axisym_navier_stokes_elements.cc
Go to the documentation of this file.
1 // LIC// ====================================================================
2 // LIC// This file forms part of oomph-lib, the object-oriented,
3 // LIC// multi-physics finite-element library, available
4 // LIC// at http://www.oomph-lib.org.
5 // LIC//
6 // LIC// Copyright (C) 2006-2024 Matthias Heil and Andrew Hazel
7 // LIC//
8 // LIC// This library is free software; you can redistribute it and/or
9 // LIC// modify it under the terms of the GNU Lesser General Public
10 // LIC// License as published by the Free Software Foundation; either
11 // LIC// version 2.1 of the License, or (at your option) any later version.
12 // LIC//
13 // LIC// This library is distributed in the hope that it will be useful,
14 // LIC// but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // LIC// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
16 // LIC// Lesser General Public License for more details.
17 // LIC//
18 // LIC// You should have received a copy of the GNU Lesser General Public
19 // LIC// License along with this library; if not, write to the Free Software
20 // LIC// Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
21 // LIC// 02110-1301 USA.
22 // LIC//
23 // LIC// The authors may be contacted at oomph-lib@maths.man.ac.uk.
24 // LIC//
25 // LIC//====================================================================
26 // Non-inline functions for NS elements
28 
29 
30 namespace oomph
31 {
32  /// Navier--Stokes equations static data
33  Vector<double> AxisymmetricNavierStokesEquations::Gamma(2, 1.0);
34 
35  //=================================================================
36  /// "Magic" negative number that indicates that the pressure is
37  /// not stored at a node. This cannot be -1 because that represents
38  /// the positional hanging scheme in the hanging_pt object of nodes
39  //=================================================================
41 
42  /// Navier--Stokes equations static data
44  0.0;
45 
46  // Navier--Stokes equations static data
48 
49  /// Navier-Stokes equations default gravity vector
51  0.0);
52 
53 
54  //================================================================
55  /// Compute the diagonal of the velocity/pressure mass matrices.
56  /// If which one=0, both are computed, otherwise only the pressure
57  /// (which_one=1) or the velocity mass matrix (which_one=2 -- the
58  /// LSC version of the preconditioner only needs that one)
59  /// NOTE: pressure versions isn't implemented yet because this
60  /// element has never been tried with Fp preconditoner.
61  //================================================================
64  Vector<double>& press_mass_diag,
65  Vector<double>& veloc_mass_diag,
66  const unsigned& which_one)
67  {
68 #ifdef PARANOID
69  if ((which_one == 0) || (which_one == 1))
70  {
71  throw OomphLibError("Computation of diagonal of pressure mass matrix is "
72  "not impmented yet.\n",
73  OOMPH_CURRENT_FUNCTION,
74  OOMPH_EXCEPTION_LOCATION);
75  }
76 #endif
77 
78  // Resize and initialise
79  veloc_mass_diag.assign(ndof(), 0.0);
80 
81  // find out how many nodes there are
82  const unsigned n_node = nnode();
83 
84  // find number of coordinates
85  const unsigned n_value = 3;
86 
87  // find the indices at which the local velocities are stored
88  Vector<unsigned> u_nodal_index(n_value);
89  for (unsigned i = 0; i < n_value; i++)
90  {
91  u_nodal_index[i] = this->u_index_axi_nst(i);
92  }
93 
94  // Set up memory for test functions
95  Shape test(n_node);
96 
97  // Number of integration points
98  unsigned n_intpt = integral_pt()->nweight();
99 
100  // Integer to store the local equations no
101  int local_eqn = 0;
102 
103  // Loop over the integration points
104  for (unsigned ipt = 0; ipt < n_intpt; ipt++)
105  {
106  // Get the integral weight
107  double w = integral_pt()->weight(ipt);
108 
109  // Get determinant of Jacobian of the mapping
110  double J = J_eulerian_at_knot(ipt);
111 
112  // Premultiply weights and Jacobian
113  double W = w * J;
114 
115  // Get the velocity test functions - there is no explicit
116  // function to give the test function so use shape
117  shape_at_knot(ipt, test);
118 
119  // Need to get the position to sort out the jacobian properly
120  double r = 0.0;
121  for (unsigned l = 0; l < n_node; l++)
122  {
123  r += this->nodal_position(l, 0) * test(l);
124  }
125 
126  // Multiply by the geometric factor
127  W *= r;
128 
129  // Loop over the veclocity test functions
130  for (unsigned l = 0; l < n_node; l++)
131  {
132  // Loop over the velocity components
133  for (unsigned i = 0; i < n_value; i++)
134  {
135  local_eqn = nodal_local_eqn(l, u_nodal_index[i]);
136 
137  // If not a boundary condition
138  if (local_eqn >= 0)
139  {
140  // Add the contribution
141  veloc_mass_diag[local_eqn] += test[l] * test[l] * W;
142  } // End of if not boundary condition statement
143  } // End of loop over dimension
144  } // End of loop over test functions
145  }
146  }
147 
148 
149  //======================================================================
150  /// Validate against exact velocity solution at given time.
151  /// Solution is provided via function pointer.
152  /// Plot at a given number of plot points and compute L2 error
153  /// and L2 norm of velocity solution over element.
154  //=======================================================================
156  std::ostream& outfile,
158  const double& time,
159  double& error,
160  double& norm)
161  {
162  error = 0.0;
163  norm = 0.0;
164 
165  // Vector of local coordinates
166  Vector<double> s(2);
167 
168  // Vector for coordintes
169  Vector<double> x(2);
170 
171  // Set the value of Nintpt
172  unsigned Nintpt = integral_pt()->nweight();
173 
174  outfile << "ZONE" << std::endl;
175 
176  // Exact solution Vector (u,v,w,p)
177  Vector<double> exact_soln(4);
178 
179  // Loop over the integration points
180  for (unsigned ipt = 0; ipt < Nintpt; ipt++)
181  {
182  // Assign values of s
183  for (unsigned i = 0; i < 2; i++)
184  {
185  s[i] = integral_pt()->knot(ipt, i);
186  }
187 
188  // Get the integral weight
189  double w = integral_pt()->weight(ipt);
190 
191  // Get jacobian of mapping
192  double J = J_eulerian(s);
193 
194  // Get x position as Vector
195  interpolated_x(s, x);
196 
197  // Premultiply the weights and the Jacobian and r
198  double W = w * J * x[0];
199 
200  // Get exact solution at this point
201  (*exact_soln_pt)(time, x, exact_soln);
202 
203  // Velocity error
204  for (unsigned i = 0; i < 3; i++)
205  {
206  norm += exact_soln[i] * exact_soln[i] * W;
207  error += (exact_soln[i] - interpolated_u_axi_nst(s, i)) *
208  (exact_soln[i] - interpolated_u_axi_nst(s, i)) * W;
209  }
210 
211  // Output x,y,...,u_exact
212  for (unsigned i = 0; i < 2; i++)
213  {
214  outfile << x[i] << " ";
215  }
216 
217  // Output x,y,[z],u_error,v_error,[w_error]
218  for (unsigned i = 0; i < 3; i++)
219  {
220  outfile << exact_soln[i] - interpolated_u_axi_nst(s, i) << " ";
221  }
222 
223  outfile << std::endl;
224  }
225  }
226 
227  //======================================================================
228  /// Validate against exact velocity solution
229  /// Solution is provided via function pointer.
230  /// Plot at a given number of plot points and compute L2 error
231  /// and L2 norm of velocity solution over element.
232  //=======================================================================
234  std::ostream& outfile,
236  double& error,
237  double& norm)
238  {
239  error = 0.0;
240  norm = 0.0;
241 
242  // Vector of local coordinates
243  Vector<double> s(2);
244 
245  // Vector for coordintes
246  Vector<double> x(2);
247 
248  // Set the value of Nintpt
249  unsigned Nintpt = integral_pt()->nweight();
250 
251  outfile << "ZONE" << std::endl;
252 
253  // Exact solution Vector (u,v,w,p)
254  Vector<double> exact_soln(4);
255 
256  // Loop over the integration points
257  for (unsigned ipt = 0; ipt < Nintpt; ipt++)
258  {
259  // Assign values of s
260  for (unsigned i = 0; i < 2; i++)
261  {
262  s[i] = integral_pt()->knot(ipt, i);
263  }
264 
265  // Get the integral weight
266  double w = integral_pt()->weight(ipt);
267 
268  // Get jacobian of mapping
269  double J = J_eulerian(s);
270 
271  // Get x position as Vector
272  interpolated_x(s, x);
273 
274  // Premultiply the weights and the Jacobian and r
275  double W = w * J * x[0];
276 
277  // Get exact solution at this point
278  (*exact_soln_pt)(x, exact_soln);
279 
280  // Velocity error
281  for (unsigned i = 0; i < 3; i++)
282  {
283  norm += exact_soln[i] * exact_soln[i] * W;
284  error += (exact_soln[i] - interpolated_u_axi_nst(s, i)) *
285  (exact_soln[i] - interpolated_u_axi_nst(s, i)) * W;
286  }
287 
288  // Output x,y,...,u_exact
289  for (unsigned i = 0; i < 2; i++)
290  {
291  outfile << x[i] << " ";
292  }
293 
294  // Output x,y,u_error,v_error,w_error
295  for (unsigned i = 0; i < 3; i++)
296  {
297  outfile << exact_soln[i] - interpolated_u_axi_nst(s, i) << " ";
298  }
299 
300  outfile << std::endl;
301  }
302  }
303 
304  //======================================================================
305  /// Output "exact" solution
306  /// Solution is provided via function pointer.
307  /// Plot at a given number of plot points.
308  /// Function prints as many components as are returned in solution Vector.
309  //=======================================================================
311  std::ostream& outfile,
312  const unsigned& nplot,
314  {
315  // Vector of local coordinates
316  Vector<double> s(2);
317 
318  // Vector for coordintes
319  Vector<double> x(2);
320 
321  // Tecplot header info
322  outfile << tecplot_zone_string(nplot);
323 
324  // Exact solution Vector
325  Vector<double> exact_soln;
326 
327  // Loop over plot points
328  unsigned num_plot_points = nplot_points(nplot);
329  for (unsigned iplot = 0; iplot < num_plot_points; iplot++)
330  {
331  // Get local coordinates of plot point
332  get_s_plot(iplot, nplot, s);
333 
334  // Get x position as Vector
335  interpolated_x(s, x);
336 
337  // Get exact solution at this point
338  (*exact_soln_pt)(x, exact_soln);
339 
340  // Output x,y,...
341  for (unsigned i = 0; i < 2; i++)
342  {
343  outfile << x[i] << " ";
344  }
345 
346  // Output "exact solution"
347  for (unsigned i = 0; i < exact_soln.size(); i++)
348  {
349  outfile << exact_soln[i] << " ";
350  }
351 
352  outfile << std::endl;
353  }
354 
355  // Write tecplot footer (e.g. FE connectivity lists)
356  write_tecplot_zone_footer(outfile, nplot);
357  }
358 
359  //======================================================================
360  /// Output "exact" solution at a given time
361  /// Solution is provided via function pointer.
362  /// Plot at a given number of plot points.
363  /// Function prints as many components as are returned in solution Vector.
364  //=======================================================================
366  std::ostream& outfile,
367  const unsigned& nplot,
368  const double& time,
370  {
371  // Vector of local coordinates
372  Vector<double> s(2);
373 
374  // Vector for coordintes
375  Vector<double> x(2);
376 
377  // Tecplot header info
378  outfile << tecplot_zone_string(nplot);
379 
380  // Exact solution Vector
381  Vector<double> exact_soln;
382 
383  // Loop over plot points
384  unsigned num_plot_points = nplot_points(nplot);
385  for (unsigned iplot = 0; iplot < num_plot_points; iplot++)
386  {
387  // Get local coordinates of plot point
388  get_s_plot(iplot, nplot, s);
389 
390  // Get x position as Vector
391  interpolated_x(s, x);
392 
393  // Get exact solution at this point
394  (*exact_soln_pt)(time, x, exact_soln);
395 
396  // Output x,y,...
397  for (unsigned i = 0; i < 2; i++)
398  {
399  outfile << x[i] << " ";
400  }
401 
402  // Output "exact solution"
403  for (unsigned i = 0; i < exact_soln.size(); i++)
404  {
405  outfile << exact_soln[i] << " ";
406  }
407 
408  outfile << std::endl;
409  }
410 
411  // Write tecplot footer (e.g. FE connectivity lists)
412  write_tecplot_zone_footer(outfile, nplot);
413  }
414 
415  //==============================================================
416  /// Output function: Velocities only
417  /// x,y,[z],u,v,[w]
418  /// in tecplot format at specified previous timestep (t=0: present;
419  /// t>0: previous timestep). Specified number of plot points in each
420  /// coordinate direction.
421  //==============================================================
423  const unsigned& nplot,
424  const unsigned& t)
425  {
426  // Find number of nodes
427  unsigned n_node = nnode();
428 
429  // Local shape function
430  Shape psi(n_node);
431 
432  // Vectors of local coordinates and coords and velocities
433  Vector<double> s(2);
435  Vector<double> interpolated_u(3);
436 
437 
438  // Tecplot header info
439  outfile << tecplot_zone_string(nplot);
440 
441  // Loop over plot points
442  unsigned num_plot_points = nplot_points(nplot);
443  for (unsigned iplot = 0; iplot < num_plot_points; iplot++)
444  {
445  // Get local coordinates of plot point
446  get_s_plot(iplot, nplot, s);
447 
448  // Get shape functions
449  shape(s, psi);
450 
451  // Loop over coordinate directions
452  for (unsigned i = 0; i < 2; i++)
453  {
454  interpolated_x[i] = 0.0;
455  // Loop over the local nodes and sum
456  for (unsigned l = 0; l < n_node; l++)
457  {
458  interpolated_x[i] += nodal_position(t, l, i) * psi[l];
459  }
460  }
461 
462  // Loop over the velocity components
463  for (unsigned i = 0; i < 3; i++)
464  {
465  // Get the index at which the velocity is stored
466  unsigned u_nodal_index = u_index_axi_nst(i);
467  interpolated_u[i] = 0.0;
468  // Loop over the local nodes and sum
469  for (unsigned l = 0; l < n_node; l++)
470  {
471  interpolated_u[i] += nodal_value(t, l, u_nodal_index) * psi[l];
472  }
473  }
474 
475  // Coordinates
476  for (unsigned i = 0; i < 2; i++)
477  {
478  outfile << interpolated_x[i] << " ";
479  }
480 
481  // Velocities
482  for (unsigned i = 0; i < 3; i++)
483  {
484  outfile << interpolated_u[i] << " ";
485  }
486 
487  outfile << std::endl;
488  }
489 
490  // Write tecplot footer (e.g. FE connectivity lists)
491  write_tecplot_zone_footer(outfile, nplot);
492  }
493 
494  //==============================================================
495  /// Output function:
496  /// r,z,u,v,w,p
497  /// in tecplot format. Specified number of plot points in each
498  /// coordinate direction.
499  //==============================================================
500  void AxisymmetricNavierStokesEquations::output(std::ostream& outfile,
501  const unsigned& nplot)
502  {
503  // Vector of local coordinates
504  Vector<double> s(2);
505 
506  // Tecplot header info
507  outfile << tecplot_zone_string(nplot);
508 
509  // Loop over plot points
510  unsigned num_plot_points = nplot_points(nplot);
511  for (unsigned iplot = 0; iplot < num_plot_points; iplot++)
512  {
513  // Get local coordinates of plot point
514  get_s_plot(iplot, nplot, s);
515 
516  // Coordinates
517  for (unsigned i = 0; i < 2; i++)
518  {
519  outfile << interpolated_x(s, i) << " ";
520  }
521 
522  // Velocities
523  for (unsigned i = 0; i < 3; i++)
524  {
525  outfile << interpolated_u_axi_nst(s, i) << " ";
526  }
527 
528  // Pressure
529  outfile << interpolated_p_axi_nst(s) << " ";
530 
531  outfile << std::endl;
532  }
533  outfile << std::endl;
534 
535  // Write tecplot footer (e.g. FE connectivity lists)
536  write_tecplot_zone_footer(outfile, nplot);
537  }
538 
539 
540  //==============================================================
541  /// Output function:
542  /// r,z,u,v,w,p
543  /// in tecplot format. Specified number of plot points in each
544  /// coordinate direction.
