory for the shape functions
1358  Shape psi(n_node, n_position_type);
1359  DShape dpsidxi(n_node, n_position_type, n_lagrangian);
1360 
1361  // Get the derivatives of the shape functions w.r.t local coordinates
1362  // at this point
1363  dshape_lagrangian(s, psi, dpsidxi);
1364 
1365  // Initialise the derivatives to zero
1366  drdxi.initialise(0.0);
1367 
1368  // Loop over the nodes
1369  for (unsigned l = 0; l < n_node; l++)
1370  {
1371  // Loop over the positional types
1372  for (unsigned k = 0; k < n_position_type; k++)
1373  {
1374  // Loop over the dimensions
1375  for (unsigned i = 0; i < n_dim; i++)
1376  {
1377  // Loop over the lagrangian coordinates
1378  for (unsigned j = 0; j < n_lagrangian; j++)
1379  {
1380  // Add the contribution to the derivative
1381  drdxi(j, i) += nodal_position_gen(l, k, i) * dpsidxi(l, k, j);
1382  }
1383  }
1384  }
1385  }
1386  }
1387 
1388 
1389  //=============================================================================
1390  /// Create a list of pairs for all unknowns in this element,
1391  /// so that the first entry in each pair contains the global equation
1392  /// number of the unknown, while the second one contains the number
1393  /// of the "DOF types" that this unknown is associated with.
1394  /// (Function can obviously only be called if the equation numbering
1395  /// scheme has been set up.)
1396  /// This element is only in charge of the solid dofs.
1397  //=============================================================================
1399  std::list<std::pair<unsigned long, unsigned>>& dof_lookup_list) const
1400  {
1401  // temporary pair (used to store dof lookup prior to being added to list)
1402  std::pair<unsigned long, unsigned> dof_lookup;
1403 
1404  // number of nodes
1405  const unsigned n_node = this->nnode();
1406 
1407  // Get the number of position dofs and dimensions at the node
1408  const unsigned n_position_type = nnodal_position_type();
1409  const unsigned nodal_dim = nodal_dimension();
1410 
1411  // Integer storage for local unknown
1412  int local_unknown = 0;
1413 
1414  // Loop over the nodes
1415  for (unsigned n = 0; n < n_node; n++)
1416  {
1417  // Loop over position dofs
1418  for (unsigned k = 0; k < n_position_type; k++)
1419  {
1420  // Loop over dimension
1421  for (unsigned i = 0; i < nodal_dim; i++)
1422  {
1423  // If the variable is free
1424  local_unknown = position_local_eqn(n, k, i);
1425 
1426  // ignore pinned values
1427  if (local_unknown >= 0)
1428  {
1429  // store dof lookup in temporary pair: First entry in pair
1430  // is global equation number; second entry is dof type
1431  dof_lookup.first = this->eqn_number(local_unknown);
1432  dof_lookup.second = 0;
1433 
1434  // add to list
1435  dof_lookup_list.push_front(dof_lookup);
1436  }
1437  }
1438  }
1439  }
1440  }
1441 
1442 
1443  /// /////////////////////////////////////////////////////////////////////
1444  /// /////////////////////////////////////////////////////////////////////
1445  /// /////////////////////////////////////////////////////////////////////
1446 
1447 
1448  //===========================================================================
1449  /// Constructor, takes the pointer to the "bulk" element, the
1450  /// index of the fixed local coordinate and its value represented
1451  /// by an integer (+/- 1), indicating that the face is located
1452  /// at the max. or min. value of the "fixed" local coordinate
1453  /// in the bulk element.
1454  //===========================================================================
1457  FiniteElement* const& bulk_el_pt, const int& face_index)
1459  {
1460  // Let the bulk element build the FaceElement, i.e. setup the pointers
1461  // to its nodes (by referring to the appropriate nodes in the bulk
1462  // element), etc.
