pseudosolid_node_update_elements.h
Go to the documentation of this file.
1 // LIC// ====================================================================
2 // LIC// This file forms part of oomph-lib, the object-oriented,
3 // LIC// multi-physics finite-element library, available
4 // LIC// at http://www.oomph-lib.org.
5 // LIC//
6 // LIC// Copyright (C) 2006-2024 Matthias Heil and Andrew Hazel
7 // LIC//
8 // LIC// This library is free software; you can redistribute it and/or
9 // LIC// modify it under the terms of the GNU Lesser General Public
10 // LIC// License as published by the Free Software Foundation; either
11 // LIC// version 2.1 of the License, or (at your option) any later version.
12 // LIC//
13 // LIC// This library is distributed in the hope that it will be useful,
14 // LIC// but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // LIC// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
16 // LIC// Lesser General Public License for more details.
17 // LIC//
18 // LIC// You should have received a copy of the GNU Lesser General Public
19 // LIC// License along with this library; if not, write to the Free Software
20 // LIC// Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
21 // LIC// 02110-1301 USA.
22 // LIC//
23 // LIC// The authors may be contacted at oomph-lib@maths.man.ac.uk.
24 // LIC//
25 // LIC//====================================================================
26 // This header file contains elements that combine two element types in
27 // a generic way.
28 
29 #ifndef OOMPH_PSEUDO_SOLID_REMESH_ELEMENTS_HEADER
30 #define OOMPH_PSEUDO_SOLID_REMESH_ELEMENTS_HEADER
31 
32 #include "elements.h"
33 
34 namespace oomph
35 {
36  //===========================================================================
37  /// Helper namespace for pseudo-elastic elements
38  //===========================================================================
39  namespace PseudoSolidHelper
40  {
41  /// Static variable to hold the default value for the pseudo-solid's
42  /// inertia parameter Lambda^2.
43  extern double Zero;
44 
45  } // namespace PseudoSolidHelper
46 
47 
48  //==========================================================================
49  /// A templated class that permits combination two different element types,
50  /// for the solution of problems in deforming domains. The first template
51  /// paremter BASIC is the standard element and the second SOLID solves
52  /// the equations that are used to control the mesh deformation.
53  //==========================================================================
54  template<class BASIC, class SOLID>
55  class PseudoSolidNodeUpdateElement : public virtual BASIC,
56  public virtual SOLID
57 
58  {
59  /// Boolean flag to indicate shape derivative method
61 
62  public:
63  /// Constructor, call the BASIC and SOLID elements' constructors and
64  /// set the "density" parameter for solid element to zero
66  : BASIC(), SOLID(), Shape_derivs_by_direct_fd(true)
67  {
68  SOLID::lambda_sq_pt() = &PseudoSolidHelper::Zero;
69  }
70 
71  /// Function to describe the local dofs of the element. The ostream
72  /// specifies the output stream to which the description
73  /// is written; the string stores the currently
74  /// assembled output that is ultimately written to the
75  /// output stream by Data::describe_dofs(...); it is typically
76  /// built up incrementally as we descend through the
77  /// call hierarchy of this function when called from
78  /// Problem::describe_dofs(...)
79  void describe_local_dofs(std::ostream& out,
80  const std::string& current_string) const
81  {
82  BASIC::describe_local_dofs(out, current_string);
83  SOLID::describe_local_dofs(out, current_string);
84  }
85 
86  /// Compute norm of solution: use the version in the BASIC
87  /// class if there's any ambiguity
88  void compute_norm(double& el_norm)
89  {
90  BASIC::compute_norm(el_norm);
91  }
92 
93  /// The required number of values is the sum of the two
94  unsigned required_nvalue(const unsigned& n) const
95  {
96  return BASIC::required_nvalue(n) + SOLID::required_nvalue(n);
97  }
98 
99  /// We assume that the solid stuff is stored at the end of
100  /// the nodes, i.e. its index is the number of continuously interplated
101  /// values in the BASIC equations.