545  //==============================================================
547  const unsigned& nplot)
548  {
549  // Vector of local coordinates
550  Vector<double> s(2);
551 
552  // Tecplot header info
553  fprintf(file_pt, "%s ", tecplot_zone_string(nplot).c_str());
554 
555  // Loop over plot points
556  unsigned num_plot_points = nplot_points(nplot);
557  for (unsigned iplot = 0; iplot < num_plot_points; iplot++)
558  {
559  // Get local coordinates of plot point
560  get_s_plot(iplot, nplot, s);
561 
562  // Coordinates
563  for (unsigned i = 0; i < 2; i++)
564  {
565  // outfile << interpolated_x(s,i) << " ";
566  fprintf(file_pt, "%g ", interpolated_x(s, i));
567  }
568 
569  // Velocities
570  for (unsigned i = 0; i < 3; i++)
571  {
572  // outfile << interpolated_u(s,i) << " ";
573  fprintf(file_pt, "%g ", interpolated_u_axi_nst(s, i));
574  }
575 
576  // Pressure
577  // outfile << interpolated_p(s) << " ";
578  fprintf(file_pt, "%g ", interpolated_p_axi_nst(s));
579 
580  // outfile << std::endl;
581  fprintf(file_pt, "\n");
582  }
583  // outfile << std::endl;
584  fprintf(file_pt, "\n");
585 
586  // Write tecplot footer (e.g. FE connectivity lists)
587  write_tecplot_zone_footer(file_pt, nplot);
588  }
589 
590 
591  //==============================================================
592  /// Return integral of dissipation over element
593  //==============================================================
595  {
596  throw OomphLibError(
597  "Check the dissipation calculation for axisymmetric NSt",
598  OOMPH_CURRENT_FUNCTION,
599  OOMPH_EXCEPTION_LOCATION);
600 
601  // Initialise
602  double diss = 0.0;
603 
604  // Set the value of Nintpt
605  unsigned Nintpt = integral_pt()->nweight();
606 
607  // Set the Vector to hold local coordinates
608  Vector<double> s(2);
609 
610  // Loop over the integration points
611  for (unsigned ipt = 0; ipt < Nintpt; ipt++)
612  {
613  // Assign values of s
614  for (unsigned i = 0; i < 2; i++)
615  {
616  s[i] = integral_pt()->knot(ipt, i);
617  }
618 
619  // Get the integral weight
620  double w = integral_pt()->weight(ipt);
621 
622  // Get Jacobian of mapping
623  double J = J_eulerian(s);
624 
625  // Get strain rate matrix
626  DenseMatrix<double> strainrate(3, 3);
627  strain_rate(s, strainrate);
628 
629  // Initialise
630  double local_diss = 0.0;
631  for (unsigned i = 0; i < 3; i++)
632  {
633  for (unsigned j = 0; j < 3; j++)
634  {
635  local_diss += 2.0 * strainrate(i, j) * strainrate(i, j);
636  }
637  }
638 
639  diss += local_diss * w * J;
640  }
641 
642  return diss;
643  }
644 
645  //==============================================================
646  /// Compute traction (on the viscous scale) at local
647  /// coordinate s for outer unit normal N
648  //==============================================================
650  const Vector<double>& s,
651  const Vector<double>& N,
652  Vector<double>& traction) const
653  {
654  // throw OomphLibError(
655  // "Check the traction calculation for axisymmetric NSt",
656  // OOMPH_CURRENT_FUNCTION,
657  // OOMPH_EXCEPTION_LOCATION);
658 
659  // Pad out normal vector if required
660  Vector<double> n_local(3, 0.0);
661  n_local[0] = N[0];
662  n_local[1] = N[1];
663 
664 #ifdef PARANOID
665  if ((N.size() == 3) && (N[2] != 0.0))
666  {
667  throw OomphLibError(
668  "Unit normal passed into this fct should either be 2D (r,z) or have a "
669  "zero component in the theta-direction",
670  OOMPH_CURRENT_FUNCTION,
671  OOMPH_EXCEPTION_LOCATION);
672  }
673 #endif
674 
675  // Get velocity gradients
676  DenseMatrix<double> strainrate(3, 3);
677  strain_rate(s, strainrate);
678 
679  // Get pressure
680  double press = interpolated_p_axi_nst(s);
681 
682  // Loop over traction components
683  for (unsigned i = 0; i < 3; i++)
684  {
685  traction[i] = -press * n_local[i];
686  for (unsigned j = 0; j < 3; j++)
687  {
688  traction[i] += 2.0 * strainrate(i, j) * n_local[j];
689  }
690  }
691  }
692 
693  //==============================================================
694  /// Return dissipation at local coordinate s
695  //==============================================================
697  const Vector<double>& s) const
698  {
699  throw OomphLibError(
700  "Check the dissipation calculation for axisymmetric NSt",
701  OOMPH_CURRENT_FUNCTION,
702  OOMPH_EXCEPTION_LOCATION);
703 
704  // Get strain rate matrix
705  DenseMatrix<double> strainrate(3, 3);
706  strain_rate(s, strainrate);
707 
708  // Initialise
709  double local_diss = 0.0;
710  for (unsigned i = 0; i < 3; i++)
711  {
712  for (unsigned j = 0; j < 3; j++)
713  {
714  local_diss += 2.0 * strainrate(i, j) * strainrate(i, j);
715  }
716  }
717 
718  return local_diss;
719  }
720 
721  //==============================================================
722  /// Get strain-rate tensor: \f$ e_{ij} \f$ where
723  /// \f$ i,j = r,z,\theta \f$ (in that order)
724  //==============================================================
726  const Vector<double>& s, DenseMatrix<double>& strainrate) const
727  {
728 #ifdef PARANOID
729  if ((strainrate.ncol() != 3) || (strainrate.nrow() != 3))
730  {
731  std::ostringstream error_message;
732  error_message << "The strain rate has incorrect dimensions "
733  << strainrate.ncol() << " x " << strainrate.nrow()
734  << " Not 3" << std::endl;
735 
736  throw OomphLibError(
737  error_message.str(), OOMPH_CURRENT_FUNCTION, OOMPH_EXCEPTION_LOCATION);
738  }
739 #endif
740 
741  // Find out how many nodes there are in the element
742  unsigned n_node = nnode();
743 
744  // Set up memory for the shape and test functions
745  Shape psi(n_node);
746  DShape dpsidx(n_node, 2);
747 
748  // Call the derivatives of the shape functions
749  dshape_eulerian(s, psi, dpsidx);
750 
751  // Radius
752  double interpolated_r = 0.0;
753 
754  // Velocity components and their derivatives
755  double ur = 0.0;
756  double durdr = 0.0;
757  double durdz = 0.0;
758  double uz = 0.0;
759  double duzdr = 0.0;
760  double duzdz = 0.0;
761  double uphi = 0.0;
762  double duphidr = 0.0;
763  double duphidz = 0.0;
764 
765  // Get the local storage for the indices
766  unsigned u_nodal_index[3];
767  for (unsigned i = 0; i < 3; ++i)
768  {
769  u_nodal_index[i] = u_index_axi_nst(i);
770  }
771 
772  // Loop over nodes to assemble velocities and their derivatives
773  // w.r.t. to r and z (x_0 and x_1)
774  for (unsigned l = 0; l < n_node; l++)
775  {
776  interpolated_r += nodal_position(l, 0) * psi[l];
777 
778  ur += nodal_value(l, u_nodal_index[0]) * psi[l];
779  uz += nodal_value(l, u_nodal_index[1]) * psi[l];
780  uphi += nodal_value(l, u_nodal_index[2]) * psi[l];
781 
782  durdr += nodal_value(l, u_nodal_index[0]) * dpsidx(l, 0);
783  durdz += nodal_value(l, u_nodal_index[0]) * dpsidx(l, 1);
784 
785  duzdr += nodal_value(l, u_nodal_index[1]) * dpsidx(l, 0);
786  duzdz += nodal_value(l, u_nodal_index[1]) * dpsidx(l, 1);
787 
788  duphidr += nodal_value(l, u_nodal_index[2]) * dpsidx(l, 0);
789  duphidz += nodal_value(l, u_nodal_index[2]) * dpsidx(l, 1);
790  }
791 
792 
793  // Assign strain rates without negative powers of the radius
794  // and zero those with:
795  strainrate(0, 0) = durdr;
796  strainrate(0, 1) = 0.5 * (durdz + duzdr);
797  strainrate(1, 0) = strainrate(0, 1);
798  strainrate(0, 2) = 0.0;
799  strainrate(2, 0) = strainrate(0, 2);
800  strainrate(1, 1) = duzdz;
801  strainrate(1, 2) = 0.5 * duphidz;
802  strainrate(2, 1) = strainrate(1, 2);
803  strainrate(2, 2) = 0.0;
804 
805 
806  // Overwrite the strain rates with negative powers of the radius
807  // unless we're at the origin
808  if (std::fabs(interpolated_r) > 1.0e-16)
809  {
810  double inverse_radius = 1.0 / interpolated_r;
811  strainrate(0, 2) = 0.5 * (duphidr - inverse_radius * uphi);
812  strainrate(2, 0) = strainrate(0, 2);
813  strainrate(2, 2) = inverse_radius * ur;
814  }
815  }
816 
817 
818  //==============================================================
819  /// Get integral of kinetic energy over element:
820  //==============================================================
822  {
823  throw OomphLibError(
824  "Check the kinetic energy calculation for axisymmetric NSt",
825  OOMPH_CURRENT_FUNCTION,
826  OOMPH_EXCEPTION_LOCATION);
827 
828  // Initialise
829  double kin_en = 0.0;
830 
831  // Set the value of Nintpt
832  unsigned Nintpt = integral_pt()->nweight();
833 
834  // Set the Vector to hold local coordinates
835  Vector<double> s(2);
836 
837  // Loop over the integration points
838  for (unsigned ipt = 0; ipt < Nintpt; ipt++)
839  {
840  // Assign values of s
841  for (unsigned i = 0; i < 2; i++)
842  {
843  s[i] = integral_pt()->knot(ipt, i);
844  }
845 
846  // Get the integral weight
847  double w = integral_pt()->weight(ipt);
848 
849  // Get Jacobian of mapping
850  double J = J_eulerian(s);
851 
852  // Loop over directions
853  double veloc_squared = 0.0;
854  for (unsigned i = 0; i < 3; i++)
855  {
856  veloc_squared +=
858  }
859 
860  kin_en += 0.5 * veloc_squared * w * J * interpolated_x(s, 0);
861  }
862 
863  return kin_en;
864  }
865 
866  //==============================================================
867  /// Return pressure integrated over the element
868  //==============================================================
870  {
871  // Initialise
872  double press_int = 0;
873 
874  // Set the value of Nintpt
875  unsigned Nintpt = integral_pt()->nweight();
876 
877  // Set the Vector to hold local coordinates
878  Vector<double> s(2);
879 
880  // Loop over the integration points
881  for (unsigned ipt = 0; ipt < Nintpt; ipt++)
882  {
883  // Assign values of s
884  for (unsigned i = 0; i < 2; i++)
885  {
886  s[i] = integral_pt()->knot(ipt, i);
887  }
888 
889  // Get the integral weight
890  double w = integral_pt()->weight(ipt);
891 
892  // Get Jacobian of mapping
893  double J = J_eulerian(s);
894 
895  // Premultiply the weights and the Jacobian
896  double W = w * J * interpolated_x(s, 0);
897 
898  // Get pressure
899  double press = interpolated_p_axi_nst(s);
900 
901  // Add
902  press_int += press * W;
903  }
904 
905  return press_int;
906  }
907 
908  //==============================================================
909  /// Compute the residuals for the Navier--Stokes
910  /// equations; flag=1(or 0): do (or don't) compute the
911  /// Jacobian as well.
912  //==============================================================
915  Vector<double>& residuals,
916  DenseMatrix<double>& jacobian,
917  DenseMatrix<double>& mass_matrix,
918  unsigned flag)
919  {
920  // Find out how many nodes there are
921  unsigned n_node = nnode();
922 
923  // Get continuous time from timestepper of first node
924  double time = node_pt(0)->time_stepper_pt()->time_pt()->time();
925 
926  // Find out how many pressure dofs there are
927  unsigned n_pres = npres_axi_nst();
928 
929  // Get the nodal indices at which the velocity is stored
930  unsigned u_nodal_index[3];
931  for (unsigned i = 0; i < 3; ++i)
932  {
933  u_nodal_index[i] = u_index_axi_nst(i);
934  }
935 
936  // Set up memory for the shape and test functions
937  // Note that there are only two dimensions, r and z in this problem
938  Shape psif(n_node), testf(n_node);
939  DShape dpsifdx(n_node, 2), dtestfdx(n_node, 2);
940 
941  // Set up memory for pressure shape and test functions
942  Shape psip(n_pres), testp(n_pres);
943 
944  // Number of integration points
945  unsigned Nintpt = integral_pt()->nweight();
946 
947  // Set the Vector to hold local coordinates (two dimensions)
948  Vector<double> s(2);
949 
950  // Get Physical Variables from Element
951  // Reynolds number must be multiplied by the density ratio
952  double scaled_re = re() * density_ratio();
953  double scaled_re_st = re_st() * density_ratio();
954  double scaled_re_inv_fr = re_invfr() * density_ratio();
955  double scaled_re_inv_ro = re_invro() * density_ratio();
956  // double visc_ratio = viscosity_ratio();
957  Vector<double> G = g();
958 
959  // Integers used to store the local equation and unknown numbers
960  int local_eqn = 0, local_unknown = 0;
961 
962  // Loop over the integration points
963  for (unsigned ipt = 0; ipt < Nintpt; ipt++)
964  {
965  // Assign values of s
966  for (unsigned i = 0; i < 2; i++) s[i] = integral_pt()->knot(ipt, i);
967  // Get the integral weight
968  double w = integral_pt()->weight(ipt);
969 
970  // Call the derivatives of the shape and test functions
972  ipt, psif, dpsifdx, testf, dtestfdx);
973 
974  // Call the pressure shape and test functions
975  pshape_axi_nst(s, psip, testp);
976 
977  // Premultiply the weights and the Jacobian
978  double W = w * J;
979 
980  // Allocate storage for the position and the derivative of the
981  // mesh positions wrt time
983  Vector<double> mesh_velocity(2, 0.0);
984  // Allocate storage for the pressure, velocity components and their
985  // time and spatial derivatives
986  double interpolated_p = 0.0;
987  Vector<double> interpolated_u(3, 0.0);
988  Vector<double> dudt(3, 0.0);
989  DenseMatrix<double> interpolated_dudx(3, 2, 0.0);
990 
991  // Calculate pressure at integration point
992  for (unsigned l = 0; l < n_pres; l++)
993  {
994  interpolated_p += p_axi_nst(l) * psip[l];
995  }
996 
997  // Calculate velocities and derivatives at integration point
998 
999  // Loop over nodes
1000  for (unsigned l = 0; l < n_node; l++)
1001  {
1002  // Cache the shape function
1003  const double psif_ = psif(l);
1004  // Loop over the two coordinate directions
1005  for (unsigned i = 0; i < 2; i++)
1006  {
1007  interpolated_x[i] += this->raw_nodal_position(l, i) * psif_;
1008  }
1009  // mesh_velocity[i] += dnodal_position_dt(l,i)*psif[l];
1010 
1011  // Loop over the three velocity directions
1012  for (unsigned i = 0; i < 3; i++)
1013  {
1014  // Get the u_value
1015  const double u_value = this->raw_nodal_value(l, u_nodal_index[i]);
1016  interpolated_u[i] += u_value * psif_;
1017  dudt[i] += du_dt_axi_nst(l, i) * psif_;
1018  // Loop over derivative directions
1019  for (unsigned j = 0; j < 2; j++)
1020  {
1021  interpolated_dudx(i, j) += u_value * dpsifdx(l, j);
1022  }
1023  }
1024  }
1025 
1026  // Get the mesh velocity if ALE is enabled
1027  if (!ALE_is_disabled)
1028  {
1029  // Loop over nodes
1030  for (unsigned l = 0; l < n_node; l++)
1031  {
1032  // Loop over the two coordinate directions
1033  for (unsigned i = 0; i < 2; i++)
1034  {
1035  mesh_velocity[i] += this->raw_dnodal_position_dt(l, i) * psif(l);
1036  }
1037  }
1038  }
1039 
1040 
1041  // Get the user-defined body force terms
1042  Vector<double> body_force(3);
1043  get_body_force_axi_nst(time, ipt, s, interpolated_x, body_force);
1044 
1045  // Get the user-defined source function
1046  double source = get_source_fct(time, ipt, interpolated_x);
1047 
1048  // Get the user-defined viscosity function
1049  double visc_ratio;
1050  get_viscosity_ratio_axisym_nst(ipt, s, interpolated_x, visc_ratio);
1051 
1052  // r is the first position component
1053  double r = interpolated_x[0];
1054 
1055  // MOMENTUM EQUATIONS
1056  //------------------
1057 
1058  // Loop over the test functions
1059  for (unsigned l = 0; l < n_node; l++)
1060  {
1061  // FIRST (RADIAL) MOMENTUM EQUATION
1062  local_eqn = nodal_local_eqn(l, u_nodal_index[0]);
1063  // If it's not a boundary condition
1064  if (local_eqn >= 0)
1065  {
1066  // Add the user-defined body force terms
1067  residuals[local_eqn] += r * body_force[0] * testf[l] * W;
1068 
1069  // Add the gravitational body force term
1070  residuals[local_eqn] += r * scaled_re_inv_fr * testf[l] * G[0] * W;
1071 
1072  // Add the pressure gradient term
1073  residuals[local_eqn] +=
1074  interpolated_p * (testf[l] + r * dtestfdx(l, 0)) * W;
1075 
1076  // Add in the stress tensor terms
1077  // The viscosity ratio needs to go in here to ensure
1078  // continuity of normal stress is satisfied even in flows
1079  // with zero pressure gradient!
1080  residuals[local_eqn] -= visc_ratio * r * (1.0 + Gamma[0]) *
1081  interpolated_dudx(0, 0) * dtestfdx(l, 0) * W;
1082 
1083  residuals[local_eqn] -=
1084  visc_ratio * r *
1085  (interpolated_dudx(0, 1) + Gamma[0] * interpolated_dudx(1, 0)) *
1086  dtestfdx(l, 1) * W;
1087 
1088  residuals[local_eqn] -= visc_ratio * (1.0 + Gamma[0]) *
1089  interpolated_u[0] * testf[l] * W / r;
1090 
1091  // Add in the inertial terms
1092  // du/dt term
1093  residuals[local_eqn] -= scaled_re_st * r * dudt[0] * testf[l] * W;
1094 
1095  // Convective terms
1096  residuals[local_eqn] -=
1097  scaled_re *
1098  (r * interpolated_u[0] * interpolated_dudx(0, 0) -
1099  interpolated_u[2] * interpolated_u[2] +
1100  r * interpolated_u[1] * interpolated_dudx(0, 1)) *
1101  testf[l] * W;
1102 
1103  // Mesh velocity terms
1104  if (!ALE_is_disabled)
1105  {
1106  for (unsigned k = 0; k < 2; k++)
1107  {
1108  residuals[local_eqn] += scaled_re_st * r * mesh_velocity[k] *
1109  interpolated_dudx(0, k) * testf[l] * W;
1110  }
1111  }
1112 
1113  // Add the Coriolis term
1114  residuals[local_eqn] +=
1115  2.0 * r * scaled_re_inv_ro * interpolated_u[2] * testf[l] * W;
1116 
1117  // CALCULATE THE JACOBIAN
1118  if (flag)
1119  {
1120  // Loop over the velocity shape functions again
1121  for (unsigned l2 = 0; l2 < n_node; l2++)
1122  {
1123  local_unknown = nodal_local_eqn(l2, u_nodal_index[0]);
1124  // Radial velocity component
1125  if (local_unknown >= 0)
1126  {
1127  if (flag == 2)
1128  {
1129  // Add the mass matrix
1130  mass_matrix(local_eqn, local_unknown) +=
1131  scaled_re_st * r * psif[l2] * testf[l] * W;
1132  }
1133 
1134  // Add contribution to the Jacobian matrix
1135  jacobian(local_eqn, local_unknown) -=
1136  visc_ratio * r * (1.0 + Gamma[0]) * dpsifdx(l2, 0) *
1137  dtestfdx(l, 0) * W;
1138 
1139  jacobian(local_eqn, local_unknown) -=
1140  visc_ratio * r * dpsifdx(l2, 1) * dtestfdx(l, 1) * W;
1141 
1142  jacobian(local_eqn, local_unknown) -=
1143  visc_ratio * (1.0 + Gamma[0]) * psif[l2] * testf[l] * W / r;
1144 
1145  // Add in the inertial terms
1146  // du/dt term
1147  jacobian(local_eqn, local_unknown) -=
1148  scaled_re_st * r *
1149  node_pt(l2)->time_stepper_pt()->weight(1, 0) * psif[l2] *
1150  testf[l] * W;
1151 
1152  // Convective terms
1153  jacobian(local_eqn, local_unknown) -=
1154  scaled_re *
1155  (r * psif[l2] * interpolated_dudx(0, 0) +
1156  r * interpolated_u[0] * dpsifdx(l2, 0) +
1157  r * interpolated_u[1] * dpsifdx(l2, 1)) *
1158  testf[l] * W;
1159 
1160  // Mesh velocity terms
1161  if (!ALE_is_disabled)
1162  {
1163  for (unsigned k = 0; k < 2; k++)
1164  {
1165  jacobian(local_eqn, local_unknown) +=
1166  scaled_re_st * r * mesh_velocity[k] * dpsifdx(l2, k) *
1167  testf[l] * W;
1168  }
1169  }
1170  }
1171 
1172 
1173  // Axial velocity component
1174  local_unknown = nodal_local_eqn(l2, u_nodal_index[1]);
1175  if (local_unknown >= 0)
1176  {
1177  jacobian(local_eqn, local_unknown) -=
1178  visc_ratio * r * Gamma[0] * dpsifdx(l2, 0) * dtestfdx(l, 1) *
1179  W;
1180 
1181  // Convective terms
1182  jacobian(local_eqn, local_unknown) -= scaled_re * r * psif[l2] *
1183  interpolated_dudx(0, 1) *
1184  testf[l] * W;
1185  }
1186 
1187  // Azimuthal velocity component
1188  local_unknown = nodal_local_eqn(l2, u_nodal_index[2]);
1189  if (local_unknown >= 0)
1190  {
1191  // Convective terms
1192  jacobian(local_eqn, local_unknown) -= -scaled_re * 2.0 *
1193  interpolated_u[2] *
1194  psif[l2] * testf[l] * W;
1195 
1196  // Coriolis terms
1197  jacobian(local_eqn, local_unknown) +=
1198  2.0 * r * scaled_re_inv_ro * psif[l2] * testf[l] * W;
1199  }
1200  }
1201 
1202  /*Now loop over pressure shape functions*/
1203  /*This is the contribution from pressure gradient*/
1204  for (unsigned l2 = 0; l2 < n_pres; l2++)
1205  {
1206  local_unknown = p_local_eqn(l2);
1207  /*If we are at a non-zero degree of freedom in the entry*/
1208  if (local_unknown >= 0)
1209  {
1210  jacobian(local_eqn, local_unknown) +=
1211  psip[l2] * (testf[l] + r * dtestfdx(l, 0)) * W;
1212  }
1213  }
1214  } /*End of Jacobian calculation*/
1215 
1216  } // End of if not boundary condition statement
1217 
1218  // SECOND (AXIAL) MOMENTUM EQUATION
1219  local_eqn = nodal_local_eqn(l, u_nodal_index[1]);
1220  // If it's not a boundary condition
1221  if (local_eqn >= 0)
1222  {
1223  // Add the user-defined body force terms
1224  // Remember to multiply by the density ratio!