1463  bulk_el_pt->build_face_element(face_index, this);
1464 
1465  // Overwrite default assignments:
1466 
1467  // Number of position types (for automatic local equation numbering)
1468  // must be re-set to the shell case because the constraint
1469  // equation makes contributions to all 3 (coordinate directions) x
1470  // 4 (types of positional dofs) = 12 dofs associated with each node in the
1471  // shell element. But keep reading...
1473 
1474 
1475  // The trouble with the above is that the parametrisation of the
1476  // element geometry (used in J_eulerian and elsewhere)
1477  // is based on the 4 (2 nodes x 2 types -- value and slope) shape functions
1478  // in the 1D element. In general this is done by looping over the
1479  // nodal position types (2 per node) and referring to the
1480  // relevant position Data at the nodes indirectly via the
1481  // bulk_position_type(...) function. This is now screwed up
1482  // because we've bumped up the number of nodal position types
1483  // to four! The slightly hacky way around this is resize
1484  // the lookup scheme underlying the bulk_position_type(...)
1485  // to four types of degree of freedom per node so it's consistent
1486  // with the above assignement. However, we only have shape
1487  // functions associated with the two types of degree of freedom,
1488  // so (below) we overload shape(...) and dshape_local(...)
1489  // to that it returns zero for all "superfluous" shape functions.
1491 
1492  // Make some dummy assigments to the position types that
1493  // correspond to the two superfluous ones -- the values associated
1494  // with these will never be used since we're setting the
1495  // associated shape functions to zero!
1496  bulk_position_type(2) = 0;
1497  bulk_position_type(3) = 0;
1498 
1499  // Resize normal to clamping plane and initialise for clamping
1500  // being applied in a plane where z=const.
1501  Normal_to_clamping_plane.resize(3);
1502  Normal_to_clamping_plane[0] = 0.0;
1503  Normal_to_clamping_plane[1] = 0.0;
1504  Normal_to_clamping_plane[2] = 1.0;
1505 
1506  // We need two additional values (for the two types of the Lagrange
1507  // multiplier interpolated by the 1D Hermite basis functions)
1508  // at the element's two nodes
1509  Vector<unsigned> nadditional_data_values(2);
1510  nadditional_data_values[0] = 2;
1511  nadditional_data_values[1] = 2;
1512  resize_nodes(nadditional_data_values);
1513  }
1514 
1515 
1516  //===========================================================================
1517  /// Add the element's contribution to its residual vector
1518  //===========================================================================
1521  {
1522  // Get position vector to and normal vector on wall (from bulk element)
1523  HermiteShellElement* bulk_el_pt =
1524  dynamic_cast<HermiteShellElement*>(bulk_element_pt());
1525 
1526  // Local coordinates in bulk
1527  Vector<double> s_bulk(2);
1528 
1529  // Local coordinate in FaceElement:
1530  Vector<double> s(1);
1531 
1532  // Normal to shell
1533  Vector<double> shell_normal(3);
1534  Vector<double> shell_normal_plus(3);
1535 
1536  // Find out how many nodes there are
1537  const unsigned n_node = nnode();
1538 
1539  // Types of (nonzero) shape/test fcts (for Lagrange multiplier) in
1540  // this element
1541  unsigned n_type = 2;
1542 
1543  // Integer to store the local equation number
1544  int local_eqn = 0;
1545 
1546  // Set up memory for the shape functions:
1547 
1548  // Shape fcts
1549  Shape psi(n_node, n_type);
1550 
1551  // Set # of integration points
1552  const unsigned n_intpt = integral_pt()->nweight();
1553 
1554  // Loop over the integration points