103  {
104  // At the moment, we can't handle this case in generality so throw an
105  // error if the solid pressure is stored at the nodes
106  if (SOLID::solid_p_nodal_index() >= 0)
107  {
108  throw OomphLibError("Cannot handle (non-refineable) continuous solid "
109  "pressure interpolation",
110  OOMPH_CURRENT_FUNCTION,
111  OOMPH_EXCEPTION_LOCATION);
112  }
113 
114  return SOLID::solid_p_nodal_index();
115  }
116 
117  /// Final override for the residuals function. Contributions are
118  /// added from both underlying element types
120  {
121  // Call the basic equations first
122  BASIC::fill_in_contribution_to_residuals(residuals);
123  // Add the solid equations contribution
124  SOLID::fill_in_contribution_to_residuals(residuals);
125  }
126 
127  /// Final override for jacobian function: Contributions are
128  /// included from both the underlying element types
130  DenseMatrix<double>& jacobian)
131  {
132  // Call the basic equations first
133  BASIC::fill_in_contribution_to_jacobian(residuals, jacobian);
134  // Call the solid equations
135  SOLID::fill_in_contribution_to_jacobian(residuals, jacobian);
136 
137  // Now fill in the off-diagonal entries (the shape derivatives),
138  fill_in_shape_derivatives(jacobian);
139  }
140 
141  /// Final override for mass matrix function: contributions
142  /// are included from both the underlying element types
144  Vector<double>& residuals,
145  DenseMatrix<double>& jacobian,
146  DenseMatrix<double>& mass_matrix)
147  {
148  // Call the basic equations first
149  BASIC::fill_in_contribution_to_jacobian_and_mass_matrix(
150  residuals, jacobian, mass_matrix);
151  // Call the solid equations
152  SOLID::fill_in_contribution_to_jacobian_and_mass_matrix(
153  residuals, jacobian, mass_matrix);
154 
155  // Now fill in the off-diagonal entries (the shape derivatives),
156  fill_in_shape_derivatives(jacobian);
157  }
158 
159 
160  /// Evaluate shape derivatives by direct finite differencing
162  {
164  }
165 
166  /// Evaluate shape derivatives by chain rule
168  {
170  }
171 
172 
173  /// Fill in the shape derivatives of the BASIC equations
174  /// w.r.t. the solid position dofs
176  {
177  // Default is to use finite differences
179  {
180  this->fill_in_shape_derivatives_by_fd(jacobian);
181  }
182  // Otherwise need to do a bit more work
183  else
184  {
185  // Calculate storage requirements
186  const unsigned n_dof = this->ndof();
187  const unsigned n_node = this->nnode();
188  const unsigned nodal_dim = this->nodal_dimension();
189 
190  // If there are no nodes or dofs return
191  if ((n_dof == 0) || (n_node == 0))
192  {
193  return;
194  }
195 
196  // Generalised dofs have NOT been considered, shout
197  if (this->nnodal_position_type() != 1)
198  {
199  throw OomphLibError("Shape derivatives do not (yet) allow for "
200  "generalised position dofs\n",
201  OOMPH_CURRENT_FUNCTION,
202  OOMPH_EXCEPTION_LOCATION);
203  }
204 
205  // Storage for derivatives of residuals w.r.t. nodal coordinates
206  RankThreeTensor<double> dresidual_dnodal_coordinates(
207  n_dof, nodal_dim, n_node, 0.0);
208 
209  // Get the analytic derivatives for the BASIC equations
210  BASIC::get_dresidual_dnodal_coordinates(dresidual_dnodal_coordinates);
211 
212  // Now add the appropriate contributions to the Jacobian
213  int local_unknown = 0;
214 
215  // Loop over dofs
216  //(this will include the solid dofs,
217  // but all those contributions should be zero)
218  for (unsigned l = 0; l < n_dof; l++)
219  {
220  // Loop over the nodes
221  for (unsigned n = 0; n < n_node; n++)
222  {
223  // Loop over the position_types (only one)
224  unsigned k = 0;
225  // Loop over the coordinates
226  for (unsigned i = 0; i < nodal_dim; i++)
227  {
228  // Get the equation of the local unknown
229  local_unknown = this->position_local_eqn(n, k, i);
230 
231  // If not pinned, add the contribution to the Jacobian
232  if (local_unknown >= 0)
233  {
234  jacobian(l, local_unknown) +=
235  dresidual_dnodal_coordinates(l, i, n);
236  }
237  }
238  }
239  }
240  }
241  }
242 
243 
244  /// Fill in the derivatives of the BASIC equations
245  /// w.r.t. the solid position dofs
247  {
248  // Flag to indicate if we use first or second order FD
249  // bool use_first_order_fd=false;
250 
251  // Find the number of nodes
252  const unsigned n_node = this->nnode();
253 
254  // If there aren't any nodes, then return straight away
255  if (n_node == 0)
256  {
257  return;
258  }
259 
260  // Call the update function to ensure that the element is in
261  // a consistent state before finite differencing starts