1225  residuals[local_eqn] += r * body_force[1] * testf[l] * W;
1226 
1227  // Add the gravitational body force term
1228  residuals[local_eqn] += r * scaled_re_inv_fr * testf[l] * G[1] * W;
1229 
1230  // Add the pressure gradient term
1231  residuals[local_eqn] += r * interpolated_p * dtestfdx(l, 1) * W;
1232 
1233  // Add in the stress tensor terms
1234  // The viscosity ratio needs to go in here to ensure
1235  // continuity of normal stress is satisfied even in flows
1236  // with zero pressure gradient!
1237  residuals[local_eqn] -=
1238  visc_ratio * r *
1239  (interpolated_dudx(1, 0) + Gamma[1] * interpolated_dudx(0, 1)) *
1240  dtestfdx(l, 0) * W;
1241 
1242  residuals[local_eqn] -= visc_ratio * r * (1.0 + Gamma[1]) *
1243  interpolated_dudx(1, 1) * dtestfdx(l, 1) * W;
1244 
1245  // Add in the inertial terms
1246  // du/dt term
1247  residuals[local_eqn] -= scaled_re_st * r * dudt[1] * testf[l] * W;
1248 
1249  // Convective terms
1250  residuals[local_eqn] -=
1251  scaled_re *
1252  (r * interpolated_u[0] * interpolated_dudx(1, 0) +
1253  r * interpolated_u[1] * interpolated_dudx(1, 1)) *
1254  testf[l] * W;
1255 
1256  // Mesh velocity terms
1257  if (!ALE_is_disabled)
1258  {
1259  for (unsigned k = 0; k < 2; k++)
1260  {
1261  residuals[local_eqn] += scaled_re_st * r * mesh_velocity[k] *
1262  interpolated_dudx(1, k) * testf[l] * W;
1263  }
1264  }
1265 
1266  // CALCULATE THE JACOBIAN
1267  if (flag)
1268  {
1269  // Loop over the velocity shape functions again
1270  for (unsigned l2 = 0; l2 < n_node; l2++)
1271  {
1272  local_unknown = nodal_local_eqn(l2, u_nodal_index[0]);
1273  // Radial velocity component
1274  if (local_unknown >= 0)
1275  {
1276  // Add in the stress tensor terms
1277  // The viscosity ratio needs to go in here to ensure
1278  // continuity of normal stress is satisfied even in flows
1279  // with zero pressure gradient!
1280  jacobian(local_eqn, local_unknown) -=
1281  visc_ratio * r * Gamma[1] * dpsifdx(l2, 1) * dtestfdx(l, 0) *
1282  W;
1283 
1284  // Convective terms
1285  jacobian(local_eqn, local_unknown) -= scaled_re * r * psif[l2] *
1286  interpolated_dudx(1, 0) *
1287  testf[l] * W;
1288  }
1289 
1290  // Axial velocity component
1291  local_unknown = nodal_local_eqn(l2, u_nodal_index[1]);
1292  if (local_unknown >= 0)
1293  {
1294  if (flag == 2)
1295  {
1296  // Add the mass matrix
1297  mass_matrix(local_eqn, local_unknown) +=
1298  scaled_re_st * r * psif[l2] * testf[l] * W;
1299  }
1300 
1301 
1302  // Add in the stress tensor terms
1303  // The viscosity ratio needs to go in here to ensure
1304  // continuity of normal stress is satisfied even in flows
1305  // with zero pressure gradient!
1306  jacobian(local_eqn, local_unknown) -=
1307  visc_ratio * r * dpsifdx(l2, 0) * dtestfdx(l, 0) * W;
1308 
1309  jacobian(local_eqn, local_unknown) -=
1310  visc_ratio * r * (1.0 + Gamma[1]) * dpsifdx(l2, 1) *
1311  dtestfdx(l, 1) * W;
1312 
1313  // Add in the inertial terms
1314  // du/dt term
1315  jacobian(local_eqn, local_unknown) -=
1316  scaled_re_st * r *
1317  node_pt(l2)->time_stepper_pt()->weight(1, 0) * psif[l2] *
1318  testf[l] * W;
1319 
1320  // Convective terms
1321  jacobian(local_eqn, local_unknown) -=
1322  scaled_re *
1323  (r * interpolated_u[0] * dpsifdx(l2, 0) +
1324  r * psif[l2] * interpolated_dudx(1, 1) +
1325  r * interpolated_u[1] * dpsifdx(l2, 1)) *
1326  testf[l] * W;
1327 
1328 
1329  // Mesh velocity terms
1330  if (!ALE_is_disabled)
1331  {
1332  for (unsigned k = 0; k < 2; k++)
1333  {
1334  jacobian(local_eqn, local_unknown) +=
1335  scaled_re_st * r * mesh_velocity[k] * dpsifdx(l2, k) *
1336  testf[l] * W;
1337  }
1338  }
1339  }
1340 
1341  // There are no azimithal terms in the axial momentum equation
1342  } // End of loop over velocity shape functions
1343 
1344  /*Now loop over pressure shape functions*/
1345  /*This is the contribution from pressure gradient*/
1346  for (unsigned l2 = 0; l2 < n_pres; l2++)
1347  {
1348  local_unknown = p_local_eqn(l2);
1349  /*If we are at a non-zero degree of freedom in the entry*/
1350  if (local_unknown >= 0)
1351  {
1352  jacobian(local_eqn, local_unknown) +=
1353  r * psip[l2] * dtestfdx(l, 1) * W;
1354  }
1355  }
1356  } /*End of Jacobian calculation*/
1357 
1358  } // End of AXIAL MOMENTUM EQUATION
1359 
1360  // THIRD (AZIMUTHAL) MOMENTUM EQUATION
1361  local_eqn = nodal_local_eqn(l, u_nodal_index[2]);
1362  if (local_eqn >= 0)
1363  {
1364  // Add the user-defined body force terms
1365  // Remember to multiply by the density ratio!
1366  residuals[local_eqn] += r * body_force[2] * testf[l] * W;
1367 
1368  // Add the gravitational body force term
1369  residuals[local_eqn] += r * scaled_re_inv_fr * testf[l] * G[2] * W;
1370 
1371  // There is NO pressure gradient term
1372 
1373  // Add in the stress tensor terms
1374  // The viscosity ratio needs to go in here to ensure
1375  // continuity of normal stress is satisfied even in flows
1376  // with zero pressure gradient!
1377  residuals[local_eqn] -=
1378  visc_ratio *
1379  (r * interpolated_dudx(2, 0) - Gamma[0] * interpolated_u[2]) *
1380  dtestfdx(l, 0) * W;
1381 
1382  residuals[local_eqn] -=
1383  visc_ratio * r * interpolated_dudx(2, 1) * dtestfdx(l, 1) * W;
1384 
1385  residuals[local_eqn] -=
1386  visc_ratio *
1387  ((interpolated_u[2] / r) - Gamma[0] * interpolated_dudx(2, 0)) *
1388  testf[l] * W;
1389 
1390 
1391  // Add in the inertial terms
1392  // du/dt term
1393  residuals[local_eqn] -= scaled_re_st * r * dudt[2] * testf[l] * W;
1394 
1395  // Convective terms
1396  residuals[local_eqn] -=
1397  scaled_re *
1398  (r * interpolated_u[0] * interpolated_dudx(2, 0) +
1399  interpolated_u[0] * interpolated_u[2] +
1400  r * interpolated_u[1] * interpolated_dudx(2, 1)) *
1401  testf[l] * W;
1402 
1403  // Mesh velocity terms
1404  if (!ALE_is_disabled)
1405  {
1406  for (unsigned k = 0; k < 2; k++)
1407  {
1408  residuals[local_eqn] += scaled_re_st * r * mesh_velocity[k] *
1409  interpolated_dudx(2, k) * testf[l] * W;
1410  }
1411  }
1412 
1413  // Add the Coriolis term
1414  residuals[local_eqn] -=
1415  2.0 * r * scaled_re_inv_ro * interpolated_u[0] * testf[l] * W;
1416 
1417  // CALCULATE THE JACOBIAN
1418  if (flag)
1419  {
1420  // Loop over the velocity shape functions again
1421  for (unsigned l2 = 0; l2 < n_node; l2++)
1422  {
1423  // Radial velocity component
1424  local_unknown = nodal_local_eqn(l2, u_nodal_index[0]);
1425  if (local_unknown >= 0)
1426  {
1427  // Convective terms
1428  jacobian(local_eqn, local_unknown) -=
1429  scaled_re *
1430  (r * psif[l2] * interpolated_dudx(2, 0) +
1431  psif[l2] * interpolated_u[2]) *
1432  testf[l] * W;
1433 
1434  // Coriolis term
1435  jacobian(local_eqn, local_unknown) -=
1436  2.0 * r * scaled_re_inv_ro * psif[l2] * testf[l] * W;
1437  }
1438 
1439  // Axial velocity component
1440  local_unknown = nodal_local_eqn(l2, u_nodal_index[1]);
1441  if (local_unknown >= 0)
1442  {
1443  // Convective terms
1444  jacobian(local_eqn, local_unknown) -= scaled_re * r * psif[l2] *
1445  interpolated_dudx(2, 1) *
1446  testf[l] * W;
1447  }
1448 
1449  // Azimuthal velocity component
1450  local_unknown = nodal_local_eqn(l2, u_nodal_index[2]);
1451  if (local_unknown >= 0)
1452  {
1453  if (flag == 2)
1454  {
1455  // Add the mass matrix
1456  mass_matrix(local_eqn, local_unknown) +=
1457  scaled_re_st * r * psif[l2] * testf[l] * W;
1458  }
1459 
1460  // Add in the stress tensor terms
1461  // The viscosity ratio needs to go in here to ensure
1462  // continuity of normal stress is satisfied even in flows
1463  // with zero pressure gradient!
1464  jacobian(local_eqn, local_unknown) -=
1465  visc_ratio * (r * dpsifdx(l2, 0) - Gamma[0] * psif[l2]) *
1466  dtestfdx(l, 0) * W;
1467 
1468  jacobian(local_eqn, local_unknown) -=
1469  visc_ratio * r * dpsifdx(l2, 1) * dtestfdx(l, 1) * W;
1470 
1471  jacobian(local_eqn, local_unknown) -=
1472  visc_ratio * ((psif[l2] / r) - Gamma[0] * dpsifdx(l2, 0)) *
1473  testf[l] * W;
1474 
1475  // Add in the inertial terms
1476  // du/dt term
1477  jacobian(local_eqn, local_unknown) -=
1478  scaled_re_st * r *
1479  node_pt(l2)->time_stepper_pt()->weight(1, 0) * psif[l2] *
1480  testf[l] * W;
1481 
1482  // Convective terms
1483  jacobian(local_eqn, local_unknown) -=
1484  scaled_re *
1485  (r * interpolated_u[0] * dpsifdx(l2, 0) +
1486  interpolated_u[0] * psif[l2] +
1487  r * interpolated_u[1] * dpsifdx(l2, 1)) *
1488  testf[l] * W;
1489 
1490  // Mesh velocity terms
1491  if (!ALE_is_disabled)
1492  {
1493  for (unsigned k = 0; k < 2; k++)
1494  {
1495  jacobian(local_eqn, local_unknown) +=
1496  scaled_re_st * r * mesh_velocity[k] * dpsifdx(l2, k) *
1497  testf[l] * W;
1498  }
1499  }
1500  }
1501  }
1502 
1503  // There are no pressure terms
1504  } // End of Jacobian
1505 
1506  } // End of AZIMUTHAL EQUATION
1507 
1508  } // End of loop over shape functions
1509 
1510 
1511  // CONTINUITY EQUATION
1512  //-------------------
1513 
1514  // Loop over the shape functions
1515  for (unsigned l = 0; l < n_pres; l++)
1516  {
1517  local_eqn = p_local_eqn(l);
1518  // If not a boundary conditions
1519  if (local_eqn >= 0)
1520  {
1521  // Source term
1522  residuals[local_eqn] -= r * source * testp[l] * W;
1523 
1524  // Gradient terms
1525  residuals[local_eqn] +=
1526  (interpolated_u[0] + r * interpolated_dudx(0, 0) +
1527  r * interpolated_dudx(1, 1)) *
1528  testp[l] * W;
1529 
1530  /*CALCULATE THE JACOBIAN*/
1531  if (flag)
1532  {
1533  /*Loop over the velocity shape functions*/
1534  for (unsigned l2 = 0; l2 < n_node; l2++)
1535  {
1536  // Radial velocity component
1537  local_unknown = nodal_local_eqn(l2, u_nodal_index[0]);
1538  if (local_unknown >= 0)
1539  {
1540  jacobian(local_eqn, local_unknown) +=
1541  (psif[l2] + r * dpsifdx(l2, 0)) * testp[l] * W;
1542  }
1543 
1544  // Axial velocity component
1545  local_unknown = nodal_local_eqn(l2, u_nodal_index[1]);
1546  if (local_unknown >= 0)
1547  {
1548  jacobian(local_eqn, local_unknown) +=
1549  r * dpsifdx(l2, 1) * testp[l] * W;
1550  }
1551  } /*End of loop over l2*/
1552  } /*End of Jacobian calculation*/
1553 
1554  } // End of if not boundary condition
1555 
1556  } // End of loop over l
1557  }
1558  }
1559 
1560 
1561  //======================================================================
1562  /// Compute derivatives of elemental residual vector with respect
1563  /// to nodal coordinates.
1564  /// dresidual_dnodal_coordinates(l,i,j) = d res(l) / dX_{ij}
1565  /// Overloads the FD-based version in the FiniteElement base class.
1566  //======================================================================
1568  RankThreeTensor<double>& dresidual_dnodal_coordinates)
1569  {
1570  // Return immediately if there are no dofs
1571  if (ndof() == 0)
1572  {
1573  return;
1574  }
1575 
1576  // Get continuous time from timestepper of first node
1577  double time = node_pt(0)->time_stepper_pt()->time_pt()->time();
1578 
1579  // Determine number of nodes in element
1580  const unsigned n_node = nnode();
1581 
1582  // Determine number of pressure dofs in element
1583  const unsigned n_pres = npres_axi_nst();
1584 
1585  // Find the indices at which the local velocities are stored
1586  unsigned u_nodal_index[3];
1587  for (unsigned i = 0; i < 3; i++)
1588  {
1589  u_nodal_index[i] = u_index_axi_nst(i);
1590  }
1591 
1592  // Set up memory for the shape and test functions
1593  // Note that there are only two dimensions, r and z, in this problem
1594  Shape psif(n_node), testf(n_node);
1595  DShape dpsifdx(n_node, 2), dtestfdx(n_node, 2);
1596 
1597  // Set up memory for pressure shape and test functions
1598  Shape psip(n_pres), testp(n_pres);
1599 
1600  // Deriatives of shape fct derivatives w.r.t. nodal coords
1601  RankFourTensor<double> d_dpsifdx_dX(2, n_node, n_node, 2);
1602  RankFourTensor<double> d_dtestfdx_dX(2, n_node, n_node, 2);
1603 
1604  // Derivative of Jacobian of mapping w.r.t. to nodal coords
1605  DenseMatrix<double> dJ_dX(2, n_node);
1606 
1607  // Derivatives of derivative of u w.r.t. nodal coords
1608  // Note that the entry d_dudx_dX(p,q,i,k) contains the derivative w.r.t.
1609  // nodal coordinate X_pq of du_i/dx_k. Since there are three velocity
1610  // components, i can take on the values 0, 1 and 2, while k and p only
1611  // take on the values 0 and 1 since there are only two spatial dimensions.
1612  RankFourTensor<double> d_dudx_dX(2, n_node, 3, 2);
1613 
1614  // Derivatives of nodal velocities w.r.t. nodal coords:
1615  // Assumption: Interaction only local via no-slip so
1616  // X_pq only affects U_iq.
1617  // Note that the entry d_U_dX(p,q,i) contains the derivative w.r.t. nodal
1618  // coordinate X_pq of nodal value U_iq. In other words this entry is the
1619  // derivative of the i-th velocity component w.r.t. the p-th spatial
1620  // coordinate, taken at the q-th local node.
1621  RankThreeTensor<double> d_U_dX(2, n_node, 3, 0.0);
1622 
1623  // Determine the number of integration points
1624  const unsigned n_intpt = integral_pt()->nweight();
1625 
1626  // Vector to hold local coordinates (two dimensions)
1627  Vector<double> s(2);
1628 
1629  // Get physical variables from element
1630  // (Reynolds number must be multiplied by the density ratio)
1631  const double scaled_re = re() * density_ratio();
1632  const double scaled_re_st = re_st() * density_ratio();
1633  const double scaled_re_inv_fr = re_invfr() * density_ratio();
1634  const double scaled_re_inv_ro = re_invro() * density_ratio();
1635  const double visc_ratio = viscosity_ratio();
1636  const Vector<double> G = g();
1637 
1638  // FD step
1640 
1641  // Pre-compute derivatives of nodal velocities w.r.t. nodal coords:
1642  // Assumption: Interaction only local via no-slip so
1643  // X_ij only affects U_ij.