1555  for (unsigned ipt = 0; ipt < n_intpt; ipt++)
1556  {
1557  // Get the integral weight
1558  double w = integral_pt()->weight(ipt);
1559 
1560  // Get integration point in local coordinates
1561  s[0] = integral_pt()->knot(ipt, 0);
1562 
1563  // Get shape functions
1564  shape(s, psi);
1565 
1566  // Get jacobian
1567  double J = J_eulerian(s);
1568 
1569  // Assemble the Lagrange multiplier
1570  double lambda = 0.0;
1571  for (unsigned j = 0; j < n_node; j++)
1572  {
1573  for (unsigned k = 0; k < n_type; k++)
1574  {
1575  // The (additional) Lagrange multiplier values are stored
1576  // after those that were created by the bulk elements:
1577  lambda += node_pt(j)->value(Nbulk_value[j] + k) * psi(j, k);
1578  }
1579  }
1580 
1581  // Get vector of coordinates in bulk element
1582  s_bulk = local_coordinate_in_bulk(s);
1583 
1584  // Get unit normal on bulk shell element
1585  bulk_el_pt->get_normal(s_bulk, shell_normal);
1586 
1587  // Premultiply the weights and the Jacobian
1588  double W = w * J;
1589 
1590  // Here's the actual constraint
1591  double constraint_residual =
1592  shell_normal[0] * Normal_to_clamping_plane[0] +
1593  shell_normal[1] * Normal_to_clamping_plane[1] +
1594  shell_normal[2] * Normal_to_clamping_plane[2];
1595 
1596 
1597  // Assemble residual for Lagrange multiplier:
1598  //-------------------------------------------
1599 
1600  // Loop over the number of nodes
1601  for (unsigned j = 0; j < n_node; j++)
1602  {
1603  // Loop over the type of degree of freedom
1604  for (unsigned k = 0; k < n_type; k++)
1605  {
1606  // Local eqn number. Recall that the
1607  // (additional) Lagrange multiplier values are stored
1608  // after those that were created by the bulk elements:
1609  local_eqn = nodal_local_eqn(j, Nbulk_value[j] + k);
1610  if (local_eqn >= 0)
1611  {
1612  residuals[local_eqn] += constraint_residual * psi(j, k) * W;
1613  }
1614  }
1615  }
1616 
1617 
1618  // Add Lagrange multiplier contribution to bulk equations
1619  //-------------------------------------------------------
1620 
1621  // Derivatives of constraint equations w.r.t. positional values
1622  // is done by finite differencing
1623  double fd_step = 1.0e-8;
1624 
1625  // Loop over the number of nodes
1626  for (unsigned j = 0; j < n_node; j++)
1627  {
1628  Node* nod_pt = node_pt(j);
1629 
1630  // Loop over directions
1631  for (unsigned i = 0; i < 3; i++)
1632  {
1633  // Loop over the type of degree of freedom
1634  for (unsigned k = 0; k < 4; k++)
1635  {
1636  // Local eqn number: Node, type, direction
1637  local_eqn = position_local_eqn(j, k, i);
1638  if (local_eqn >= 0)
1639  {
1640  // Backup
1641  double backup = nod_pt->x_gen(k, i);
1642 
1643  // Increment
1644  nod_pt->x_gen(k, i) += fd_step;
1645 
1646  // Re-evaluate unit normal on bulk shell element
1647  bulk_el_pt->get_normal(s_bulk, shell_normal_plus);
1648 
1649  // Re-evaluate the constraint
1650  double constraint_residual_plus =
1651  shell_normal_plus[0] * Normal_to_clamping_plane[0] +
1652  shell_normal_plus[1] * Normal_to_clamping_plane[1] +
1653  shell_normal_plus[2] * Normal_to_clamping_plane[2];
1654 
1655  // Derivarive of constraint w.r.t. to current discrete
1656  // displacement
1657  double dres_dx =
1658  (constraint_residual_plus - constraint_residual) / fd_step;
1659 
1660  // Add to residual
1661  residuals[local_eqn] += lambda * dres_dx * W;
1662 
1663  // Reset
1664  nod_pt->x_gen(k, i) = backup;
1665  }
1666  }
1667  }
1668  }
1669  } // End of loop over the integration points
1670 
1671  // Loop over integration points
1672  }
1673 
1674 
1675  //===========================================================================