262  this->update_before_solid_position_fd();
263 
264  // Get the number of position dofs and dimensions at the node
265  const unsigned n_position_type = this->nnodal_position_type();
266  const unsigned nodal_dim = this->nodal_dimension();
267 
268  // Find the number of dofs in the element
269  const unsigned n_dof = this->ndof();
270 
271  // Create residual newres vectors
272  Vector<double> residuals(n_dof);
273  Vector<double> newres(n_dof);
274  // Vector<double> newres_minus(n_dof);
275 
276  // Calculate the residuals (for the BASIC) equations
277  // Need to do this using fill_in because get_residuals will
278  // compute all residuals for the problem, which is
279  // a little ineffecient
280  for (unsigned m = 0; m < n_dof; m++)
281  {
282  residuals[m] = 0.0;
283  }
284  BASIC::fill_in_contribution_to_residuals(residuals);
285 
286  // Need to determine which degrees of freedom are solid degrees of
287  // freedom
288  // A vector of booleans that will be true if the dof is associated
289  // with the solid equations
290  std::vector<bool> dof_is_solid(n_dof, false);
291 
292  // Now set all solid positional dofs in the vector
293  for (unsigned n = 0; n < n_node; n++)
294  {
295  for (unsigned k = 0; k < n_position_type; k++)
296  {
297  for (unsigned i = 0; i < nodal_dim; i++)
298  {
299  int local_dof = this->position_local_eqn(n, k, i);
300  if (local_dof >= 0)
301  {
302  dof_is_solid[local_dof] = true;
303  }
304  }
305  }
306  }
307 
308  // Add the solid pressures (in solid elements without
309  // solid pressure the number will be zero).
310  unsigned n_solid_pres = this->npres_solid();
311  for (unsigned l = 0; l < n_solid_pres; l++)
312  {
313  int local_dof = this->solid_p_local_eqn(l);
314  if (local_dof >= 0)
315  {
316  dof_is_solid[local_dof] = true;
317  }
318  }
319 
320 
321  // Integer storage for local unknown
322  int local_unknown = 0;
323 
324  // Use default value defined in GeneralisedElement
325  const double fd_step = this->Default_fd_jacobian_step;
326 
327  // Loop over the nodes
328  for (unsigned n = 0; n < n_node; n++)
329  {
330  // Loop over position dofs
331  for (unsigned k = 0; k < n_position_type; k++)
332  {
333  // Loop over dimension
334  for (unsigned i = 0; i < nodal_dim; i++)
335  {
336  // If the variable is free
337  local_unknown = this->position_local_eqn(n, k, i);
338  if (local_unknown >= 0)
339  {
340  // Store a pointer to the (generalised) Eulerian nodal position
341  double* const value_pt = &(this->node_pt(n)->x_gen(k, i));
342 
343  // Save the old value of the (generalised) Eulerian nodal position
344  const double old_var = *value_pt;
345 
346  // Increment the (generalised) Eulerian nodal position
347  *value_pt += fd_step;
348 
349  // Perform any auxialiary node updates
350  this->node_pt(n)->perform_auxiliary_node_update_fct();
351 
352  // Calculate the new residuals
353  // Need to do this using fill_in because get_residuals will
354  // compute all residuals for the problem, which is
355  // a little ineffecient
356  for (unsigned m = 0; m < n_dof; m++)
357  {
358  newres[m] = 0.0;
359  }
360  BASIC::fill_in_contribution_to_residuals(newres);
361 
362  // if (use_first_order_fd)
363  {
364  // Do forward finite differences
365  for (unsigned m = 0; m < n_dof; m++)
366  {
367  // Stick the entry into the Jacobian matrix
368  // but only if it's not a solid dof
369  if (dof_is_solid[m] == false)
370  {
371  jacobian(m, local_unknown) =
372  (newres[m] - residuals[m]) / fd_step;
373  }
374  }
375  }
376  // else
377  // {
378  // //Take backwards step for the (generalised)
379  // Eulerian nodal
380  // // position
381  // node_pt(n)->x_gen(k,i) = old_var-fd_step;
382 
383  // //Calculate the new residuals at backward position
384  // //BASIC::get_residuals(newres_minus);
385 
386  // //Do central finite differences
387  // for(unsigned m=0;m<n_dof;m++)
388  // {
389  // //Stick the entry into the Jacobian matrix
390  // jacobian(m,local_unknown) =
391  // (newres[m] - newres_minus[m])/(2.0*fd_step);
392  // }
393  // }
394 
395  // Reset the (generalised) Eulerian nodal position
396  *value_pt = old_var;
397 
398  // Perform any auxialiary node updates
399  this->node_pt(n)->perform_auxiliary_node_update_fct();
400  }
401  }
402  }
403  }
404 
405  // End of finite difference loop
406  // Final reset of any dependent data
407  this->reset_after_solid_position_fd();
408  }
409 
410 
411  /// Specify Data that affects the geometry of the element
412  /// by adding the position Data to the set that's passed in.