1644  bool element_has_node_with_aux_node_update_fct = false;
1645  for (unsigned q = 0; q < n_node; q++)
1646  {
1647  // Get pointer to q-th local node
1648  Node* nod_pt = node_pt(q);
1649 
1650  // Only compute if there's a node-update fct involved
1651  if (nod_pt->has_auxiliary_node_update_fct_pt())
1652  {
1653  element_has_node_with_aux_node_update_fct = true;
1654 
1655  // This functionality has not been tested so issue a warning
1656  // to this effect
1657  std::ostringstream warning_stream;
1658  warning_stream << "\nThe functionality to evaluate the additional"
1659  << "\ncontribution to the deriv of the residual eqn"
1660  << "\nw.r.t. the nodal coordinates which comes about"
1661  << "\nif a node's values are updated using an auxiliary"
1662  << "\nnode update function has NOT been tested for"
1663  << "\naxisymmetric Navier-Stokes elements. Use at your"
1664  << "\nown risk" << std::endl;
1666  warning_stream.str(),
1667  "AxisymmetricNavierStokesEquations::get_dresidual_dnodal_coordinates",
1668  OOMPH_EXCEPTION_LOCATION);
1669 
1670  // Current nodal velocity
1671  Vector<double> u_ref(3);
1672  for (unsigned i = 0; i < 3; i++)
1673  {
1674  u_ref[i] = *(nod_pt->value_pt(u_nodal_index[i]));
1675  }
1676 
1677  // FD
1678  for (unsigned p = 0; p < 2; p++)
1679  {
1680  // Make backup
1681  double backup = nod_pt->x(p);
1682 
1683  // Do FD step. No node update required as we're
1684  // attacking the coordinate directly...
1685  nod_pt->x(p) += eps_fd;
1686 
1687  // Do auxiliary node update (to apply no slip)
1689 
1690  // Loop over velocity components
1691  for (unsigned i = 0; i < 3; i++)
1692  {
1693  // Evaluate
1694  d_U_dX(p, q, i) =
1695  (*(nod_pt->value_pt(u_nodal_index[i])) - u_ref[i]) / eps_fd;
1696  }
1697 
1698  // Reset
1699  nod_pt->x(p) = backup;
1700 
1701  // Do auxiliary node update (to apply no slip)
1703  }
1704  }
1705  }
1706 
1707  // Integer to store the local equation number
1708  int local_eqn = 0;
1709 
1710  // Loop over the integration points
1711  for (unsigned ipt = 0; ipt < n_intpt; ipt++)
1712  {
1713  // Assign values of s
1714  for (unsigned i = 0; i < 2; i++)
1715  {
1716  s[i] = integral_pt()->knot(ipt, i);
1717  }
1718 
1719  // Get the integral weight
1720  const double w = integral_pt()->weight(ipt);
1721 
1722  // Call the derivatives of the shape and test functions
1723  const double J = dshape_and_dtest_eulerian_at_knot_axi_nst(ipt,
1724  psif,
1725  dpsifdx,
1726  d_dpsifdx_dX,
1727  testf,
1728  dtestfdx,
1729  d_dtestfdx_dX,
1730  dJ_dX);
1731 
1732  // Call the pressure shape and test functions
1733  pshape_axi_nst(s, psip, testp);
1734 
1735  // Allocate storage for the position and the derivative of the
1736  // mesh positions w.r.t. time
1738  Vector<double> mesh_velocity(2, 0.0);
1739 
1740  // Allocate storage for the pressure, velocity components and their
1741  // time and spatial derivatives
1742  double interpolated_p = 0.0;
1743  Vector<double> interpolated_u(3, 0.0);
1744  Vector<double> dudt(3, 0.0);
1745  DenseMatrix<double> interpolated_dudx(3, 2, 0.0);
1746 
1747  // Calculate pressure at integration point
1748  for (unsigned l = 0; l < n_pres; l++)
1749  {
1750  interpolated_p += p_axi_nst(l) * psip[l];
1751  }
1752 
1753  // Calculate velocities and derivatives at integration point
1754  // ---------------------------------------------------------
1755 
1756  // Loop over nodes
1757  for (unsigned l = 0; l < n_node; l++)
1758  {
1759  // Cache the shape function
1760  const double psif_ = psif(l);
1761 
1762  // Loop over the two coordinate directions
1763  for (unsigned i = 0; i < 2; i++)
1764  {
1765  interpolated_x[i] += this->raw_nodal_position(l, i) * psif_;
1766  }
1767 
1768  // Loop over the three velocity directions
1769  for (unsigned i = 0; i < 3; i++)
1770  {
1771  // Get the nodal value
1772  const double u_value = this->raw_nodal_value(l, u_nodal_index[i]);
1773  interpolated_u[i] += u_value * psif_;
1774  dudt[i] += du_dt_axi_nst(l, i) * psif_;
1775 
1776  // Loop over derivative directions
1777  for (unsigned j = 0; j < 2; j++)
1778  {
1779  interpolated_dudx(i, j) += u_value * dpsifdx(l, j);
1780  }
1781  }
1782  }
1783 
1784  // Get the mesh velocity if ALE is enabled
1785  if (!ALE_is_disabled)
1786  {
1787  // Loop over nodes
1788  for (unsigned l = 0; l < n_node; l++)
1789  {
1790  // Loop over the two coordinate directions
1791  for (unsigned i = 0; i < 2; i++)
1792  {
1793  mesh_velocity[i] += this->raw_dnodal_position_dt(l, i) * psif[l];
1794  }
1795  }
1796  }
1797 
1798  // Calculate derivative of du_i/dx_k w.r.t. nodal positions X_{pq}
1799  for (unsigned q = 0; q < n_node; q++)
1800  {
1801  // Loop over the two coordinate directions
1802  for (unsigned p = 0; p < 2; p++)
1803  {
1804  // Loop over the three velocity components
1805  for (unsigned i = 0; i < 3; i++)
1806  {
1807  // Loop over the two coordinate directions
1808  for (unsigned k = 0; k < 2; k++)
1809  {
1810  double aux = 0.0;
1811 
1812  // Loop over nodes and add contribution
1813  for (unsigned j = 0; j < n_node; j++)
1814  {
1815  aux += this->raw_nodal_value(j, u_nodal_index[i]) *
1816  d_dpsifdx_dX(p, q, j, k);
1817  }
1818  d_dudx_dX(p, q, i, k) = aux;
1819  }
1820  }
1821  }
1822  }
1823 
1824  // Get weight of actual nodal position/value in computation of mesh
1825  // velocity from positional/value time stepper
1826  const double pos_time_weight =
1828  const double val_time_weight =
1829  node_pt(0)->time_stepper_pt()->weight(1, 0);
1830 
1831  // Get the user-defined body force terms
1832  Vector<double> body_force(3);
1833  get_body_force_axi_nst(time, ipt, s, interpolated_x, body_force);
1834 
1835  // Get the user-defined source function
1836  const double source = get_source_fct(time, ipt, interpolated_x);
1837 
1838  // Note: Can use raw values and avoid bypassing hanging information
1839  // because this is the non-refineable version!
1840 
1841  // Get gradient of body force function
1842  DenseMatrix<double> d_body_force_dx(3, 2, 0.0);
1844  time, ipt, s, interpolated_x, d_body_force_dx);
1845 
1846  // Get gradient of source function
1847  Vector<double> source_gradient(2, 0.0);
1848  get_source_fct_gradient(time, ipt, interpolated_x, source_gradient);
1849 
1850  // Cache r (the first position component)
1851  const double r = interpolated_x[0];
1852 
1853  // Assemble shape derivatives
1854  // --------------------------
1855 
1856  // ==================
1857  // MOMENTUM EQUATIONS
1858  // ==================
1859 
1860  // Loop over the test functions
1861  for (unsigned l = 0; l < n_node; l++)
1862  {
1863  // Cache the test function
1864  const double testf_ = testf[l];
1865 
1866  // --------------------------------
1867  // FIRST (RADIAL) MOMENTUM EQUATION
1868  // --------------------------------
1869  local_eqn = nodal_local_eqn(l, u_nodal_index[0]);
1870  ;
1871 
1872  // If it's not a boundary condition
1873  if (local_eqn >= 0)
1874  {
1875  // Loop over the two coordinate directions
1876  for (unsigned p = 0; p < 2; p++)
1877  {
1878  // Loop over nodes
1879  for (unsigned q = 0; q < n_node; q++)
1880  {
1881  // Residual x deriv of Jacobian
1882  // ----------------------------
1883 
1884  // Add the user-defined body force terms
1885  double sum = r * body_force[0] * testf_;
1886 
1887  // Add the gravitational body force term
1888  sum += r * scaled_re_inv_fr * testf_ * G[0];
1889 
1890  // Add the pressure gradient term
1891  sum += interpolated_p * (testf_ + r * dtestfdx(l, 0));
1892 
1893  // Add the stress tensor terms
1894  // The viscosity ratio needs to go in here to ensure
1895  // continuity of normal stress is satisfied even in flows
1896  // with zero pressure gradient!
1897  sum -= visc_ratio * r * (1.0 + Gamma[0]) *
1898  interpolated_dudx(0, 0) * dtestfdx(l, 0);
1899 
1900  sum -=
1901  visc_ratio * r *
1902  (interpolated_dudx(0, 1) + Gamma[0] * interpolated_dudx(1, 0)) *
1903  dtestfdx(l, 1);
1904 
1905  sum -=
1906  visc_ratio * (1.0 + Gamma[0]) * interpolated_u[0] * testf_ / r;
1907 
1908  // Add the du/dt term
1909  sum -= scaled_re_st * r * dudt[0] * testf_;
1910 
1911  // Add the convective terms
1912  sum -= scaled_re *
1913  (r * interpolated_u[0] * interpolated_dudx(0, 0) -
1914  interpolated_u[2] * interpolated_u[2] +
1915  r * interpolated_u[1] * interpolated_dudx(0, 1)) *
1916  testf_;
1917 
1918  // Add the mesh velocity terms
1919  if (!ALE_is_disabled)
1920  {
1921  for (unsigned k = 0; k < 2; k++)
1922  {
1923  sum += scaled_re_st * r * mesh_velocity[k] *
1924  interpolated_dudx(0, k) * testf_;
1925  }
1926  }
1927 
1928  // Add the Coriolis term
1929  sum += 2.0 * r * scaled_re_inv_ro * interpolated_u[2] * testf_;
1930 
1931  // Multiply through by deriv of Jacobian and integration weight
1932  dresidual_dnodal_coordinates(local_eqn, p, q) +=
1933  sum * dJ_dX(p, q) * w;
1934 
1935  // Derivative of residual x Jacobian
1936  // ---------------------------------
1937 
1938  // Body force
1939  sum = r * d_body_force_dx(0, p) * psif[q] * testf_;
1940  if (p == 0)
1941  {
1942  sum += body_force[0] * psif[q] * testf_;
1943  }
1944 
1945  // Gravitational body force
1946  if (p == 0)
1947  {
1948  sum += scaled_re_inv_fr * G[0] * psif[q] * testf_;
1949  }
1950 
1951  // Pressure gradient term
1952  sum += r * interpolated_p * d_dtestfdx_dX(p, q, l, 0);
1953  if (p == 0)
1954  {
1955  sum += interpolated_p * psif[q] * dtestfdx(l, 0);
1956  }
1957 
1958  // Viscous terms
1959  sum -=
1960  r * visc_ratio *
1961  ((1.0 + Gamma[0]) *
1962  (d_dudx_dX(p, q, 0, 0) * dtestfdx(l, 0) +
1963  interpolated_dudx(0, 0) * d_dtestfdx_dX(p, q, l, 0)) +
1964  (d_dudx_dX(p, q, 0, 1) + Gamma[0] * d_dudx_dX(p, q, 1, 0)) *
1965  dtestfdx(l, 1) +
1966  (interpolated_dudx(0, 1) +
1967  Gamma[0] * interpolated_dudx(1, 0)) *
1968  d_dtestfdx_dX(p, q, l, 1));
1969  if (p == 0)
1970  {
1971  sum -= visc_ratio *
1972  ((1.0 + Gamma[0]) *
1973  (interpolated_dudx(0, 0) * psif[q] * dtestfdx(l, 0) -
1974  interpolated_u[0] * psif[q] * testf_ / (r * r)) +
1975  (interpolated_dudx(0, 1) +
1976  Gamma[0] * interpolated_dudx(1, 0)) *
1977  psif[q] * dtestfdx(l, 1));
1978  }
1979 
1980  // Convective terms, including mesh velocity
1981  for (unsigned k = 0; k < 2; k++)
1982  {
1983  double tmp = scaled_re * interpolated_u[k];
1984  if (!ALE_is_disabled)
1985  {
1986  tmp -= scaled_re_st * mesh_velocity[k];
1987  }
1988  sum -= r * tmp * d_dudx_dX(p, q, 0, k) * testf_;
1989  if (p == 0)
1990  {
1991  sum -= tmp * interpolated_dudx(0, k) * psif[q] * testf_;
1992  }
1993  }
1994  if (!ALE_is_disabled)
1995  {
1996  sum += scaled_re_st * r * pos_time_weight *
1997  interpolated_dudx(0, p) * psif[q] * testf_;
1998  }
1999 
2000  // du/dt term
2001  if (p == 0)
2002  {
2003  sum -= scaled_re_st * dudt[0] * psif[q] * testf_;
2004  }
2005 
2006  // Coriolis term
2007  if (p == 0)
2008  {
2009  sum +=
2010  2.0 * scaled_re_inv_ro * interpolated_u[2] * psif[q] * testf_;
2011  }
2012 
2013  // Multiply through by Jacobian and integration weight
2014  dresidual_dnodal_coordinates(local_eqn, p, q) += sum * J * w;
2015 
2016  // Derivs w.r.t. nodal velocities
2017  // ------------------------------
2018  if (element_has_node_with_aux_node_update_fct)
2019  {
2020  // Contribution from deriv of first velocity component
2021  double tmp =
2022  scaled_re_st * r * val_time_weight * psif[q] * testf_;
2023  tmp +=
2024  r * scaled_re * interpolated_dudx(0, 0) * psif[q] * testf_;
2025  for (unsigned k = 0; k < 2; k++)
2026  {
2027  double tmp2 = scaled_re * interpolated_u[k];
2028  if (!ALE_is_disabled)
2029  {
2030  tmp2 -= scaled_re_st * mesh_velocity[k];
2031  }
2032  tmp += r * tmp2 * dpsifdx(q, k) * testf_;
2033  }
2034 
2035  tmp += r * visc_ratio * (1.0 + Gamma[0]) * dpsifdx(q, 0) *
2036  dtestfdx(l, 0);
2037  tmp += r * visc_ratio * dpsifdx(q, 1) * dtestfdx(l, 1);
2038  tmp += visc_ratio * (1.0 + Gamma[0]) * psif[q] * testf_ / r;
2039 
2040  // Multiply through by dU_0q/dX_pq
2041  sum = -d_U_dX(p, q, 0) * tmp;
2042 
2043  // Contribution from deriv of second velocity component
2044  tmp =
2045  scaled_re * r * interpolated_dudx(0, 1) * psif[q] * testf_;
2046  tmp +=
2047  r * visc_ratio * Gamma[0] * dpsifdx(q, 0) * dtestfdx(l, 1);
2048 
2049  // Multiply through by dU_1q/dX_pq
2050  sum -= d_U_dX(p, q, 1) * tmp;
2051 
2052  // Contribution from deriv of third velocity component
2053  tmp = 2.0 *
2054  (r * scaled_re_inv_ro + scaled_re * interpolated_u[2]) *
2055  psif[q] * testf_;
2056 
2057  // Multiply through by dU_2q/dX_pq
2058  sum += d_U_dX(p, q, 2) * tmp;
2059 
2060  // Multiply through by Jacobian and integration weight
2061  dresidual_dnodal_coordinates(local_eqn, p, q) += sum * J * w;
2062  }
2063  } // End of loop over q
2064  } // End of loop over p
2065  } // End of if it's not a boundary condition
2066 
2067  // --------------------------------
2068  // SECOND (AXIAL) MOMENTUM EQUATION
2069  // --------------------------------
2070  local_eqn = nodal_local_eqn(l, u_nodal_index[1]);
2071  ;
2072 
2073  // If it's not a boundary condition
2074  if (local_eqn >= 0)
2075  {
2076  // Loop over the two coordinate directions
2077  for (unsigned p = 0; p < 2; p++)
2078  {
2079  // Loop over nodes
2080  for (unsigned q = 0; q < n_node; q++)
2081  {
2082  // Residual x deriv of Jacobian
2083  // ----------------------------
2084 
2085  // Add the user-defined body force terms
2086  double sum = r * body_force[1] * testf_;
2087 
2088  // Add the gravitational body force term
2089  sum += r * scaled_re_inv_fr * testf_ * G[1];
2090 
2091  // Add the pressure gradient term
2092  sum += r * interpolated_p * dtestfdx(l, 1);
2093 
2094  // Add the stress tensor terms
2095  // The viscosity ratio needs to go in here to ensure
2096  // continuity of normal stress is satisfied even in flows
2097  // with zero pressure gradient!