1676  /// Output function
1677  //===========================================================================
1679  std::ostream& outfile, const unsigned& n_plot)
1680  {
1681  // Get bulk element
1682  HermiteShellElement* bulk_el_pt =
1683  dynamic_cast<HermiteShellElement*>(bulk_element_pt());
1684 
1685  // Local coord
1686  Vector<double> s(1);
1687 
1688  // Coordinate in bulk
1689  Vector<double> s_bulk(2);
1690 
1691  // Normal vector
1692  Vector<double> shell_normal(3);
1693 
1694  // # of nodes, # of dof types
1695  Shape psi(2, 2);
1696 
1697  // Tecplot header info
1698  outfile << "ZONE I=" << n_plot << std::endl;
1699 
1700  // Loop over plot points
1701  for (unsigned l = 0; l < n_plot; l++)
1702  {
1703  s[0] = -1.0 + l * 2.0 / (n_plot - 1);
1704 
1705  // Get vector of coordinates in bulk element
1706  s_bulk = local_coordinate_in_bulk(s);
1707 
1708  // Get unit normal on bulk shell element
1709  bulk_el_pt->get_normal(s_bulk, shell_normal);
1710 
1711  // Get shape function
1712  shape(s, psi);
1713 
1714  // Assemble the Lagrange multiplier
1715  double lambda = 0.0;
1716  for (unsigned j = 0; j < 2; j++)
1717  {
1718  for (unsigned k = 0; k < 2; k++)
1719  {
1720  // The (additional) Lagrange multiplier values are stored
1721  // after those that were created by the bulk elements:
1722  lambda += node_pt(j)->value(Nbulk_value[j] + k) * psi(j, k);
1723  }
1724  }
1725 
1726  double dot_product = shell_normal[0] * Normal_to_clamping_plane[0] +
1727  shell_normal[1] * Normal_to_clamping_plane[1] +
1728  shell_normal[2] * Normal_to_clamping_plane[2];
1729 
1730  // Output stuff
1731  outfile << s[0] << " " << interpolated_xi(s, 0) << " "
1732  << interpolated_xi(s, 1) << " " << interpolated_x(s, 0) << " "
1733  << interpolated_x(s, 1) << " " << interpolated_x(s, 2) << " "
1734  << J_eulerian(s) << " " << bulk_el_pt->interpolated_xi(s_bulk, 0)
1735  << " " << bulk_el_pt->interpolated_xi(s_bulk, 1) << " "
1736  << bulk_el_pt->interpolated_x(s_bulk, 0) << " "
1737  << bulk_el_pt->interpolated_x(s_bulk, 1) << " "
1738  << bulk_el_pt->interpolated_x(s_bulk, 2) << " " << lambda << " "
1739  << shell_normal[0] << " " << shell_normal[1] << " "
1740  << shell_normal[2] << " " << Normal_to_clamping_plane[0] << " "
1741  << Normal_to_clamping_plane[1] << " "
1742  << Normal_to_clamping_plane[2] << " " << dot_product << " "
1743  << std::endl;
1744  }
1745 
1746 
1747  // Initialise error
1748  const bool check_error = false;
1749  if (check_error)
1750  {
1751  double max_error = 0.0;
1752 
1753  // Set # of integration points
1754  const unsigned n_intpt = integral_pt()->nweight();
1755 
1756  // Loop over the integration points
1757  for (unsigned ipt = 0; ipt < n_intpt; ipt++)
1758  {
1759  // Get integration point in local coordinates
1760  s[0] = integral_pt()->knot(ipt, 0);
1761 
1762  // Get eulerian jacobian via s
1763  double J_via_s = J_eulerian(s);
1764 
1765  // Get eulerian jacobian via ipt
1766  double J_via_ipt = J_eulerian_at_knot(ipt);
1767 
1768  double error = std::fabs(J_via_s - J_via_ipt);
1769  if (error > max_error) max_error = error;
1770  }
1771  if (max_error > 1.0e-14)
1772  {
1773  oomph_info << "Warning: Max. error between J_via_s J_via_ipt "
1774  << max_error << std::endl;
1775  }
1776  }
1777  }
1778 
1779  //=============================================================================
1780  /// Create a list of pairs for all unknowns in this element,
1781  /// so that the first entry in each pair contains the global equation
1782  /// number of the unknown, while the second one contains the number
1783  /// of the "DOF types" that this unknown is associated with.