413  /// (This functionality is required in FSI problems; set is used to
414  /// avoid double counting).
415  void identify_geometric_data(std::set<Data*>& geometric_data_pt)
416  {
417  // Loop over the node update data and add to the set
418  const unsigned n_node = this->nnode();
419  for (unsigned j = 0; j < n_node; j++)
420  {
421  geometric_data_pt.insert(
422  dynamic_cast<SolidNode*>(this->node_pt(j))->variable_position_pt());
423  }
424  }
425 
426 
427  /// Overload the output function: Call that of the basic element
428  void output(std::ostream& outfile)
429  {
430  BASIC::output(outfile);
431  }
432 
433  /// Output function: Plot at n_p plot points using the basic
434  /// element's output function
435  void output(std::ostream& outfile, const unsigned& n_p)
436  {
437  BASIC::output(outfile, n_p);
438  }
439 
440  /// Overload the output function: Call that of the basic element
441  void output(FILE* file_pt)
442  {
443  BASIC::output(file_pt);
444  }
445 
446  /// Output function is just the same as the basic equations
447  void output(FILE* file_pt, const unsigned& n_p)
448  {
449  BASIC::output(file_pt, n_p);
450  }
451 
452  /// Number of 'flux' terms for Z2 error estimation: Error estimation
453  /// is based on error in BASIC element
454  unsigned num_Z2_flux_terms()
455  {
456  return BASIC::num_Z2_flux_terms();
457  }
458 
459 
460  /// Plot the error when compared against a given exact flux.
461  /// Also calculates the norm of the error and that of the exact flux.
462  /// Use version in BASIC element
464  std::ostream& outfile,
466  double& error,
467  double& norm)
468  {
469  BASIC::compute_exact_Z2_error(outfile, exact_flux_pt, error, norm);
470  }
471 
472  /// 'Flux' vector for Z2 error estimation: Error estimation
473  /// is based on error in BASIC element
475  {
476  BASIC::get_Z2_flux(s, flux);
477  }
478 
479  /// Number of vertex nodes in the element
480  unsigned nvertex_node() const
481  {
482  return BASIC::nvertex_node();
483  }
484 
485  /// Pointer to the j-th vertex node in the element
486  Node* vertex_node_pt(const unsigned& j) const
487  {
488  return BASIC::vertex_node_pt(j);
489  }
490 
491  /// Order of recovery shape functions for Z2 error estimation: Done
492  /// for BASIC element since it determines the refinement
493  unsigned nrecovery_order()
494  {
495  return BASIC::nrecovery_order();
496  }
497 
498 
499  /// The number of "DOF types" that degrees of freedom in this element
500  /// are sub-divided into.
501  unsigned ndof_types() const
502  {
503  return BASIC::ndof_types() + SOLID::ndof_types();
504  }
505 
506  /// return the number of DOF types associated with the BASIC
507  /// elements in this combined element
508  unsigned nbasic_dof_types() const
509  {
510  return BASIC::ndof_types();
511  }
512 
513  /// return the number of DOF types associated with the SOLID
514  /// elements in this combined element
515  unsigned nsolid_dof_types() const
516  {
517  return SOLID::ndof_types();
518  }
519 
520  /// Create a list of pairs for all unknowns in this element,
521  /// so that the first entry in each pair contains the global equation
522  /// number of the unknown, while the second one contains the number
523  /// of the "DOF type" that this unknown is associated with.