2098  sum -=
2099  visc_ratio * r *
2100  (interpolated_dudx(1, 0) + Gamma[1] * interpolated_dudx(0, 1)) *
2101  dtestfdx(l, 0);
2102 
2103  sum -= visc_ratio * r * (1.0 + Gamma[1]) *
2104  interpolated_dudx(1, 1) * dtestfdx(l, 1);
2105 
2106  // Add the du/dt term
2107  sum -= scaled_re_st * r * dudt[1] * testf_;
2108 
2109  // Add the convective terms
2110  sum -= scaled_re *
2111  (r * interpolated_u[0] * interpolated_dudx(1, 0) +
2112  r * interpolated_u[1] * interpolated_dudx(1, 1)) *
2113  testf_;
2114 
2115  // Add the mesh velocity terms
2116  if (!ALE_is_disabled)
2117  {
2118  for (unsigned k = 0; k < 2; k++)
2119  {
2120  sum += scaled_re_st * r * mesh_velocity[k] *
2121  interpolated_dudx(1, k) * testf_;
2122  }
2123  }
2124 
2125  // Multiply through by deriv of Jacobian and integration weight
2126  dresidual_dnodal_coordinates(local_eqn, p, q) +=
2127  sum * dJ_dX(p, q) * w;
2128 
2129  // Derivative of residual x Jacobian
2130  // ---------------------------------
2131 
2132  // Body force
2133  sum = r * d_body_force_dx(1, p) * psif[q] * testf_;
2134  if (p == 0)
2135  {
2136  sum += body_force[1] * psif[q] * testf_;
2137  }
2138 
2139  // Gravitational body force
2140  if (p == 0)
2141  {
2142  sum += scaled_re_inv_fr * G[1] * psif[q] * testf_;
2143  }
2144 
2145  // Pressure gradient term
2146  sum += r * interpolated_p * d_dtestfdx_dX(p, q, l, 1);
2147  if (p == 0)
2148  {
2149  sum += interpolated_p * psif[q] * dtestfdx(l, 1);
2150  }
2151 
2152  // Viscous terms
2153  sum -=
2154  r * visc_ratio *
2155  ((d_dudx_dX(p, q, 1, 0) + Gamma[1] * d_dudx_dX(p, q, 0, 1)) *
2156  dtestfdx(l, 0) +
2157  (interpolated_dudx(1, 0) +
2158  Gamma[1] * interpolated_dudx(0, 1)) *
2159  d_dtestfdx_dX(p, q, l, 0) +
2160  (1.0 + Gamma[1]) * d_dudx_dX(p, q, 1, 1) * dtestfdx(l, 1) +
2161  (1.0 + Gamma[1]) * interpolated_dudx(1, 1) *
2162  d_dtestfdx_dX(p, q, l, 1));
2163  if (p == 0)
2164  {
2165  sum -=
2166  visc_ratio * ((interpolated_dudx(1, 0) +
2167  Gamma[1] * interpolated_dudx(0, 1)) *
2168  psif[q] * dtestfdx(l, 0) +
2169  (1.0 + Gamma[1]) * interpolated_dudx(1, 1) *
2170  psif[q] * dtestfdx(l, 1));
2171  }
2172 
2173  // Convective terms, including mesh velocity
2174  for (unsigned k = 0; k < 2; k++)
2175  {
2176  double tmp = scaled_re * interpolated_u[k];
2177  if (!ALE_is_disabled)
2178  {
2179  tmp -= scaled_re_st * mesh_velocity[k];
2180  }
2181  sum -= r * tmp * d_dudx_dX(p, q, 1, k) * testf_;
2182  if (p == 0)
2183  {
2184  sum -= tmp * interpolated_dudx(1, k) * psif[q] * testf_;
2185  }
2186  }
2187  if (!ALE_is_disabled)
2188  {
2189  sum += scaled_re_st * r * pos_time_weight *
2190  interpolated_dudx(1, p) * psif[q] * testf_;
2191  }
2192 
2193  // du/dt term
2194  if (p == 0)
2195  {
2196  sum -= scaled_re_st * dudt[1] * psif[q] * testf_;
2197  }
2198 
2199  // Multiply through by Jacobian and integration weight
2200  dresidual_dnodal_coordinates(local_eqn, p, q) += sum * J * w;
2201 
2202  // Derivs w.r.t. to nodal velocities
2203  // ---------------------------------
2204  if (element_has_node_with_aux_node_update_fct)
2205  {
2206  // Contribution from deriv of first velocity component
2207  double tmp =
2208  scaled_re * r * interpolated_dudx(1, 0) * psif[q] * testf_;
2209  tmp +=
2210  r * visc_ratio * Gamma[1] * dpsifdx(q, 1) * dtestfdx(l, 0);
2211 
2212  // Multiply through by dU_0q/dX_pq
2213  sum = -d_U_dX(p, q, 0) * tmp;
2214 
2215  // Contribution from deriv of second velocity component
2216  tmp = scaled_re_st * r * val_time_weight * psif[q] * testf_;
2217  tmp +=
2218  r * scaled_re * interpolated_dudx(1, 1) * psif[q] * testf_;
2219  for (unsigned k = 0; k < 2; k++)
2220  {
2221  double tmp2 = scaled_re * interpolated_u[k];
2222  if (!ALE_is_disabled)
2223  {
2224  tmp2 -= scaled_re_st * mesh_velocity[k];
2225  }
2226  tmp += r * tmp2 * dpsifdx(q, k) * testf_;
2227  }
2228  tmp += r * visc_ratio *
2229  (dpsifdx(q, 0) * dtestfdx(l, 0) +
2230  (1.0 + Gamma[1]) * dpsifdx(q, 1) * dtestfdx(l, 1));
2231 
2232  // Multiply through by dU_1q/dX_pq
2233  sum -= d_U_dX(p, q, 1) * tmp;
2234 
2235  // Multiply through by Jacobian and integration weight
2236  dresidual_dnodal_coordinates(local_eqn, p, q) += sum * J * w;
2237  }
2238  } // End of loop over q
2239  } // End of loop over p
2240  } // End of if it's not a boundary condition
2241 
2242  // -----------------------------------
2243  // THIRD (AZIMUTHAL) MOMENTUM EQUATION
2244  // -----------------------------------
2245  local_eqn = nodal_local_eqn(l, u_nodal_index[2]);
2246  ;
2247 
2248  // If it's not a boundary condition
2249  if (local_eqn >= 0)
2250  {
2251  // Loop over the two coordinate directions
2252  for (unsigned p = 0; p < 2; p++)
2253  {
2254  // Loop over nodes
2255  for (unsigned q = 0; q < n_node; q++)
2256  {
2257  // Residual x deriv of Jacobian
2258  // ----------------------------
2259 
2260  // Add the user-defined body force terms
2261  double sum = r * body_force[2] * testf_;
2262 
2263  // Add the gravitational body force term
2264  sum += r * scaled_re_inv_fr * testf_ * G[2];
2265 
2266  // There is NO pressure gradient term
2267 
2268  // Add in the stress tensor terms
2269  // The viscosity ratio needs to go in here to ensure
2270  // continuity of normal stress is satisfied even in flows
2271  // with zero pressure gradient!
2272  sum -=
2273  visc_ratio *
2274  (r * interpolated_dudx(2, 0) - Gamma[0] * interpolated_u[2]) *
2275  dtestfdx(l, 0);
2276 
2277  sum -= visc_ratio * r * interpolated_dudx(2, 1) * dtestfdx(l, 1);
2278 
2279  sum -=
2280  visc_ratio *
2281  ((interpolated_u[2] / r) - Gamma[0] * interpolated_dudx(2, 0)) *
2282  testf_;
2283 
2284  // Add the du/dt term
2285  sum -= scaled_re_st * r * dudt[2] * testf_;
2286 
2287  // Add the convective terms
2288  sum -= scaled_re *
2289  (r * interpolated_u[0] * interpolated_dudx(2, 0) +
2290  interpolated_u[0] * interpolated_u[2] +
2291  r * interpolated_u[1] * interpolated_dudx(2, 1)) *
2292  testf_;
2293 
2294  // Add the mesh velocity terms
2295  if (!ALE_is_disabled)
2296  {
2297  for (unsigned k = 0; k < 2; k++)
2298  {
2299  sum += scaled_re_st * r * mesh_velocity[k] *
2300  interpolated_dudx(2, k) * testf_;
2301  }
2302  }
2303 
2304  // Add the Coriolis term
2305  sum -= 2.0 * r * scaled_re_inv_ro * interpolated_u[0] * testf_;
2306 
2307  // Multiply through by deriv of Jacobian and integration weight
2308  dresidual_dnodal_coordinates(local_eqn, p, q) +=
2309  sum * dJ_dX(p, q) * w;
2310 
2311  // Derivative of residual x Jacobian
2312  // ---------------------------------
2313 
2314  // Body force
2315  sum = r * d_body_force_dx(2, p) * psif[q] * testf_;
2316  if (p == 0)
2317  {
2318  sum += body_force[2] * psif[q] * testf_;
2319  }
2320 
2321  // Gravitational body force
2322  if (p == 0)
2323  {
2324  sum += scaled_re_inv_fr * G[2] * psif[q] * testf_;
2325  }
2326 
2327  // There is NO pressure gradient term
2328 
2329  // Viscous terms
2330  sum -= visc_ratio * r *
2331  (d_dudx_dX(p, q, 2, 0) * dtestfdx(l, 0) +
2332  interpolated_dudx(2, 0) * d_dtestfdx_dX(p, q, l, 0) +
2333  d_dudx_dX(p, q, 2, 1) * dtestfdx(l, 1) +
2334  interpolated_dudx(2, 1) * d_dtestfdx_dX(p, q, l, 1));
2335 
2336  sum += visc_ratio * Gamma[0] * d_dudx_dX(p, q, 2, 0) * testf_;
2337 
2338  if (p == 0)
2339  {
2340  sum -= visc_ratio *
2341  (interpolated_dudx(2, 0) * psif[q] * dtestfdx(l, 0) +
2342  interpolated_dudx(2, 1) * psif[q] * dtestfdx(l, 1) +
2343  interpolated_u[2] * psif[q] * testf_ / (r * r));
2344  }
2345 
2346  // Convective terms, including mesh velocity
2347  for (unsigned k = 0; k < 2; k++)
2348  {
2349  double tmp = scaled_re * interpolated_u[k];
2350  if (!ALE_is_disabled)
2351  {
2352  tmp -= scaled_re_st * mesh_velocity[k];
2353  }
2354  sum -= r * tmp * d_dudx_dX(p, q, 2, k) * testf_;
2355  if (p == 0)
2356  {
2357  sum -= tmp * interpolated_dudx(2, k) * psif[q] * testf_;
2358  }
2359  }
2360  if (!ALE_is_disabled)
2361  {
2362  sum += scaled_re_st * r * pos_time_weight *
2363  interpolated_dudx(2, p) * psif[q] * testf_;
2364  }
2365 
2366  // du/dt term
2367  if (p == 0)
2368  {
2369  sum -= scaled_re_st * dudt[2] * psif[q] * testf_;
2370  }
2371 
2372  // Coriolis term
2373  if (p == 0)
2374  {
2375  sum -=
2376  2.0 * scaled_re_inv_ro * interpolated_u[0] * psif[q] * testf_;
2377  }
2378 
2379  // Multiply through by Jacobian and integration weight
2380  dresidual_dnodal_coordinates(local_eqn, p, q) += sum * J * w;
2381 
2382  // Derivs w.r.t. to nodal velocities
2383  // ---------------------------------
2384  if (element_has_node_with_aux_node_update_fct)
2385  {
2386  // Contribution from deriv of first velocity component
2387  double tmp = (2.0 * r * scaled_re_inv_ro +
2388  r * scaled_re * interpolated_dudx(2, 0) -
2389  scaled_re * interpolated_u[2]) *
2390  psif[q] * testf_;
2391 
2392  // Multiply through by dU_0q/dX_pq
2393  sum = -d_U_dX(p, q, 0) * tmp;
2394 
2395  // Contribution from deriv of second velocity component
2396  // Multiply through by dU_1q/dX_pq
2397  sum -= d_U_dX(p, q, 1) * scaled_re * r *
2398  interpolated_dudx(2, 1) * psif[q] * testf_;
2399 
2400  // Contribution from deriv of third velocity component
2401  tmp = scaled_re_st * r * val_time_weight * psif[q] * testf_;
2402  tmp -= scaled_re * interpolated_u[0] * psif[q] * testf_;
2403  for (unsigned k = 0; k < 2; k++)
2404  {
2405  double tmp2 = scaled_re * interpolated_u[k];
2406  if (!ALE_is_disabled)
2407  {
2408  tmp2 -= scaled_re_st * mesh_velocity[k];
2409  }
2410  tmp += r * tmp2 * dpsifdx(q, k) * testf_;
2411  }
2412  tmp += visc_ratio * (r * dpsifdx(q, 0) - Gamma[0] * psif[q]) *
2413  dtestfdx(l, 0);
2414  tmp += r * visc_ratio * dpsifdx(q, 1) * dtestfdx(l, 1);
2415  tmp += visc_ratio * ((psif[q] / r) - Gamma[0] * dpsifdx(q, 0)) *
2416  testf_;
2417 
2418  // Multiply through by dU_2q/dX_pq
2419  sum -= d_U_dX(p, q, 2) * tmp;
2420 
2421  // Multiply through by Jacobian and integration weight
2422  dresidual_dnodal_coordinates(local_eqn, p, q) += sum * J * w;
2423  }
2424  } // End of loop over q
2425  } // End of loop over p
2426  } // End of if it's not a boundary condition
2427 
2428  } // End of loop over test functions
2429 
2430 
2431  // ===================
2432  // CONTINUITY EQUATION
2433  // ===================
2434 
2435  // Loop over the shape functions
2436  for (unsigned l = 0; l < n_pres; l++)
2437  {
2438  local_eqn = p_local_eqn(l);
2439 
2440  // Cache the test function
2441  const double testp_ = testp[l];
2442 
2443  // If not a boundary conditions
2444  if (local_eqn >= 0)
2445  {
2446  // Loop over the two coordinate directions
2447  for (unsigned p = 0; p < 2; p++)
2448  {
2449  // Loop over nodes
2450  for (unsigned q = 0; q < n_node; q++)
2451  {
2452  // Residual x deriv of Jacobian
2453  //-----------------------------
2454 
2455  // Source term
2456  double aux = -r * source;
2457 
2458  // Gradient terms
2459  aux += (interpolated_u[0] + r * interpolated_dudx(0, 0) +
2460  r * interpolated_dudx(1, 1));
2461 
2462  // Multiply through by deriv of Jacobian and integration weight
2463  dresidual_dnodal_coordinates(local_eqn, p, q) +=
2464  aux * dJ_dX(p, q) * testp_ * w;
2465 
2466  // Derivative of residual x Jacobian
2467  // ---------------------------------
2468 
2469  // Gradient of source function
2470  aux = -r * source_gradient[p] * psif[q];
2471  if (p == 0)
2472  {
2473  aux -= source * psif[q];
2474  }
2475 
2476  // Gradient terms
2477  aux += r * (d_dudx_dX(p, q, 0, 0) + d_dudx_dX(p, q, 1, 1));
2478  if (p == 0)
2479  {
2480  aux +=
2481  (interpolated_dudx(0, 0) + interpolated_dudx(1, 1)) * psif[q];
2482  }
2483 
2484  // Derivs w.r.t. nodal velocities
2485  // ------------------------------
2486  if (element_has_node_with_aux_node_update_fct)
2487  {
2488  aux += d_U_dX(p, q, 0) * (psif[q] + r * dpsifdx(q, 0));
2489  aux += d_U_dX(p, q, 1) * r * dpsifdx(q, 1);
2490  }
2491 
2492  // Multiply through by Jacobian, test fct and integration weight
2493  dresidual_dnodal_coordinates(local_eqn, p, q) +=
2494  aux * testp_ * J * w;
2495  }
2496  }
2497  }
2498  } // End of loop over shape functions for continuity eqn
2499 
2500  } // End of loop over integration points
2501  }
2502 
2503 
2504  //==============================================================
2505  /// Compute the residuals for the Navier--Stokes
2506  /// equations; flag=1(or 0): do (or don't) compute the
2507  /// Jacobian as well.
2508  //==============================================================
2511  double* const& parameter_pt,
2512  Vector<double>& dres_dparam,
2513  DenseMatrix<double>& djac_dparam,
2514  DenseMatrix<double>& dmass_matrix_dparam,
2515  unsigned flag)
2516  {
2517  // Die if the parameter is not the Reynolds number
2518  if (parameter_pt != this->re_pt())
2519  {
2520  std::ostringstream error_stream;
2521  error_stream
2522  << "Cannot compute analytic jacobian for parameter addressed by "
2523  << parameter_pt << "\n";
2524  error_stream << "Can only compute derivatives wrt Re (" << Re_pt << ")\n";
2525  throw OomphLibError(
2526  error_stream.str(), OOMPH_CURRENT_FUNCTION, OOMPH_EXCEPTION_LOCATION);
2527  }
2528 
2529  // Which parameters are we differentiating with respect to
2530  bool diff_re = false;
2531  bool diff_re_st = false;
2532  bool diff_re_inv_fr = false;
2533  bool diff_re_inv_ro = false;
2534 
2535  // Set the boolean flags according to the parameter pointer
2536  if (parameter_pt == this->re_pt())
2537  {
2538  diff_re = true;
2539  }
2540  if (parameter_pt == this->re_st_pt())
2541  {
2542  diff_re_st = true;
2543  }
2544  if (parameter_pt == this->re_invfr_pt())
2545  {
2546  diff_re_inv_fr = true;
2547  }
2548  if (parameter_pt == this->re_invro_pt())
2549  {
2550  diff_re_inv_ro = true;
2551  }
2552 
2553 
2554  // Find out how many nodes there are
2555  unsigned n_node = nnode();
2556 
2557  // Find out how many pressure dofs there are
2558  unsigned n_pres = npres_axi_nst();
2559 
2560  // Get the nodal indices at which the velocity is stored
2561  unsigned u_nodal_index[3];
2562  for (unsigned i = 0; i < 3; ++i)
2563  {
2564  u_nodal_index[i] = u_index_axi_nst(i);
2565  }
2566 
2567  // Set up memory for the shape and test functions
2568  // Note that there are only two dimensions, r and z in this problem
2569  Shape psif(n_node), testf(n_node);
2570  DShape dpsifdx(n_node, 2), dtestfdx(n_node, 2);
2571 
2572  // Set up memory for pressure shape and test functions
2573  Shape psip(n_pres), testp(n_pres);
2574 
2575  // Number of integration points
2576  unsigned Nintpt = integral_pt()->nweight();
2577 
2578  // Set the Vector to hold local coordinates (two dimensions)
2579  Vector<double> s(2);
2580 
2581  // Get Physical Variables from Element
2582  // Reynolds number must be multiplied by the density ratio
2583  // double scaled_re = re()*density_ratio();
2584  // double scaled_re_st = re_st()*density_ratio();
2585  // double scaled_re_inv_fr = re_invfr()*density_ratio();
2586  // double scaled_re_inv_ro = re_invro()*density_ratio();
2587  double dens_ratio = this->density_ratio();
2588  // double visc_ratio = viscosity_ratio();
2589  Vector<double> G = g();
2590 
2591  // Integers used to store the local equation and unknown numbers
2592  int local_eqn = 0, local_unknown = 0;
2593 
2594  // Loop over the integration points
2595  for (unsigned ipt = 0; ipt < Nintpt; ipt++)
2596  {
2597  // Assign values of s
2598  for (unsigned i = 0; i < 2; i++) s[i] = integral_pt()->knot(ipt, i);
2599  // Get the integral weight
2600  double w = integral_pt()->weight(ipt);
2601 
2602  // Call the derivatives of the shape and test functions
2604  ipt, psif, dpsifdx, testf, dtestfdx);
2605 
2606  // Call the pressure shape and test functions
2607  pshape_axi_nst(s, psip, testp);
2608 
2609  // Premultiply the weights and the Jacobian
2610  double W = w * J;
2611 
2612  // Allocate storage for the position and the derivative of the
2613  // mesh positions wrt time
2615  Vector<double> mesh_velocity(2, 0.0);
2616  // Allocate storage for the pressure, velocity components and their
2617  // time and spatial derivatives
2618  double interpolated_p = 0.0;
2619  Vector<double> interpolated_u(3, 0.0);
2620  Vector<double> dudt(3, 0.0);
2621  DenseMatrix<double> interpolated_dudx(3, 2, 0.0);
2622 
2623  // Calculate pressure at integration point
2624  for (unsigned l = 0; l < n_pres; l++)
2625  {
2626  interpolated_p += p_axi_nst(l) * psip[l];
2627  }
2628 
2629  // Calculate velocities and derivatives at integration point
2630 
2631  // Loop over nodes
2632  for (unsigned l = 0; l < n_node; l++)
2633  {
2634  // Cache the shape function
2635  const double psif_ = psif(l);
2636  // Loop over the two coordinate directions
2637  for (unsigned i = 0; i < 2; i++)
2638  {
2639  interpolated_x[i] += this->raw_nodal_position(l, i) * psif_;
2640  }
2641  // mesh_velocity[i] += dnodal_position_dt(l,i)*psif[l];
2642 
2643  // Loop over the three velocity directions
2644  for (unsigned i = 0; i < 3; i++)
2645  {
2646  // Get the u_value
2647  const double u_value = this->raw_nodal_value(l, u_nodal_index[i]);
2648  interpolated_u[i] += u_value * psif_;
2649  dudt[i] += du_dt_axi_nst(l, i) * psif_;
2650  // Loop over derivative directions
2651  for (unsigned j = 0; j < 2; j++)
2652  {
2653  interpolated_dudx(i, j) += u_value * dpsifdx(l, j);
2654  }
2655  }
2656  }
2657 
2658  // Get the mesh velocity if ALE is enabled
2659  if (!ALE_is_disabled)
2660  {
2661  // Loop over nodes
2662  for (unsigned l = 0; l < n_node; l++)
2663  {
2664  // Loop over the two coordinate directions
2665  for (unsigned i = 0; i < 2; i++)
2666  {
2667  mesh_velocity[i] += this->raw_dnodal_position_dt(l, i) * psif(l);
2668  }
2669  }
2670  }
2671 
2672 
2673  // Get the user-defined body force terms
2674  // Vector<double> body_force(3);
2675  // get_body_force(time(),ipt,interpolated_x,body_force);
2676 
2677  // Get the user-defined source function
2678  // double source = get_source_fct(time(),ipt,interpolated_x);
2679 
2680  // Get the user-defined viscosity function
2681  double visc_ratio;
2682  get_viscosity_ratio_axisym_nst(ipt, s, interpolated_x, visc_ratio);
2683 
2684  // r is the first position component
2685  double r = interpolated_x[0];
2686 
2687 
2688  // MOMENTUM EQUATIONS
2689  //------------------
2690 
2691  // Loop over the test functions
2692  for (unsigned l = 0; l < n_node; l++)
2693  {
2694  // FIRST (RADIAL) MOMENTUM EQUATION
2695  local_eqn = nodal_local_eqn(l, u_nodal_index[0]);
2696  // If it's not a boundary condition
2697  if (local_eqn >= 0)
2698  {
2699  // No user-defined body force terms
2700  // dres_dparam[local_eqn] +=
2701  // r*body_force[0]*testf[l]*W;
2702 
2703  // Add the gravitational body force term if the reynolds number
2704  // is equal to re_inv_fr
2705  if (diff_re_inv_fr)
2706  {
2707  dres_dparam[local_eqn] += r * dens_ratio * testf[l] * G[0] * W;
2708  }
2709 
2710  // No pressure gradient term
2711  // residuals[local_eqn] +=
2712  // interpolated_p*(testf[l] + r*dtestfdx(l,0))*W;
2713 
2714  // No in the stress tensor terms
2715  // The viscosity ratio needs to go in here to ensure
2716  // continuity of normal stress is satisfied even in flows
2717  // with zero pressure gradient!