1784  /// (Function can obviously only be called if the equation numbering
1785  /// scheme has been set up.)
1786  /// This element is only in charge of the solid dofs.
1787  //=============================================================================
1790  std::list<std::pair<unsigned long, unsigned>>& dof_lookup_list) const
1791  {
1792  // temporary pair (used to store dof lookup prior to being added to list)
1793  std::pair<unsigned long, unsigned> dof_lookup;
1794 
1795  // number of nodes
1796  const unsigned n_node = this->nnode();
1797 
1798  // Get the number of position dofs and dimensions at the node
1799  const unsigned n_position_type = nnodal_position_type();
1800  const unsigned nodal_dim = nodal_dimension();
1801 
1802  // Integer storage for local unknown
1803  int local_unknown = 0;
1804 
1805  // Loop over the nodes
1806  for (unsigned n = 0; n < n_node; n++)
1807  {
1808  Node* nod_pt = this->node_pt(n);
1809 
1810  // Loop over position dofs
1811  for (unsigned k = 0; k < n_position_type; k++)
1812  {
1813  // Loop over dimension
1814  for (unsigned i = 0; i < nodal_dim; i++)
1815  {
1816  // If the variable is free
1817  local_unknown = position_local_eqn(n, k, i);
1818 
1819  // ignore pinned values
1820  if (local_unknown >= 0)
1821  {
1822  // store dof lookup in temporary pair: First entry in pair
1823  // is global equation number; second entry is dof type
1824  dof_lookup.first = this->eqn_number(local_unknown);
1825  dof_lookup.second = 0;
1826 
1827  // add to list
1828  dof_lookup_list.push_front(dof_lookup);
1829  }
1830  }
1831  }
1832 
1833  // Loop over values
1834  unsigned n_val = nod_pt->nvalue();
1835  for (unsigned j = 0; j < n_val; j++)
1836  {
1837  // If the variable is free
1838  local_unknown = nodal_local_eqn(n, j);
1839 
1840  // ignore pinned values
1841  if (local_unknown >= 0)
1842  {
1843  // store dof lookup in temporary pair: First entry in pair
1844  // is global equation number; second entry is dof type
1845  dof_lookup.first = this->eqn_number(local_unknown);
1846  dof_lookup.second = 0;
1847 
1848  // add to list
1849  dof_lookup_list.push_front(dof_lookup);
1850  }
1851  }
1852  }
1853  }
1854 
1855 
1856 } // namespace oomph
static char t char * s
Definition: cfortran.h:568
cstr elem_len * i
Definition: cfortran.h:603
void output(std::ostream &outfile)
Output function – forward to broken version in FiniteElement until somebody decides what exactly they...
ClampedHermiteShellBoundaryConditionElement()
Broken empty constructor.
void get_dof_numbers_for_unknowns(std::list< std::pair< unsigned long, unsigned >> &dof_lookup_list) const
Create a list of pairs for all unknowns in this element, so that the first entry in each pair contain...
void fill_in_contribution_to_residuals(Vector< double > &residuals)
Fill in the element's contribution to its residual vector.
Vector< double > Normal_to_clamping_plane
Normal vector to the clamping plane.
void shape(const Vector< double > &s, Shape &psi) const
Calculate the geometric shape functions at local coordinate s. Set any "superfluous" shape functions ...
A Class for the derivatives of shape functions The class design is essentially the same as Shape,...
Definition: shape.h:278
unsigned nvalue() const
Return number of values stored in data object (incl pinned ones).
Definition: nodes.h:483
Class of matrices containing doubles, and stored as a DenseMatrix<double>, but with solving functiona...
Definition: matrices.h:1271
void initialise(const T &val)
Initialize all values in the matrix to val.
Definition: matrices.h:514
void get_dof_numbers_for_unknowns(std::list< std::pair< unsigned long, unsigned >> &dof_lookup_list) const
Create a list of pairs for all unknowns in this element, so that the first entry in each pair contain...
void dposition_dlagrangian_at_local_coordinate(const Vector< double > &s, DenseMatrix< double > &drdxi) const
Derivative of position vector w.r.t. the SolidFiniteElement's Lagrangian coordinates; evaluated at cu...