524  /// This method combines the get_dof_numbers_for_unknowns(...)
525  /// method for the BASIC and SOLID elements. The basic elements
526  /// retain their DOF type numbering and the SOLID elements
527  /// DOF type numbers are incremented by nbasic_dof_types().
529  std::list<std::pair<unsigned long, unsigned>>& dof_lookup_list) const
530  {
531  // get the solid list
532  std::list<std::pair<unsigned long, unsigned>> solid_list;
533  SOLID::get_dof_numbers_for_unknowns(solid_list);
534 
535  // get the basic list
536  BASIC::get_dof_numbers_for_unknowns(dof_lookup_list);
537 
538  // get the number of basic dof types
539  unsigned nbasic_dof_types = BASIC::ndof_types();
540 
541  // add the solid lookup list to the basic lookup list
542  // incrementing the solid dof numbers by nbasic_dof_types
543  typedef std::list<std::pair<unsigned long, unsigned>>::iterator IT;
544  for (IT it = solid_list.begin(); it != solid_list.end(); it++)
545  {
546  std::pair<unsigned long, unsigned> new_pair;
547  new_pair.first = it->first;
548  new_pair.second = it->second + nbasic_dof_types;
549  dof_lookup_list.push_front(new_pair);
550  }
551  }
552  };
553 
554  /// Explicit definition of the face geometry of these elements
555  template<class BASIC, class SOLID>
557  : public virtual FaceGeometry<SOLID>
558  {
559  public:
560  /// Constuctor calls the constructor of the SolidQElement
561  /// (Only the Intel compiler seems to need this!)
562  FaceGeometry() : FaceGeometry<SOLID>() {}
563  };
564 
565  /// Explicit definition of the face geometry of these elements
566  template<class BASIC, class SOLID>
568  : public virtual FaceGeometry<FaceGeometry<SOLID>>
569  {
570  public:
571  /// Constuctor calls the constructor of the SolidQElement
572  /// (Only the Intel compiler seems to need this!)
574 
575  protected:
576  };
577 
578 
579  //===================================================================
580  /// Refineable version of the PseudoSolidNodeUpdateELement
581  //===================================================================
582  template<class BASIC, class SOLID>
583  class RefineablePseudoSolidNodeUpdateElement : public virtual BASIC,
584  public virtual SOLID
585  {
586  public:
587  /// Constructor, call the BASIC and SOLID elements' constructors and
588  /// set the "density" parameter for solid element to zero
590  : RefineableElement(), BASIC(), SOLID()
591  {
592  SOLID::lambda_sq_pt() = &PseudoSolidHelper::Zero;
593  }
594 
595  /// Function to describe the local dofs of the element. The ostream
596  /// specifies the output stream to which the description
597  /// is written; the string stores the currently
598  /// assembled output that is ultimately written to the
599  /// output stream by Data::describe_dofs(...); it is typically
600  /// built up incrementally as we descend through the
601  /// call hierarchy of this function when called from
602  /// Problem::describe_dofs(...)
603  void describe_local_dofs(std::ostream& out,
604  const std::string& current_string) const
605  {
606  BASIC::describe_local_dofs(out, current_string);
607  SOLID::describe_local_dofs(out, current_string);
608  }
609 
610  /// The required number of values is the sum of the two
611  unsigned required_nvalue(const unsigned& n) const
612  {
613  return BASIC::required_nvalue(n) + SOLID::required_nvalue(n);
614  }
615 
616  /// The number of continuously interpolated values is the
617  /// sum of the SOLID and BASIC values
618  unsigned ncont_interpolated_values() const
619  {
620  return BASIC::ncont_interpolated_values() +
621  SOLID::ncont_interpolated_values();
622  }
623 
624  /// We assume that the solid stuff is stored at the end of
625  /// the nodes, i.e. its index is the number of continuously interplated
626  /// values in the BASIC equations.