2718  // residuals[local_eqn] -= visc_ratio*
2719  // r*(1.0+Gamma[0])*interpolated_dudx(0,0)*dtestfdx(l,0)*W;
2720 
2721  // residuals[local_eqn] -= visc_ratio*r*
2722  // (interpolated_dudx(0,1) + Gamma[0]*interpolated_dudx(1,0))*
2723  // dtestfdx(l,1)*W;
2724 
2725  // residuals[local_eqn] -=
2726  // visc_ratio*(1.0 + Gamma[0])*interpolated_u[0]*testf[l]*W/r;
2727 
2728  // Add in the inertial terms
2729  // du/dt term
2730  if (diff_re_st)
2731  {
2732  dres_dparam[local_eqn] -= dens_ratio * r * dudt[0] * testf[l] * W;
2733  }
2734 
2735  // Convective terms
2736  if (diff_re)
2737  {
2738  dres_dparam[local_eqn] -=
2739  dens_ratio *
2740  (r * interpolated_u[0] * interpolated_dudx(0, 0) -
2741  interpolated_u[2] * interpolated_u[2] +
2742  r * interpolated_u[1] * interpolated_dudx(0, 1)) *
2743  testf[l] * W;
2744  }
2745 
2746  // Mesh velocity terms
2747  if (!ALE_is_disabled)
2748  {
2749  if (diff_re_st)
2750  {
2751  for (unsigned k = 0; k < 2; k++)
2752  {
2753  dres_dparam[local_eqn] += dens_ratio * r * mesh_velocity[k] *
2754  interpolated_dudx(0, k) * testf[l] *
2755  W;
2756  }
2757  }
2758  }
2759 
2760  // Add the Coriolis term
2761  if (diff_re_inv_ro)
2762  {
2763  dres_dparam[local_eqn] +=
2764  2.0 * r * dens_ratio * interpolated_u[2] * testf[l] * W;
2765  }
2766 
2767  // CALCULATE THE JACOBIAN
2768  if (flag)
2769  {
2770  // Loop over the velocity shape functions again
2771  for (unsigned l2 = 0; l2 < n_node; l2++)
2772  {
2773  local_unknown = nodal_local_eqn(l2, u_nodal_index[0]);
2774  // Radial velocity component
2775  if (local_unknown >= 0)
2776  {
2777  if (flag == 2)
2778  {
2779  if (diff_re_st)
2780  {
2781  // Add the mass matrix
2782  dmass_matrix_dparam(local_eqn, local_unknown) +=
2783  dens_ratio * r * psif[l2] * testf[l] * W;
2784  }
2785  }
2786 
2787  // Add contribution to the Jacobian matrix
2788  // jacobian(local_eqn,local_unknown)
2789  // -= visc_ratio*r*(1.0+Gamma[0])
2790  //*dpsifdx(l2,0)*dtestfdx(l,0)*W;
2791 
2792  // jacobian(local_eqn,local_unknown)
2793  // -= visc_ratio*r*dpsifdx(l2,1)*dtestfdx(l,1)*W;
2794 
2795  // jacobian(local_eqn,local_unknown)
2796  // -= visc_ratio*(1.0 + Gamma[0])*psif[l2]*testf[l]*W/r;
2797 
2798  // Add in the inertial terms
2799  // du/dt term
2800  if (diff_re_st)
2801  {
2802  djac_dparam(local_eqn, local_unknown) -=
2803  dens_ratio * r *
2804  node_pt(l2)->time_stepper_pt()->weight(1, 0) * psif[l2] *
2805  testf[l] * W;
2806  }
2807 
2808  // Convective terms
2809  if (diff_re)
2810  {
2811  djac_dparam(local_eqn, local_unknown) -=
2812  dens_ratio *
2813  (r * psif[l2] * interpolated_dudx(0, 0) +
2814  r * interpolated_u[0] * dpsifdx(l2, 0) +
2815  r * interpolated_u[1] * dpsifdx(l2, 1)) *
2816  testf[l] * W;
2817  }
2818 
2819  // Mesh velocity terms
2820  if (!ALE_is_disabled)
2821  {
2822  for (unsigned k = 0; k < 2; k++)
2823  {
2824  if (diff_re_st)
2825  {
2826  djac_dparam(local_eqn, local_unknown) +=
2827  dens_ratio * r * mesh_velocity[k] * dpsifdx(l2, k) *
2828  testf[l] * W;
2829  }
2830  }
2831  }
2832  }
2833 
2834  // Axial velocity component
2835  local_unknown = nodal_local_eqn(l2, u_nodal_index[1]);
2836  if (local_unknown >= 0)
2837  {
2838  // jacobian(local_eqn,local_unknown) -=
2839  // visc_ratio*r*Gamma[0]*dpsifdx(l2,0)*dtestfdx(l,1)*W;
2840 
2841  // Convective terms
2842  if (diff_re)
2843  {
2844  djac_dparam(local_eqn, local_unknown) -=
2845  dens_ratio * r * psif[l2] * interpolated_dudx(0, 1) *
2846  testf[l] * W;
2847  }
2848  }
2849 
2850  // Azimuthal velocity component
2851  local_unknown = nodal_local_eqn(l2, u_nodal_index[2]);
2852  if (local_unknown >= 0)
2853  {
2854  // Convective terms
2855  if (diff_re)
2856  {
2857  djac_dparam(local_eqn, local_unknown) -=
2858  -dens_ratio * 2.0 * interpolated_u[2] * psif[l2] *
2859  testf[l] * W;
2860  }
2861  // Coriolis terms
2862  if (diff_re_inv_ro)
2863  {
2864  djac_dparam(local_eqn, local_unknown) +=
2865  2.0 * r * dens_ratio * psif[l2] * testf[l] * W;
2866  }
2867  }
2868  }
2869 
2870  /*Now loop over pressure shape functions*/
2871  /*This is the contribution from pressure gradient*/
2872  // for(unsigned l2=0;l2<n_pres;l2++)
2873  // {
2874  // local_unknown = p_local_eqn(l2);
2875  // /*If we are at a non-zero degree of freedom in the entry*/
2876  // if(local_unknown >= 0)
2877  // {
2878  // jacobian(local_eqn,local_unknown)
2879  // += psip[l2]*(testf[l] + r*dtestfdx(l,0))*W;
2880  // }
2881  // }
2882  } /*End of Jacobian calculation*/
2883 
2884  } // End of if not boundary condition statement
2885 
2886  // SECOND (AXIAL) MOMENTUM EQUATION
2887  local_eqn = nodal_local_eqn(l, u_nodal_index[1]);
2888  // If it's not a boundary condition
2889  if (local_eqn >= 0)
2890  {
2891  // Add the user-defined body force terms
2892  // Remember to multiply by the density ratio!
2893  // residuals[local_eqn] +=
2894  // r*body_force[1]*testf[l]*W;
2895 
2896  // Add the gravitational body force term
2897  if (diff_re_inv_fr)
2898  {
2899  dres_dparam[local_eqn] += r * dens_ratio * testf[l] * G[1] * W;
2900  }
2901 
2902  // Add the pressure gradient term
2903  // residuals[local_eqn] += r*interpolated_p*dtestfdx(l,1)*W;
2904 
2905  // Add in the stress tensor terms
2906  // The viscosity ratio needs to go in here to ensure
2907  // continuity of normal stress is satisfied even in flows
2908  // with zero pressure gradient!
2909  // residuals[local_eqn] -= visc_ratio*
2910  // r*(interpolated_dudx(1,0) + Gamma[1]*interpolated_dudx(0,1))
2911  // *dtestfdx(l,0)*W;
2912 
2913  // residuals[local_eqn] -= visc_ratio*r*
2914  // (1.0 + Gamma[1])*interpolated_dudx(1,1)*dtestfdx(l,1)*W;
2915 
2916  // Add in the inertial terms
2917  // du/dt term
2918  if (diff_re_st)
2919  {
2920  dres_dparam[local_eqn] -= dens_ratio * r * dudt[1] * testf[l] * W;
2921  }
2922 
2923  // Convective terms
2924  if (diff_re)
2925  {
2926  dres_dparam[local_eqn] -=
2927  dens_ratio *
2928  (r * interpolated_u[0] * interpolated_dudx(1, 0) +
2929  r * interpolated_u[1] * interpolated_dudx(1, 1)) *
2930  testf[l] * W;
2931  }
2932 
2933  // Mesh velocity terms
2934  if (!ALE_is_disabled)
2935  {
2936  if (diff_re_st)
2937  {
2938  for (unsigned k = 0; k < 2; k++)
2939  {
2940  dres_dparam[local_eqn] += dens_ratio * r * mesh_velocity[k] *
2941  interpolated_dudx(1, k) * testf[l] *
2942  W;
2943  }
2944  }
2945  }
2946 
2947  // CALCULATE THE JACOBIAN
2948  if (flag)
2949  {
2950  // Loop over the velocity shape functions again
2951  for (unsigned l2 = 0; l2 < n_node; l2++)
2952  {
2953  local_unknown = nodal_local_eqn(l2, u_nodal_index[0]);
2954  // Radial velocity component
2955  if (local_unknown >= 0)
2956  {
2957  // Add in the stress tensor terms
2958  // The viscosity ratio needs to go in here to ensure
2959  // continuity of normal stress is satisfied even in flows
2960  // with zero pressure gradient!
2961  // jacobian(local_eqn,local_unknown) -=
2962  // visc_ratio*r*Gamma[1]*dpsifdx(l2,1)*dtestfdx(l,0)*W;
2963 
2964  // Convective terms
2965  if (diff_re)
2966  {
2967  djac_dparam(local_eqn, local_unknown) -=
2968  dens_ratio * r * psif[l2] * interpolated_dudx(1, 0) *
2969  testf[l] * W;
2970  }
2971  }
2972 
2973  // Axial velocity component
2974  local_unknown = nodal_local_eqn(l2, u_nodal_index[1]);
2975  if (local_unknown >= 0)
2976  {
2977  if (flag == 2)
2978  {
2979  if (diff_re_st)
2980  {
2981  // Add the mass matrix
2982  dmass_matrix_dparam(local_eqn, local_unknown) +=
2983  dens_ratio * r * psif[l2] * testf[l] * W;
2984  }
2985  }
2986 
2987 
2988  // Add in the stress tensor terms
2989  // The viscosity ratio needs to go in here to ensure
2990  // continuity of normal stress is satisfied even in flows
2991  // with zero pressure gradient!
2992  // jacobian(local_eqn,local_unknown) -=
2993  // visc_ratio*r*dpsifdx(l2,0)*dtestfdx(l,0)*W;
2994 
2995  // jacobian(local_eqn,local_unknown) -=
2996  // visc_ratio*r*(1.0 + Gamma[1])*dpsifdx(l2,1)*
2997  // dtestfdx(l,1)*W;
2998 
2999  // Add in the inertial terms
3000  // du/dt term
3001  if (diff_re_st)
3002  {
3003  djac_dparam(local_eqn, local_unknown) -=
3004  dens_ratio * r *
3005  node_pt(l2)->time_stepper_pt()->weight(1, 0) * psif[l2] *
3006  testf[l] * W;
3007  }
3008 
3009  // Convective terms
3010  if (diff_re)
3011  {
3012  djac_dparam(local_eqn, local_unknown) -=
3013  dens_ratio *
3014  (r * interpolated_u[0] * dpsifdx(l2, 0) +
3015  r * psif[l2] * interpolated_dudx(1, 1) +
3016  r * interpolated_u[1] * dpsifdx(l2, 1)) *
3017  testf[l] * W;
3018  }
3019 
3020  // Mesh velocity terms
3021  if (!ALE_is_disabled)
3022  {
3023  for (unsigned k = 0; k < 2; k++)
3024  {
3025  if (diff_re_st)
3026  {
3027  djac_dparam(local_eqn, local_unknown) +=
3028  dens_ratio * r * mesh_velocity[k] * dpsifdx(l2, k) *
3029  testf[l] * W;
3030  }
3031  }
3032  }
3033  }
3034 
3035  // There are no azimithal terms in the axial momentum equation
3036  } // End of loop over velocity shape functions
3037 
3038  } /*End of Jacobian calculation*/
3039 
3040  } // End of AXIAL MOMENTUM EQUATION
3041 
3042  // THIRD (AZIMUTHAL) MOMENTUM EQUATION
3043  local_eqn = nodal_local_eqn(l, u_nodal_index[2]);
3044  if (local_eqn >= 0)
3045  {
3046  // Add the user-defined body force terms
3047  // Remember to multiply by the density ratio!
3048  // residuals[local_eqn] +=
3049  // r*body_force[2]*testf[l]*W;
3050 
3051  // Add the gravitational body force term
3052  if (diff_re_inv_fr)
3053  {
3054  dres_dparam[local_eqn] += r * dens_ratio * testf[l] * G[2] * W;
3055  }
3056 
3057  // There is NO pressure gradient term
3058 
3059  // Add in the stress tensor terms
3060  // The viscosity ratio needs to go in here to ensure
3061  // continuity of normal stress is satisfied even in flows
3062  // with zero pressure gradient!
3063  // residuals[local_eqn] -= visc_ratio*
3064  // (r*interpolated_dudx(2,0) -
3065  // Gamma[0]*interpolated_u[2])*dtestfdx(l,0)*W;
3066 
3067  // residuals[local_eqn] -= visc_ratio*r*
3068  // interpolated_dudx(2,1)*dtestfdx(l,1)*W;
3069 
3070  // residuals[local_eqn] -= visc_ratio*
3071  // ((interpolated_u[2]/r) -
3072  // Gamma[0]*interpolated_dudx(2,0))*testf[l]*W;
3073 
3074 
3075  // Add in the inertial terms
3076  // du/dt term
3077  if (diff_re_st)
3078  {
3079  dres_dparam[local_eqn] -= dens_ratio * r * dudt[2] * testf[l] * W;
3080  }
3081 
3082  // Convective terms
3083  if (diff_re)
3084  {
3085  dres_dparam[local_eqn] -=
3086  dens_ratio *
3087  (r * interpolated_u[0] * interpolated_dudx(2, 0) +
3088  interpolated_u[0] * interpolated_u[2] +
3089  r * interpolated_u[1] * interpolated_dudx(2, 1)) *
3090  testf[l] * W;
3091  }
3092 
3093  // Mesh velocity terms
3094  if (!ALE_is_disabled)
3095  {
3096  if (diff_re_st)
3097  {
3098  for (unsigned k = 0; k < 2; k++)
3099  {
3100  dres_dparam[local_eqn] += dens_ratio * r * mesh_velocity[k] *
3101  interpolated_dudx(2, k) * testf[l] *
3102  W;
3103  }
3104  }
3105  }
3106 
3107  // Add the Coriolis term
3108  if (diff_re_inv_ro)
3109  {
3110  dres_dparam[local_eqn] -=
3111  2.0 * r * dens_ratio * interpolated_u[0] * testf[l] * W;
3112  }
3113 
3114  // CALCULATE THE JACOBIAN
3115  if (flag)
3116  {
3117  // Loop over the velocity shape functions again
3118  for (unsigned l2 = 0; l2 < n_node; l2++)
3119  {
3120  // Radial velocity component
3121  local_unknown = nodal_local_eqn(l2, u_nodal_index[0]);
3122  if (local_unknown >= 0)
3123  {
3124  // Convective terms
3125  if (diff_re)
3126  {
3127  djac_dparam(local_eqn, local_unknown) -=
3128  dens_ratio *
3129  (r * psif[l2] * interpolated_dudx(2, 0) +
3130  psif[l2] * interpolated_u[2]) *
3131  testf[l] * W;
3132  }
3133 
3134  // Coriolis term
3135  if (diff_re_inv_ro)
3136  {
3137  djac_dparam(local_eqn, local_unknown) -=
3138  2.0 * r * dens_ratio * psif[l2] * testf[l] * W;
3139  }
3140  }
3141 
3142  // Axial velocity component
3143  local_unknown = nodal_local_eqn(l2, u_nodal_index[1]);
3144  if (local_unknown >= 0)
3145  {
3146  // Convective terms
3147  if (diff_re)
3148  {
3149  djac_dparam(local_eqn, local_unknown) -=
3150  dens_ratio * r * psif[l2] * interpolated_dudx(2, 1) *
3151  testf[l] * W;
3152  }
3153  }
3154 
3155  // Azimuthal velocity component
3156  local_unknown = nodal_local_eqn(l2, u_nodal_index[2]);
3157  if (local_unknown >= 0)
3158  {
3159  if (flag == 2)
3160  {
3161  // Add the mass matrix
3162  if (diff_re_st)
3163  {
3164  dmass_matrix_dparam(local_eqn, local_unknown) +=
3165  dens_ratio * r * psif[l2] * testf[l] * W;
3166  }
3167  }
3168 
3169  // Add in the stress tensor terms
3170  // The viscosity ratio needs to go in here to ensure
3171  // continuity of normal stress is satisfied even in flows
3172  // with zero pressure gradient!