FaceElements are elements that coincide with the faces of higher-dimensional "bulk" elements....
Definition: elements.h:4342
unsigned & bulk_position_type(const unsigned &i)
Return the position type in the "bulk" element that corresponds to position type i on the FaceElement...
Definition: elements.h:4809
int & face_index()
Index of the face (a number that uniquely identifies the face in the element)
Definition: elements.h:4630
Vector< double > local_coordinate_in_bulk(const Vector< double > &s) const
Return vector of local coordinates in bulk element, given the local coordinates in this FaceElement.
Definition: elements.cc:6383
FiniteElement *& bulk_element_pt()
Pointer to higher-dimensional "bulk" element.
Definition: elements.h:4739
double interpolated_x(const Vector< double > &s, const unsigned &i) const
Return FE interpolated coordinate x[i] at local coordinate s. Overloaded to get information from bulk...
Definition: elements.h:4532
void bulk_position_type_resize(const unsigned &i)
Resize the storage for bulk_position_type to i entries.
Definition: elements.h:4842
double J_eulerian(const Vector< double > &s) const
Return the Jacobian of mapping from local to global coordinates at local position s....
Definition: elements.cc:5272
double J_eulerian_at_knot(const unsigned &ipt) const
Return the Jacobian of the mapping from local to global coordinates at the ipt-th integration point O...
Definition: elements.cc:5358
Vector< unsigned > Nbulk_value
A vector that will hold the number of data values at the nodes that are associated with the "bulk" el...
Definition: elements.h:4417
void resize_nodes(Vector< unsigned > &nadditional_data_values)
Provide additional storage for a specified number of values at the nodes of the FaceElement....
Definition: elements.h:4886
//////////////////////////////////////////////////////////////////// ////////////////////////////////...
Definition: elements.h:5002
A general Finite Element class.
Definition: elements.h:1317
void set_nnodal_position_type(const unsigned &nposition_type)
Set the number of types required to interpolate the coordinate.
Definition: elements.h:1400
Node *& node_pt(const unsigned &n)
Return a pointer to the local node n.
Definition: elements.h:2179
unsigned nnodal_position_type() const
Return the number of coordinate types that the element requires to interpolate the geometry between t...
Definition: elements.h:2467
double dnodal_position_gen_dt(const unsigned &n, const unsigned &k, const unsigned &i) const
i-th component of time derivative (velocity) of the generalised position, dx(k,i)/dt at local node n....
Definition: elements.h:2373
virtual double interpolated_x(const Vector< double > &s, const unsigned &i) const
Return FE interpolated coordinate x[i] at local coordinate s.
Definition: elements.cc:3992
int nodal_local_eqn(const unsigned &n, const unsigned &i) const
Return the local equation number corresponding to the i-th value at the n-th local node.
Definition: elements.h:1436
double nodal_position_gen(const unsigned &n, const unsigned &k, const unsigned &i) const
Return the value of the k-th type of the i-th positional variable at the local node n.
Definition: elements.h:2353
unsigned nnode() const
Return the number of nodes.
Definition: elements.h:2214
Integral *const & integral_pt() const
Return the pointer to the integration scheme (const version)
Definition: elements.h:1967
virtual double interpolated_dxdt(const Vector< double > &s, const unsigned &i, const unsigned &t)
Return t-th time-derivative of the i-th FE-interpolated Eulerian coordinate at local coordinate s.
Definition: elements.cc:4626
virtual void build_face_element(const int &face_index, FaceElement *face_element_pt)
Function for building a lower dimensional FaceElement on the specified face of the FiniteElement....
Definition: elements.cc:5162
double raw_dnodal_position_gen_dt(const unsigned &n, const unsigned &k, const unsigned &i) const
i-th component of time derivative (velocity) of the generalised position, dx(k,i)/dt at local node n....