628  {
629  // Find the index in the solid
630  int solid_p_index = SOLID::solid_p_nodal_index();
631  // If there is a solid pressure at the nodes, return the
632  // index after all the BASIC stuff
633  if (solid_p_index >= 0)
634  {
635  return BASIC::ncont_interpolated_values() +
636  SOLID::solid_p_nodal_index();
637  }
638  else
639  {
640  return solid_p_index;
641  }
642  }
643 
644  /// Final override for residuals function: adds contributions
645  /// from both underlying element types
647  {
648  // Call the basic equations first
649  BASIC::fill_in_contribution_to_residuals(residuals);
650  // Call the solid equations
651  SOLID::fill_in_contribution_to_residuals(residuals);
652  }
653 
654  /// Final override for jacobian function: Calls get_jacobian() for
655  /// both of the underlying element types
657  DenseMatrix<double>& jacobian)
658  {
659  // Call the basic equations first
660  BASIC::fill_in_contribution_to_jacobian(residuals, jacobian);
661 
662  // Call the solid equations
663  SOLID::fill_in_contribution_to_jacobian(residuals, jacobian);
664 
665  // Now fill in the off-diagonal entries (the shape derivatives),
667  }
668 
669  /// Final override for mass matrix function: contributions
670  /// are included from both the underlying element types
672  Vector<double>& residuals,
673  DenseMatrix<double>& jacobian,
674  DenseMatrix<double>& mass_matrix)
675  {
676  // Call the basic equations first
677  BASIC::fill_in_contribution_to_jacobian_and_mass_matrix(
678  residuals, jacobian, mass_matrix);
679  // Call the solid equations
680  SOLID::fill_in_contribution_to_jacobian_and_mass_matrix(
681  residuals, jacobian, mass_matrix);
682 
683  // Now fill in the off-diagonal entries (the shape derivatives),
685  }
686 
687 
688  /// Fill in the derivatives of the BASIC equations
689  /// w.r.t. to the solid position dofs, taking hanging nodes
690  /// into account
692  {
693  // Find the number of nodes
694  const unsigned n_node = this->nnode();
695 
696  // If there are no nodes, return straight away
697  if (n_node == 0)
698  {
699  return;
700  }
701 
702  // Call the update function to ensure that the element is in
703  // a consistent state before finite differencing starts
704  this->update_before_solid_position_fd();
705 
706  // bool use_first_order_fd=false;
707 
708  // Find the number of positional dofs and nodal dimension
709  const unsigned n_position_type = this->nnodal_position_type();
710  const unsigned nodal_dim = this->nodal_dimension();
711 
712  // Find the number of dofs in the element
713  const unsigned n_dof = this->ndof();
714 
715  // Create residual newres vectors
716  Vector<double> residuals(n_dof);
717  Vector<double> newres(n_dof);
718  // Vector<double> newres_minus(n_dof);
719 
720  // Calculate the residuals (for the BASIC) equations
721  // Need to do this using fill_in because get_residuals will
722  // compute all residuals for the problem, which is
723  // a little ineffecient
724  for (unsigned m = 0; m < n_dof; m++)
725  {
726  residuals[m] = 0.0;
727  }
728  BASIC::fill_in_contribution_to_residuals(residuals);
729 
730  // Need to determine which degrees of freedom are solid degrees of
731  // freedom
732  // A vector of booleans that will be true if the dof is associated
733  // with the solid equations
734  std::vector<bool> dof_is_solid(n_dof, false);
735 
736  // Now set all solid positional dofs in the vector
737  // This is a bit more involved because we need to take account of
738  // any hanging nodes
739  for (unsigned n = 0; n < n_node; n++)
740  {
741  // Get pointer to the local node
742  Node* const local_node_pt = this->node_pt(n);
743 
744  // If the node is not a hanging node
745  if (local_node_pt->is_hanging() == false)
746  {
747  for (unsigned k = 0; k < n_position_type; k++)
748  {
749  for (unsigned i = 0; i < nodal_dim; i++)
750  {
751  int local_dof = this->position_local_eqn(n, k, i);
752  if (local_dof >= 0)
753  {
754  dof_is_solid[local_dof] = true;
755  }
756  }
757  }
758  }
759  // Otherwise the node is hanging
760  else
761  {
762  // Find the local hanging object
763  HangInfo* hang_info_pt = local_node_pt->hanging_pt();
764  // Loop over the master nodes
765  const unsigned n_master = hang_info_pt->nmaster();
766  for (unsigned m = 0; m < n_master; m++)
767  {
768  // Get the local equation numbers for the master node
769  DenseMatrix<int> Position_local_eqn_at_node =
770  this->local_position_hang_eqn(hang_info_pt->master_node_pt(m));
771 
772  // Loop over position dofs
773  for (unsigned k = 0; k < n_position_type; k++)
774  {
775  // Loop over dimension
776  for (unsigned i = 0; i < nodal_dim; i++)
777  {
778  int local_dof = Position_local_eqn_at_node(k, i);
779  if (local_dof >= 0)
780  {
781  dof_is_solid[local_dof] = true;
782  }
783  }
784  }
785  }
786  }
787  } // End of loop over nodes
788 
789  // Add the solid pressures (in solid elements without
790  // solid pressure the number will be zero).