3173  // jacobian(local_eqn,local_unknown) -=
3174  // visc_ratio*(r*dpsifdx(l2,0) -
3175  // Gamma[0]*psif[l2])*dtestfdx(l,0)*W;
3176 
3177  // jacobian(local_eqn,local_unknown) -=
3178  // visc_ratio*r*dpsifdx(l2,1)*dtestfdx(l,1)*W;
3179 
3180  // jacobian(local_eqn,local_unknown) -=
3181  // visc_ratio*((psif[l2]/r) - Gamma[0]*dpsifdx(l2,0))
3182  // *testf[l]*W;
3183 
3184  // Add in the inertial terms
3185  // du/dt term
3186  if (diff_re_st)
3187  {
3188  djac_dparam(local_eqn, local_unknown) -=
3189  dens_ratio * r *
3190  node_pt(l2)->time_stepper_pt()->weight(1, 0) * psif[l2] *
3191  testf[l] * W;
3192  }
3193 
3194  // Convective terms
3195  if (diff_re)
3196  {
3197  djac_dparam(local_eqn, local_unknown) -=
3198  dens_ratio *
3199  (r * interpolated_u[0] * dpsifdx(l2, 0) +
3200  interpolated_u[0] * psif[l2] +
3201  r * interpolated_u[1] * dpsifdx(l2, 1)) *
3202  testf[l] * W;
3203  }
3204 
3205  // Mesh velocity terms
3206  if (!ALE_is_disabled)
3207  {
3208  if (diff_re_st)
3209  {
3210  for (unsigned k = 0; k < 2; k++)
3211  {
3212  djac_dparam(local_eqn, local_unknown) +=
3213  dens_ratio * r * mesh_velocity[k] * dpsifdx(l2, k) *
3214  testf[l] * W;
3215  }
3216  }
3217  }
3218  }
3219  }
3220 
3221  // There are no pressure terms
3222  } // End of Jacobian
3223 
3224  } // End of AZIMUTHAL EQUATION
3225 
3226  } // End of loop over shape functions
3227 
3228 
3229  // CONTINUITY EQUATION NO PARAMETERS
3230  //-------------------
3231  }
3232  }
3233 
3234  //=========================================================================
3235  /// Compute the hessian tensor vector products required to
3236  /// perform continuation of bifurcations analytically
3237  //=========================================================================
3240  Vector<double> const& Y,
3241  DenseMatrix<double> const& C,
3242  DenseMatrix<double>& product)
3243  {
3244  // Find out how many nodes there are
3245  unsigned n_node = nnode();
3246 
3247  // Get the nodal indices at which the velocity is stored
3248  unsigned u_nodal_index[3];
3249  for (unsigned i = 0; i < 3; ++i)
3250  {
3251  u_nodal_index[i] = u_index_axi_nst(i);
3252  }
3253 
3254  // Set up memory for the shape and test functions
3255  // Note that there are only two dimensions, r and z in this problem
3256  Shape psif(n_node), testf(n_node);
3257  DShape dpsifdx(n_node, 2), dtestfdx(n_node, 2);
3258 
3259  // Number of integration points
3260  unsigned Nintpt = integral_pt()->nweight();
3261 
3262  // Set the Vector to hold local coordinates (two dimensions)
3263  Vector<double> s(2);
3264 
3265  // Get Physical Variables from Element
3266  // Reynolds number must be multiplied by the density ratio
3267  double scaled_re = re() * density_ratio();
3268  // double visc_ratio = viscosity_ratio();
3269  Vector<double> G = g();
3270 
3271  // Integers used to store the local equation and unknown numbers
3272  int local_eqn = 0, local_unknown = 0, local_freedom = 0;
3273 
3274  // How may dofs are there
3275  const unsigned n_dof = this->ndof();
3276 
3277  // Create a local matrix eigenvector product contribution
3278  DenseMatrix<double> jac_y(n_dof, n_dof, 0.0);
3279 
3280  // Loop over the integration points
3281  for (unsigned ipt = 0; ipt < Nintpt; ipt++)
3282  {
3283  // Assign values of s
3284  for (unsigned i = 0; i < 2; i++) s[i] = integral_pt()->knot(ipt, i);
3285  // Get the integral weight
3286  double w = integral_pt()->weight(ipt);
3287 
3288  // Call the derivatives of the shape and test functions
3290  ipt, psif, dpsifdx, testf, dtestfdx);
3291 
3292  // Premultiply the weights and the Jacobian
3293  double W = w * J;
3294 
3295  // Allocate storage for the position and the derivative of the
3296  // mesh positions wrt time
3298  // Vector<double> mesh_velocity(2,0.0);
3299  // Allocate storage for the pressure, velocity components and their
3300  // time and spatial derivatives
3301  Vector<double> interpolated_u(3, 0.0);
3302  // Vector<double> dudt(3,0.0);
3303  DenseMatrix<double> interpolated_dudx(3, 2, 0.0);
3304 
3305  // Calculate velocities and derivatives at integration point
3306 
3307  // Loop over nodes
3308  for (unsigned l = 0; l < n_node; l++)
3309  {
3310  // Cache the shape function
3311  const double psif_ = psif(l);
3312  // Loop over the two coordinate directions
3313  for (unsigned i = 0; i < 2; i++)
3314  {
3315  interpolated_x[i] += this->raw_nodal_position(l, i) * psif_;
3316  }
3317 
3318  // Loop over the three velocity directions
3319  for (unsigned i = 0; i < 3; i++)
3320  {
3321  // Get the u_value
3322  const double u_value = this->raw_nodal_value(l, u_nodal_index[i]);
3323  interpolated_u[i] += u_value * psif_;
3324  // dudt[i]+= du_dt_axi_nst(l,i)*psif_;
3325  // Loop over derivative directions
3326  for (unsigned j = 0; j < 2; j++)
3327  {
3328  interpolated_dudx(i, j) += u_value * dpsifdx(l, j);
3329  }
3330  }
3331  }
3332 
3333  // Get the mesh velocity if ALE is enabled
3334  if (!ALE_is_disabled)
3335  {
3336  throw OomphLibError("Moving nodes not implemented\n",
3337  OOMPH_CURRENT_FUNCTION,
3338  OOMPH_EXCEPTION_LOCATION);
3339  }
3340 
3341  // r is the first position component
3342  double r = interpolated_x[0];
3343 
3344 
3345  // MOMENTUM EQUATIONS
3346  //------------------
3347 
3348  // Loop over the test functions
3349  for (unsigned l = 0; l < n_node; l++)
3350  {
3351  // FIRST (RADIAL) MOMENTUM EQUATION
3352  local_eqn = nodal_local_eqn(l, u_nodal_index[0]);
3353  // If it's not a boundary condition
3354  if (local_eqn >= 0)
3355  {
3356  // Loop over the velocity shape functions yet again
3357  for (unsigned l3 = 0; l3 < n_node; l3++)
3358  {
3359  // Derivative of jacobian terms with respect to radial velocity
3360  local_freedom = nodal_local_eqn(l3, u_nodal_index[0]);
3361  if (local_freedom >= 0)
3362  {
3363  // Storage for the sums
3364  double temp = 0.0;
3365 
3366  // Loop over the velocity shape functions again
3367  for (unsigned l2 = 0; l2 < n_node; l2++)
3368  {
3369  local_unknown = nodal_local_eqn(l2, u_nodal_index[0]);
3370  // Radial velocity component
3371  if (local_unknown >= 0)
3372  {
3373  // Remains of convective terms
3374  temp -= scaled_re *
3375  (r * psif[l2] * dpsifdx(l3, 0) +
3376  r * psif[l3] * dpsifdx(l2, 0)) *
3377  Y[local_unknown] * testf[l] * W;
3378  }
3379 
3380  // Axial velocity component
3381  local_unknown = nodal_local_eqn(l2, u_nodal_index[1]);
3382  if (local_unknown >= 0)
3383  {
3384  // Convective terms
3385  temp -= scaled_re * r * psif[l2] * dpsifdx(l3, 1) *
3386  Y[local_unknown] * testf[l] * W;
3387  }
3388  }
3389  // Add the summed contribution to the product matrix
3390  jac_y(local_eqn, local_freedom) += temp;
3391  } // End of derivative wrt radial coordinate
3392 
3393 
3394  // Derivative of jacobian terms with respect to axial velocity
3395  local_freedom = nodal_local_eqn(l3, u_nodal_index[1]);
3396  if (local_freedom >= 0)
3397  {
3398  double temp = 0.0;
3399 
3400  // Loop over the velocity shape functions again
3401  for (unsigned l2 = 0; l2 < n_node; l2++)
3402  {
3403  local_unknown = nodal_local_eqn(l2, u_nodal_index[0]);
3404  // Radial velocity component
3405  if (local_unknown >= 0)
3406  {
3407  // Remains of convective terms
3408  temp -= scaled_re * (r * psif[l3] * dpsifdx(l2, 1)) *
3409  Y[local_unknown] * testf[l] * W;
3410  }
3411  }
3412  // Add the summed contribution to the product matrix
3413  jac_y(local_eqn, local_freedom) += temp;
3414  } // End of derivative wrt axial coordinate
3415 
3416  // Derivative of jacobian terms with respect to azimuthal velocity
3417  local_freedom = nodal_local_eqn(l3, u_nodal_index[2]);
3418  if (local_freedom >= 0)
3419  {
3420  double temp = 0.0;
3421 
3422  // Loop over the velocity shape functions again
3423  for (unsigned l2 = 0; l2 < n_node; l2++)
3424  {
3425  // Azimuthal velocity component
3426  local_unknown = nodal_local_eqn(l2, u_nodal_index[2]);
3427  if (local_unknown >= 0)
3428  {
3429  // Convective terms
3430  temp -= -scaled_re * 2.0 * psif[l3] * psif[l2] *
3431  Y[local_unknown] * testf[l] * W;
3432  }
3433  }
3434  // Add the summed contibution
3435  jac_y(local_eqn, local_freedom) += temp;
3436 
3437  } // End of if not boundary condition statement
3438  } // End of loop over freedoms
3439  } // End of RADIAL MOMENTUM EQUATION
3440 
3441 
3442  // SECOND (AXIAL) MOMENTUM EQUATION
3443  local_eqn = nodal_local_eqn(l, u_nodal_index[1]);
3444  // If it's not a boundary condition
3445  if (local_eqn >= 0)
3446  {
3447  // Loop over the velocity shape functions yet again
3448  for (unsigned l3 = 0; l3 < n_node; l3++)
3449  {
3450  // Derivative of jacobian terms with respect to radial velocity
3451  local_freedom = nodal_local_eqn(l3, u_nodal_index[0]);
3452  if (local_freedom >= 0)
3453  {
3454  double temp = 0.0;
3455 
3456  // Loop over the velocity shape functions again
3457  for (unsigned l2 = 0; l2 < n_node; l2++)
3458  {
3459  // Axial velocity component
3460  local_unknown = nodal_local_eqn(l2, u_nodal_index[1]);
3461  if (local_unknown >= 0)
3462  {
3463  // Convective terms
3464  temp -= scaled_re * (r * psif[l3] * dpsifdx(l2, 0)) *
3465  Y[local_unknown] * testf[l] * W;
3466  }
3467  }
3468  jac_y(local_eqn, local_freedom) += temp;
3469 
3470  // There are no azimithal terms in the axial momentum equation
3471  } // End of loop over velocity shape functions
3472 
3473 
3474  // Derivative of jacobian terms with respect to axial velocity
3475  local_freedom = nodal_local_eqn(l3, u_nodal_index[1]);
3476  if (local_freedom >= 0)
3477  {
3478  double temp = 0.0;
3479 
3480  // Loop over the velocity shape functions again
3481  for (unsigned l2 = 0; l2 < n_node; l2++)
3482  {
3483  local_unknown = nodal_local_eqn(l2, u_nodal_index[0]);
3484  // Radial velocity component
3485  if (local_unknown >= 0)
3486  {
3487  // Convective terms
3488  temp -= scaled_re * r * psif[l2] * dpsifdx(l3, 0) *
3489  Y[local_unknown] * testf[l] * W;
3490  }
3491 
3492  // Axial velocity component
3493  local_unknown = nodal_local_eqn(l2, u_nodal_index[1]);
3494  if (local_unknown >= 0)
3495  {
3496  // Convective terms
3497  temp -= scaled_re *
3498  (r * psif[l2] * dpsifdx(l3, 1) +
3499  r * psif[l3] * dpsifdx(l2, 1)) *
3500  Y[local_unknown] * testf[l] * W;
3501  }
3502 
3503  // There are no azimithal terms in the axial momentum equation
3504  } // End of loop over velocity shape functions
3505 
3506  // Add summed contributiont to jacobian product matrix
3507  jac_y(local_eqn, local_freedom) += temp;
3508  }
3509  } // End of loop over local freedoms
3510 
3511  } // End of AXIAL MOMENTUM EQUATION
3512 
3513  // THIRD (AZIMUTHAL) MOMENTUM EQUATION
3514  local_eqn = nodal_local_eqn(l, u_nodal_index[2]);
3515  if (local_eqn >= 0)
3516  {
3517  // Loop over the velocity shape functions yet again
3518  for (unsigned l3 = 0; l3 < n_node; l3++)
3519  {
3520  // Derivative of jacobian terms with respect to radial velocity
3521  local_freedom = nodal_local_eqn(l3, u_nodal_index[0]);
3522  if (local_freedom >= 0)
3523  {
3524  double temp = 0.0;
3525 
3526  // Loop over the velocity shape functions again
3527  for (unsigned l2 = 0; l2 < n_node; l2++)
3528  {
3529  // Azimuthal velocity component
3530  local_unknown = nodal_local_eqn(l2, u_nodal_index[2]);
3531  if (local_unknown >= 0)
3532  {
3533  // Convective terms
3534  temp -=
3535  scaled_re *
3536  (r * psif[l3] * dpsifdx(l2, 0) + psif[l3] * psif[l2]) *
3537  Y[local_unknown] * testf[l] * W;
3538  }
3539  }
3540  // Add the summed contribution to the jacobian eigenvector sum
3541  jac_y(local_eqn, local_freedom) += temp;
3542  }
3543 
3544  // Derivative of jacobian terms with respect to axial velocity
3545  local_freedom = nodal_local_eqn(l3, u_nodal_index[1]);
3546  if (local_freedom >= 0)
3547  {
3548  double temp = 0.0;
3549 
3550  // Loop over the velocity shape functions again
3551  for (unsigned l2 = 0; l2 < n_node; l2++)
3552  {
3553  // Azimuthal velocity component
3554  local_unknown = nodal_local_eqn(l2, u_nodal_index[2]);
3555  if (local_unknown >= 0)
3556  {
3557  // Convective terms
3558  temp -= scaled_re * (r * psif[l3] * dpsifdx(l2, 1)) *
3559  Y[local_unknown] * testf[l] * W;
3560  }
3561  }
3562  // Add the summed contribution to the jacobian eigenvector sum
3563  jac_y(local_eqn, local_freedom) += temp;
3564  }
3565 
3566 
3567  // Derivative of jacobian terms with respect to azimuthal velocity
3568  local_freedom = nodal_local_eqn(l3, u_nodal_index[2]);
3569  if (local_freedom >= 0)
3570  {
3571  double temp = 0.0;
3572 
3573 
3574  // Loop over the velocity shape functions again
3575  for (unsigned l2 = 0; l2 < n_node; l2++)
3576  {
3577  // Radial velocity component
3578  local_unknown = nodal_local_eqn(l2, u_nodal_index[0]);
3579  if (local_unknown >= 0)
3580  {
3581  // Convective terms
3582  temp -=
3583  scaled_re *
3584  (r * psif[l2] * dpsifdx(l3, 0) + psif[l2] * psif[l3]) *
3585  Y[local_unknown] * testf[l] * W;
3586  }
3587 
3588  // Axial velocity component
3589  local_unknown = nodal_local_eqn(l2, u_nodal_index[1]);
3590  if (local_unknown >= 0)
3591  {
3592  // Convective terms
3593  temp -= scaled_re * r * psif[l2] * dpsifdx(l3, 1) *
3594  Y[local_unknown] * testf[l] * W;
3595  }
3596  }
3597  // Add the fully summed contribution
3598  jac_y(local_eqn, local_freedom) += temp;
3599  }
3600  } // End of loop over freedoms
3601 
3602  // There are no pressure terms
3603  } // End of AZIMUTHAL EQUATION
3604 
3605  } // End of loop over shape functions
3606  }
3607 
3608  // We have now assembled the matrix (d J_{ij} Y_j)/d u_{k}
3609  // and simply need to sum over the vectors
3610  const unsigned n_vec = C.nrow();
3611  for (unsigned i = 0; i < n_dof; i++)
3612  {
3613  for (unsigned k = 0; k < n_dof; k++)
3614  {
3615  // Cache the value of the hessian y product
3616  const double j_y = jac_y(i, k);
3617  // Loop over the possible vectors
3618  for (unsigned v = 0; v < n_vec; v++)
3619  {
3620  product(v, i) += j_y * C(v, k);
3621  }
3622  }
3623  }
3624  }
3625 
3626 
3627  /// ///////////////////////////////////////////////////////////////////
3628  /// ///////////////////////////////////////////////////////////////////
3629  /// ///////////////////////////////////////////////////////////////////
3630 
3631  //=============================================================================
3632  /// Create a list of pairs for all unknowns in this element,
3633  /// so that the first entry in each pair contains the global equation
3634  /// number of the unknown, while the second one contains the number
3635  /// of the "DOF type" that this unknown is associated with.
3636  /// (Function can obviously only be called if the equation numbering
3637  /// scheme has been set up.)
3638  //=============================================================================
3640  std::list<std::pair<unsigned long, unsigned>>& dof_lookup_list) const
3641  {
3642  // number of nodes
3643  unsigned n_node = this->nnode();
3644 
3645  // number of pressure values
3646  unsigned n_press = this->npres_axi_nst();
3647 
3648  // temporary pair (used to store dof lookup prior to being added to list)
3649  std::pair<unsigned, unsigned> dof_lookup;
3650 
3651  // pressure dof number (is this really OK?)