Definition: elements.h:2298
unsigned nodal_dimension() const
Return the required Eulerian dimension of the nodes in this element.
Definition: elements.h:2488
double raw_nodal_position_gen(const unsigned &n, const unsigned &k, const unsigned &i) const
Return the value of the k-th type of the i-th positional variable at the local node n....
Definition: elements.h:2276
void fill_in_jacobian_from_external_by_fd(Vector< double > &residuals, DenseMatrix< double > &jacobian, const bool &fd_all_data=false)
Calculate the contributions to the jacobian from the external degrees of freedom using finite differe...
Definition: elements.cc:1227
unsigned ndof() const
Return the number of equations/dofs in the element.
Definition: elements.h:839
unsigned long eqn_number(const unsigned &ieqn_local) const
Return the global equation number corresponding to the ieqn_local-th local equation number.
Definition: elements.h:708
virtual void get_residuals(Vector< double > &residuals)
Calculate the vector of residuals of the equations in the element. By default initialise the vector t...
Definition: elements.h:984
unsigned ndim() const
Access function to # of Eulerian coordinates.
Definition: geom_objects.h:177
virtual void d2position(const Vector< double > &zeta, RankThreeTensor< double > &ddrdzeta) const
2nd derivative of position Vector w.r.t. to coordinates: = ddrdzeta(alpha,beta,i)....
Definition: geom_objects.h:341
unsigned nlagrangian() const
Access function to # of Lagrangian coordinates.
Definition: geom_objects.h:171
An element that solves the Kirchhoff-Love shell theory equations using Hermite interpolation (displac...
void output_with_time_dep_quantities(std::ostream &outfile, const unsigned &n_plot)
Output position veloc and accel.
void output(std::ostream &outfile)
Overload the output function.
virtual double knot(const unsigned &i, const unsigned &j) const =0
Return local coordinate s[j] of i-th integration point.
virtual unsigned nweight() const =0
Return the number of integration points of the scheme.
virtual double weight(const unsigned &i) const =0
Return weight of i-th integration point.
void fill_in_contribution_to_residuals_shell(Vector< double > &residuals)
Helper function to Return the residuals for the equations of KL shell theory. This is used to prevent...
static void Zero_traction_fct(const Vector< double > &xi, const Vector< double > &x, const Vector< double > &N, Vector< double > &load)
Default load function (zero traction)
const double & nu() const
Return the Poisson's ratio.
bool Ignore_membrane_terms
Boolean flag to ignore membrane terms.
void fill_in_contribution_to_jacobian(Vector< double > &residuals, DenseMatrix< double > &jacobian)
Return the jacobian is calculated by finite differences by default,.
double prestress(const unsigned &i, const unsigned &j)
Return (i,j)-th component of second Piola Kirchhoff membrane prestress.
static double Default_lambda_sq_value
Static default value for the timescale ratio (1.0 for natural scaling)
double calculate_contravariant(double A[2][2], double Aup[2][2])
Invert a DIM by DIM matrix.
DenseMatrix< double * > Prestress_pt
Pointer to membrane pre-stress terms – should probably generalise this to function pointers at some p...
static double Zero_prestress
Static default for prestress (set to zero)
void get_energy(double &pot_en, double &kin_en)
Get potential (strain) and kinetic energy of the element.
void get_normal(const Vector< double > &s, Vector< double > &N)
Get normal vector.
const double & lambda_sq() const
Return the timescale ratio (non-dimensional density)
static double Default_h_value
Static default value for the thickness ratio.
double load_rate_of_work()
Get integral of instantaneous rate of work done on the wall due to the load returned by the virtual f...
static double Default_nu_value
Static default value for the Poisson's ratio.
virtual void load_vector(const unsigned &intpt, const Vector< double > &xi, const Vector< double > &x, const Vector< double > &N, Vector< double > &load)
Get the load vector: Pass number of integration point (dummy), Lagr. coordinate and normal vector and...
std::pair< double, double > get_strain_and_bend(const Vector< double > &s, DenseDoubleMatrix &strain, DenseDoubleMatrix &bend)
Get strain and bending tensors; returns pair comprising the determinant of the undeformed (*....
virtual void load_vector_for_rate_of_work_computation(const unsigned &intpt, const Vector< double > &xi, const Vector< double > &x, const Vector< double > &N, Vector< double > &load)
Get the load vector for the computation of the rate of work done by the load. Here we simply forward ...
const double & h() const
Return the wall thickness to undeformed radius ratio.