791  unsigned n_solid_pres = this->npres_solid();
792  // Now is the solid pressure hanging
793  const int solid_p_index = this->solid_p_nodal_index();
794  // Find out whether the solid node is hanging
795  std::vector<bool> solid_p_is_hanging(n_solid_pres);
796  // If we have nodal solid pressures then read out the hanging status
797  if (solid_p_index >= 0)
798  {
799  // Loop over the solid dofs
800  for (unsigned l = 0; l < n_solid_pres; l++)
801  {
802  solid_p_is_hanging[l] =
803  this->solid_pressure_node_pt(l)->is_hanging(solid_p_index);
804  }
805  }
806  // Otherwise the pressure is not nodal, so cannot hang
807  else
808  {
809  for (unsigned l = 0; l < n_solid_pres; l++)
810  {
811  solid_p_is_hanging[l] = false;
812  }
813  }
814 
815  // Now we can loop of the dofs again to actually set that the appropriate
816  // dofs are solid
817  for (unsigned l = 0; l < n_solid_pres; l++)
818  {
819  // If the solid pressure is not hanging
820  // we just read out the local equation numbers directly
821  if (solid_p_is_hanging[l] == false)
822  {
823  int local_dof = this->solid_p_local_eqn(l);
824  if (local_dof >= 0)
825  {
826  dof_is_solid[local_dof] = true;
827  }
828  }
829  // Otherwise solid pressure is hanging and we need to take
830  // care of the master nodes
831  else
832  {
833  // Find the local hanging object
834  HangInfo* hang_info_pt =
835  this->solid_pressure_node_pt(l)->hanging_pt(solid_p_index);
836  // Loop over the master nodes
837  const unsigned n_master = hang_info_pt->nmaster();
838  for (unsigned m = 0; m < n_master; m++)
839  {
840  // Get the local dof
841  int local_dof = this->local_hang_eqn(
842  hang_info_pt->master_node_pt(m), solid_p_index);
843 
844  if (local_dof >= 0)
845  {
846  dof_is_solid[local_dof] = true;
847  }
848  }
849  }
850  } // end of loop over solid pressure dofs
851 
852 
853  // Used default value defined in GeneralisedElement
854  const double fd_step = this->Default_fd_jacobian_step;
855 
856  // Integer storage for local unknowns
857  int local_unknown = 0;
858 
859  // Loop over the nodes
860  for (unsigned l = 0; l < n_node; l++)
861  {
862  // Get the pointer to the node
863  Node* const local_node_pt = this->node_pt(l);
864 
865  // If the node is not a hanging node
866  if (local_node_pt->is_hanging() == false)
867  {
868  // Loop over position dofs
869  for (unsigned k = 0; k < n_position_type; k++)
870  {
871  // Loop over dimension
872  for (unsigned i = 0; i < nodal_dim; i++)
873  {
874  local_unknown = this->position_local_eqn(l, k, i);
875  // If the variable is free
876  if (local_unknown >= 0)
877  {
878  // Store a pointer to the (generalised) Eulerian nodal position
879  double* const value_pt = &(local_node_pt->x_gen(k, i));
880 
881  // Save the old value of the (generalised) Eulerian nodal
882  // position
883  const double old_var = *value_pt;
884 
885  // Increment the (generalised) Eulerian nodal position
886  *value_pt += fd_step;
887 
888  // Perform any auxialiary node updates
889  local_node_pt->perform_auxiliary_node_update_fct();
890 
891  // Calculate the new residuals
892  // Need to do this using fill_in because get_residuals will
893  // compute all residuals for the problem, which is
894  // a little ineffecient
895  for (unsigned m = 0; m < n_dof; m++)
896  {
897  newres[m] = 0.0;
898  }
899  BASIC::fill_in_contribution_to_residuals(newres);
900 
901 
902  // if (use_first_order_fd)
903  {
904  // Do forward finite differences
905  for (unsigned m = 0; m < n_dof; m++)
906  {