3652  unsigned pressure_dof_number = 3;
3653 
3654  // loop over the pressure values
3655  for (unsigned n = 0; n < n_press; n++)
3656  {
3657  // determine local eqn number
3658  int local_eqn_number = this->p_local_eqn(n);
3659 
3660  // ignore pinned values - far away degrees of freedom resulting
3661  // from hanging nodes can be ignored since these are be dealt
3662  // with by the element containing their master nodes
3663  if (local_eqn_number >= 0)
3664  {
3665  // store dof lookup in temporary pair: First entry in pair
3666  // is global equation number; second entry is dof type
3667  dof_lookup.first = this->eqn_number(local_eqn_number);
3668  dof_lookup.second = pressure_dof_number;
3669 
3670  // add to list
3671  dof_lookup_list.push_front(dof_lookup);
3672  }
3673  }
3674 
3675  // loop over the nodes
3676  for (unsigned n = 0; n < n_node; n++)
3677  {
3678  // find the number of values at this node
3679  unsigned nv = this->node_pt(n)->nvalue();
3680 
3681  // loop over these values
3682  for (unsigned v = 0; v < nv; v++)
3683  {
3684  // determine local eqn number
3685  int local_eqn_number = this->nodal_local_eqn(n, v);
3686 
3687  // ignore pinned values
3688  if (local_eqn_number >= 0)
3689  {
3690  // store dof lookup in temporary pair: First entry in pair
3691  // is global equation number; second entry is dof type
3692  dof_lookup.first = this->eqn_number(local_eqn_number);
3693  dof_lookup.second = v;
3694 
3695  // add to list
3696  dof_lookup_list.push_front(dof_lookup);
3697  }
3698  }
3699  }
3700  }
3701 
3702 
3703  /// Axisymmetric Crouzeix-Raviart elements
3704  // Set the data for the number of Variables at each node
3706  3, 3, 3, 3, 3, 3, 3, 3, 3};
3707 
3708  //========================================================================
3709  /// Number of values (pinned or dofs) required at node n.
3710  //========================================================================
3712  const unsigned& n) const
3713  {
3714  return Initial_Nvalue[n];
3715  }
3716 
3717  //========================================================================
3718  /// Compute traction at local coordinate s for outer unit normal N
3719  //========================================================================
3721  const Vector<double>& s,
3722  const Vector<double>& N,
3723  Vector<double>& traction) const
3724  {
3726  }
3727 
3728  /// ////////////////////////////////////////////////////////////////////////
3729  /// ////////////////////////////////////////////////////////////////////////
3730  /// ////////////////////////////////////////////////////////////////////////
3731 
3732 
3733  //============================================================================
3734  /// Create a list of pairs for all unknowns in this element,
3735  /// so the first entry in each pair contains the global equation
3736  /// number of the unknown, while the second one contains the number
3737  /// of the "DOF type" that this unknown is associated with.
3738  /// (Function can obviously only be called if the equation numbering
3739  /// scheme has been set up.)
3740  //============================================================================
3742  std::list<std::pair<unsigned long, unsigned>>& dof_lookup_list) const
3743  {
3744  // number of nodes
3745  unsigned n_node = this->nnode();
3746 
3747  // temporary pair (used to store dof lookup prior to being added to list)
3748  std::pair<unsigned, unsigned> dof_lookup;
3749 
3750  // loop over the nodes
3751  for (unsigned n = 0; n < n_node; n++)
3752  {
3753  // find the number of values at this node
3754  unsigned nv = this->node_pt(n)->nvalue();
3755 
3756  // loop over these values
3757  for (unsigned v = 0; v < nv; v++)
3758  {
3759  // determine local eqn number
3760  int local_eqn_number = this->nodal_local_eqn(n, v);
3761 
3762  // ignore pinned values - far away degrees of freedom resulting
3763  // from hanging nodes can be ignored since these are be dealt
3764  // with by the element containing their master nodes
3765  if (local_eqn_number >= 0)
3766  {
3767  // store dof lookup in temporary pair: Global equation number
3768  // is the first entry in pair
3769  dof_lookup.first = this->eqn_number(local_eqn_number);
3770 
3771  // set dof numbers: Dof number is the second entry in pair
3772  dof_lookup.second = v;
3773 
3774  // add to list
3775  dof_lookup_list.push_front(dof_lookup);
3776  }
3777  }
3778  }
3779  }
3780 
3781 
3782  // Axisymmetric Taylor--Hood
3783  // Set the data for the number of Variables at each node
3785  4, 3, 4, 3, 3, 3, 4, 3, 4};
3786 
3787  // Set the data for the pressure conversion array
3788  const unsigned AxisymmetricQTaylorHoodElement::Pconv[4] = {0, 2, 6, 8};
3789 
3790 
3791  //========================================================================
3792  /// Compute traction at local coordinate s for outer unit normal N
3793  //========================================================================
3795  const Vector<double>& s,
3796  const Vector<double>& N,
3797  Vector<double>& traction) const
3798  {
3800  }
3801 
3802 } // namespace oomph
static char t char * s
Definition: cfortran.h:568
cstr elem_len * i
Definition: cfortran.h:603
char t
Definition: cfortran.h:568
double dissipation() const
Return integral of dissipation over element.
static Vector< double > Default_Gravity_vector
Static default value for the gravity vector.
double pressure_integral() const
Integral of pressure over element.
void traction(const Vector< double > &s, const Vector< double > &N, Vector< double > &traction) const
Compute traction (on the viscous scale) at local coordinate s for outer unit normal N.
virtual void fill_in_generic_dresidual_contribution_axi_nst(double *const &parameter_pt, Vector< double > &dres_dparam, DenseMatrix< double > &djac_dparam, DenseMatrix< double > &dmass_matrix_dparam, unsigned flag)
Compute the derivative of residuals for the Navier–Stokes equations; with respect to a parameeter fla...
const double & density_ratio() const
Density ratio for element: Element's density relative to the viscosity used in the definition of the ...
void fill_in_contribution_to_hessian_vector_products(Vector< double > const &Y, DenseMatrix< double > const &C, DenseMatrix< double > &product)
Compute the hessian tensor vector products required to perform continuation of bifurcations analytica...
const double & re_invro() const
Global Reynolds number multiplied by inverse Rossby number.
void output_veloc(std::ostream &outfile, const unsigned &nplot, const unsigned &t)
Output function: x,y,[z],u,v,[w] in tecplot format. nplot points in each coordinate direction at time...
virtual double p_axi_nst(const unsigned &n_p) const =0
Pressure at local pressure "node" n_p Uses suitably interpolated value for hanging nodes.
double *& re_invro_pt()
Pointer to global inverse Froude number.
void output_fct(std::ostream &outfile, const unsigned &nplot, FiniteElement::SteadyExactSolutionFctPt exact_soln_pt)
Output exact solution specified via function pointer at a given number of plot points....
const double & viscosity_ratio() const
Viscosity ratio for element: Element's viscosity relative to the viscosity used in the definition of ...
const Vector< double > & g() const
Vector of gravitational components.
const double & re() const
Reynolds number.
double * Re_pt
Pointer to global Reynolds number.
virtual void pshape_axi_nst(const Vector< double > &s, Shape &psi) const =0
Compute the pressure shape functions at local coordinate s.
double *& re_pt()
Pointer to Reynolds number.
virtual void get_viscosity_ratio_axisym_nst(const unsigned &ipt, const Vector< double > &s, const Vector< double > &x, double &visc_ratio)
Calculate the viscosity ratio relative to the viscosity used in the definition of the Reynolds number...
void interpolated_u_axi_nst(const Vector< double > &s, Vector< double > &veloc) const
Compute vector of FE interpolated velocity u at local coordinate s.
double *& re_st_pt()
Pointer to product of Reynolds and Strouhal number (=Womersley number)
virtual double dshape_and_dtest_eulerian_at_knot_axi_nst(const unsigned &ipt, Shape &psi, DShape &dpsidx, Shape &test, DShape &dtestdx) const =0
Compute the shape functions and derivatives w.r.t. global coords at ipt-th integration point Return J...
double get_source_fct(const double &time, const unsigned &ipt, const Vector< double > &x)
Calculate the source fct at given time and Eulerian position.
static int Pressure_not_stored_at_node
Static "magic" number that indicates that the pressure is not stored at a node.
double du_dt_axi_nst(const unsigned &n, const unsigned &i) const
i-th component of du/dt at local node n. Uses suitably interpolated value for hanging nodes.
static double Default_Physical_Ratio_Value
Static default value for the physical ratios (all are initialised to one)
double kin_energy() const
Get integral of kinetic energy over element.
void compute_error(std::ostream &outfile, FiniteElement::UnsteadyExactSolutionFctPt exact_soln_pt, const double &time, double &error, double &norm)
Validate against exact solution at given time Solution is provided via function pointer....
double *& re_invfr_pt()
Pointer to global inverse Froude number.
virtual unsigned npres_axi_nst() const =0
Function to return number of pressure degrees of freedom.
static double Default_Physical_Constant_Value
Static default value for the physical constants (all initialised to zero)
bool ALE_is_disabled
Boolean flag to indicate if ALE formulation is disabled when the time-derivatives are computed....
virtual void fill_in_generic_residual_contribution_axi_nst(Vector< double > &residuals, DenseMatrix< double > &jacobian, DenseMatrix< double > &mass_matrix, unsigned flag)
Compute the residuals for the Navier–Stokes equations; flag=2 or 1 or 0: compute the Jacobian and/or ...
virtual void get_source_fct_gradient(const double &time, const unsigned &ipt, const Vector< double > &x, Vector< double > &gradient)
Get gradient of source term at (Eulerian) position x. Computed via function pointer (if set) or by fi...
const double & re_st() const
Product of Reynolds and Strouhal number (=Womersley number)
const double & re_invfr() const
Global inverse Froude number.
double interpolated_p_axi_nst(const Vector< double > &s) const
Return FE interpolated pressure at local coordinate s.
virtual void get_body_force_gradient_axi_nst(const double &time, const unsigned &ipt, const Vector< double > &s, const Vector< double > &x, DenseMatrix< double > &d_body_force_dx)
Get gradient of body force term at (Eulerian) position x. Computed via function pointer (if set) or b...
void get_pressure_and_velocity_mass_matrix_diagonal(Vector< double > &press_mass_diag, Vector< double > &veloc_mass_diag, const unsigned &which_one=0)
Compute the diagonal of the velocity/pressure mass matrices. If which one=0, both are computed,...
void strain_rate(const Vector< double > &s, DenseMatrix< double > &strain_rate) const
Strain-rate tensor: where (in that order)
virtual int p_local_eqn(const unsigned &n) const =0
Access function for the local equation number information for the pressure. p_local_eqn[n] = local eq...
virtual void get_body_force_axi_nst(const double &time, const unsigned &ipt, const Vector< double > &s, const Vector< double > &x, Vector< double > &result)
Calculate the body force fct at a given time and Eulerian position.
virtual void get_dresidual_dnodal_coordinates(RankThreeTensor< double > &dresidual_dnodal_coordinates)
Compute derivatives of elemental residual vector with respect to nodal coordinates....
virtual unsigned u_index_axi_nst(const unsigned &i) const
Return the index at which the i-th unknown velocity component is stored. The default value,...
void output(std::ostream &outfile)
Output function: x,y,[z],u,v,[w],p in tecplot format. Default number of plot points.
static Vector< double > Gamma
Vector to decide whether the stress-divergence form is used or not.
void get_dof_numbers_for_unknowns(std::list< std::pair< unsigned long, unsigned >> &dof_lookup_list) const
Create a list of pairs for all unknowns in this element, so that the first entry in each pair contain...
void get_traction(const Vector< double > &s, const Vector< double > &N, Vector< double > &traction) const
Compute traction at local coordinate s for outer unit normal N.
static const unsigned Initial_Nvalue[]
Static array of ints to hold required number of variables at nodes.
unsigned npres_axi_nst() const
Return number of pressure values.
int p_local_eqn(const unsigned &n) const
Overload the access function for the pressure's local equation numbers.
virtual unsigned required_nvalue(const unsigned &n) const
Number of values (pinned or dofs) required at local node n.
static const unsigned Pconv[]
Static array of ints to hold conversion from pressure node numbers to actual node numbers.
void get_dof_numbers_for_unknowns(std::list< std::pair< unsigned long, unsigned >> &dof_lookup_list) const
Create a list of pairs for all unknowns in this element, so that the first entry in each pair contain...
void get_traction(const Vector< double > &s, const Vector< double > &N, Vector< double > &traction) const
Compute traction at local coordinate s for outer unit normal N.
static const unsigned Initial_Nvalue[]
Static array of ints to hold number of variables at node.
A Class for the derivatives of shape functions The class design is essentially the same as Shape,...
Definition: shape.h:278
double * value_pt(const unsigned &i) const
Return the pointer to the i-the stored value. Typically this is required when direct access to the st...
Definition: nodes.h:324
TimeStepper *& time_stepper_pt()
Return the pointer to the timestepper.
Definition: nodes.h:238
unsigned nvalue() const
Return number of values stored in data object (incl pinned ones).
Definition: nodes.h:483
unsigned long nrow() const
Return the number of rows of the matrix.
Definition: matrices.h:485
unsigned long ncol() const
Return the number of columns of the matrix.
Definition: matrices.h:491
virtual double J_eulerian(const Vector< double > &s) const
Return the Jacobian of mapping from local to global coordinates at local position s.
Definition: elements.cc:4133
Node *& node_pt(const unsigned &n)
Return a pointer to the local node n.
Definition: elements.h:2179
double nodal_value(const unsigned &n, const unsigned &i) const
Return the i-th value stored at local node n. Produces suitably interpolated values for hanging nodes...
Definition: elements.h:2597
virtual std::string tecplot_zone_string(const unsigned &nplot) const
Return string for tecplot zone header (when plotting nplot points in each "coordinate direction")
Definition: elements.h:3165
virtual void shape(const Vector< double > &s, Shape &psi) const =0
Calculate the geometric shape functions at local coordinate s. This function must be overloaded for e...
virtual double interpolated_x(const Vector< double > &s, const unsigned &i) const
Return FE interpolated coordinate x[i] at local coordinate s.
Definition: elements.cc:3992
int nodal_local_eqn(const unsigned &n, const unsigned &i) const
Return the local equation number corresponding to the i-th value at the n-th local node.
Definition: elements.h:1436
unsigned nnode() const
Return the number of nodes.
Definition: elements.h:2214
void(* SteadyExactSolutionFctPt)(const Vector< double > &, Vector< double > &)
Function pointer for function that computes vector-valued steady "exact solution" as .
Definition: elements.h:1763
Integral *const & integral_pt() const
Return the pointer to the integration scheme (const version)
Definition: elements.h:1967
virtual void get_s_plot(const unsigned &i, const unsigned &nplot, Vector< double > &s, const bool &shifted_to_interior=false) const
Get cector of local coordinates of plot point i (when plotting nplot points in each "coordinate direc...
Definition: elements.h:3152
virtual unsigned nplot_points(const unsigned &nplot) const
Return total number of plot points (when plotting nplot points in each "coordinate direction")
Definition: elements.h:3190
double nodal_position(const unsigned &n, const unsigned &i) const
Return the i-th coordinate at local node n. If the node is hanging, the appropriate interpolation is ...
Definition: elements.h:2321
double dshape_eulerian(const Vector< double > &s, Shape &psi, DShape &dpsidx) const
Compute the geometric shape functions and also first derivatives w.r.t. global coordinates at local c...
Definition: elements.cc:3328
virtual double J_eulerian_at_knot(const unsigned &ipt) const
Return the Jacobian of the mapping from local to global coordinates at the ipt-th integration point.
Definition: elements.cc:4198
double raw_dnodal_position_dt(const unsigned &n, const unsigned &i) const
Return the i-th component of nodal velocity: dx/dt at local node n. Do not use the hanging node repre...
Definition: elements.h:2260
double raw_nodal_value(const unsigned &n, const unsigned &i) const
Return the i-th value stored at local node n but do NOT take hanging nodes into account.
Definition: elements.h:2580
double raw_nodal_position(const unsigned &n, const unsigned &i) const
Return the i-th coordinate at local node n. Do not use the hanging node representation....
Definition: elements.cc:1714
virtual void write_tecplot_zone_footer(std::ostream &outfile, const unsigned &nplot) const
Add tecplot zone "footer" to output stream (when plotting nplot points in each "coordinate direction"...
Definition: elements.h:3178
void(* UnsteadyExactSolutionFctPt)(const double &, const Vector< double > &, Vector< double > &)
Function pointer for function that computes Vector-valued time-dependent function as .
Definition: elements.h:1769
virtual void shape_at_knot(const unsigned &ipt, Shape &psi) const
Return the geometric shape function at the ipt-th integration point.
Definition: elements.cc:3250
static double Default_fd_jacobian_step
Double used for the default finite difference step in elemental jacobian calculations.
Definition: elements.h:1202
unsigned ndof() const
Return the number of equations/dofs in the element.
Definition: elements.h:839
unsigned long eqn_number(const unsigned &ieqn_local) const
Return the global equation number corresponding to the ieqn_local-th local equation number.
Definition: elements.h:708
int local_eqn_number(const unsigned long &ieqn_global) const
Return the local equation number corresponding to the ieqn_global-th global equation number....
Definition: elements.h:730
virtual double knot(const unsigned &i, const unsigned &j) const =0
Return local coordinate s[j] of i-th integration point.
virtual unsigned nweight() const =0
Return the number of integration points of the scheme.
virtual double weight(const unsigned &i) const =0
Return weight of i-th integration point.
Nodes are derived from Data, but, in addition, have a definite (Eulerian) position in a space of a gi...
Definition: nodes.h:906
double & x(const unsigned &i)
Return the i-th nodal coordinate.
Definition: nodes.h:1060
void perform_auxiliary_node_update_fct()
Execute auxiliary update function (if any) – this can be used to update any nodal values following th...
Definition: nodes.h:1615
TimeStepper *& position_time_stepper_pt()
Return a pointer to the position timestepper.
Definition: nodes.h:1022
bool has_auxiliary_node_update_fct_pt()
Boolean to indicate if node has a pointer to and auxiliary update function.
Definition: nodes.h:1606
An OomphLibError object which should be thrown when an run-time error is encountered....
An OomphLibWarning object which should be created as a temporary object to issue a warning....
////////////////////////////////////////////////////////////////// //////////////////////////////////...
Definition: matrices.h:1701
////////////////////////////////////////////////////////////////// //////////////////////////////////...
Definition: matrices.h:1370
A Class for shape functions. In simple cases, the shape functions have only one index that can be tho...
Definition: shape.h:76
virtual double weight(const unsigned &i, const unsigned &j) const
Access function for j-th weight for the i-th derivative.
Definition: timesteppers.h:594
Time *const & time_pt() const
Access function for the pointer to time (const version)
Definition: timesteppers.h:572
double & time()
Return the current value of the continuous time.
Definition: timesteppers.h:123
//////////////////////////////////////////////////////////////////// ////////////////////////////////...