GeomObject * Undeformed_midplane_pt
Pointer to the GeomObject that specifies the undeformed midplane of the shell.
Nodes are derived from Data, but, in addition, have a definite (Eulerian) position in a space of a gi...
Definition: nodes.h:906
double & x_gen(const unsigned &k, const unsigned &i)
Reference to the generalised position x(k,i). ‘Type’: k; Coordinate direction: i.
Definition: nodes.h:1126
double value(const unsigned &i) const
Return i-th value (dofs or pinned) at this node either directly or via hanging node representation....
Definition: nodes.cc:2408
An OomphLibError object which should be thrown when an run-time error is encountered....
////////////////////////////////////////////////////////////////// //////////////////////////////////...
Definition: matrices.h:1370
A Class for shape functions. In simple cases, the shape functions have only one index that can be tho...
Definition: shape.h:76
double interpolated_xi(const Vector< double > &s, const unsigned &i) const
Return i-th FE-interpolated Lagrangian coordinate xi[i] at local coordinate s. Overloaded from SolidF...
Definition: elements.h:4941
double lagrangian_position_gen(const unsigned &n, const unsigned &k, const unsigned &i) const
Return Generalised Lagrangian coordinate at local node n. ‘Direction’ i, ‘Type’ k.
Definition: elements.h:3916
double raw_lagrangian_position_gen(const unsigned &n, const unsigned &k, const unsigned &i) const
Return Generalised Lagrangian coordinate at local node n. ‘Direction’ i, ‘Type’ k....
Definition: elements.h:3901
double dshape_lagrangian(const Vector< double > &s, Shape &psi, DShape &dpsidxi) const
Calculate shape functions and derivatives w.r.t. Lagrangian coordinates at local coordinate s....
Definition: elements.cc:6740
bool Solve_for_consistent_newmark_accel_flag
Flag to indicate which system of equations to solve when assigning initial conditions for time-depend...
Definition: elements.h:4306
virtual double d2shape_lagrangian_at_knot(const unsigned &ipt, Shape &psi, DShape &dpsidxi, DShape &d2psidxi) const
Return the geometric shape functions and also first and second derivatives w.r.t. Lagrangian coordina...
Definition: elements.cc:6862
int position_local_eqn(const unsigned &n, const unsigned &k, const unsigned &j) const
Access function that returns the local equation number that corresponds to the j-th coordinate of the...
Definition: elements.h:4141
virtual double interpolated_xi(const Vector< double > &s, const unsigned &i) const
Return i-th FE-interpolated Lagrangian coordinate xi[i] at local coordinate s.
Definition: elements.cc:7134
virtual void fill_in_jacobian_from_solid_position_by_fd(Vector< double > &residuals, DenseMatrix< double > &jacobian)
Use finite differences to calculate the Jacobian entries corresponding to the solid positions....
Definition: elements.cc:7015
double d2shape_lagrangian(const Vector< double > &s, Shape &psi, DShape &dpsidxi, DShape &d2psidxi) const
Compute the geometric shape functions and also first and second derivatives w.r.t....
Definition: elements.cc:6811
void fill_in_jacobian_for_newmark_accel(DenseMatrix< double > &jacobian)
Fill in the contributions of the Jacobian matrix for the consistent assignment of the initial "accele...
Definition: elements.cc:7257
std::string string(const unsigned &i)
Return the i-th string or "" if the relevant string hasn't been defined.
//////////////////////////////////////////////////////////////////// ////////////////////////////////...
OomphInfo oomph_info
Single (global) instantiation of the OomphInfo object – this is used throughout the library as a "rep...