907  // Stick the entry into the Jacobian matrix
908  // But only if it's not a solid dof
909  if (dof_is_solid[m] == false)
910  {
911  jacobian(m, local_unknown) =
912  (newres[m] - residuals[m]) / fd_step;
913  }
914  }
915  }
916  // else
917  // {
918  // //Take backwards step for the (generalised)
919  // Eulerian nodal
920  // // position
921  // node_pt(l)->x_gen(k,i) = old_var-fd_step;
922 
923  // //Calculate the new residuals at backward
924  // position BASIC::get_residuals(newres_minus);
925 
926  // //Do central finite differences
927  // for(unsigned m=0;m<n_dof;m++)
928  // {
929  // //Stick the entry into the Jacobian matrix
930  // jacobian(m,local_unknown) =
931  // (newres[m] - newres_minus[m])/(2.0*fd_step);
932  // }
933  // }
934 
935  // Reset the (generalised) Eulerian nodal position
936  *value_pt = old_var;
937 
938  // Perform any auxialiary node updates
939  local_node_pt->perform_auxiliary_node_update_fct();
940  }
941  }
942  }
943  }
944  // Otherwise it's a hanging node
945  else
946  {
947  // Find the local hanging object
948  HangInfo* hang_info_pt = local_node_pt->hanging_pt();
949  // Loop over the master nodes
950  const unsigned n_master = hang_info_pt->nmaster();
951  for (unsigned m = 0; m < n_master; m++)
952  {
953  // Get the pointer to the master node
954  Node* const master_node_pt = hang_info_pt->master_node_pt(m);
955 
956  // Get the local equation numbers for the master node
957  DenseMatrix<int> Position_local_eqn_at_node =
958  this->local_position_hang_eqn(master_node_pt);
959 
960  // Loop over position dofs
961  for (unsigned k = 0; k < n_position_type; k++)
962  {
963  // Loop over dimension
964  for (unsigned i = 0; i < nodal_dim; i++)
965  {
966  local_unknown = Position_local_eqn_at_node(k, i);
967  // If the variable is free
968  if (local_unknown >= 0)
969  {
970  // Store a pointer to the (generalised) Eulerian nodal
971  // position
972  double* const value_pt = &(master_node_pt->x_gen(k, i));
973 
974  // Save the old value of the (generalised) Eulerian nodal
975  // position
976  const double old_var = *value_pt;
977 
978  // Increment the (generalised) Eulerian nodal position
979  *value_pt += fd_step;
980 
981  // Perform any auxialiary node updates
982  master_node_pt->perform_auxiliary_node_update_fct();
983 
984  // Calculate the new residuals
985  // Need to do this using fill_in because get_residuals will
986  // compute all residuals for the problem, which is
987  // a little ineffecient
988  for (unsigned m = 0; m < n_dof; m++)
989  {
990  newres[m] = 0.0;
991  }
992  BASIC::fill_in_contribution_to_residuals(newres);
993 
994  // if (use_first_order_fd)
995  {
996  // Do forward finite differences
997  for (unsigned m = 0; m < n_dof; m++)
998  {
999  // Stick the entry into the Jacobian matrix
1000  // But only if it's not a solid dof
1001  if (dof_is_solid[m] == false)
1002  {
1003  jacobian(m, local_unknown) =
1004  (newres[m] - residuals[m]) / fd_step;
1005  }
1006  }
1007  }
1008  // else
1009  // {
1010  // //Take backwards step for the (generalised)
1011  // Eulerian nodal
1012  // // position
1013  // master_node_pt->x_gen(k,i) =
1014  // old_var-fd_step;
1015 
1016  // //Calculate the new residuals at backward
1017  // position
1018  // BASIC::get_residuals(newres_minus);
1019 
1020  // //Do central finite differences
1021  // for(unsigned m=0;m<n_dof;m++)
1022  // {
1023  // //Stick the entry into the Jacobian
1024  // matrix jacobian(m,local_unknown) =
1025  // (newres[m] -
1026  // newres_minus[m])/(2.0*fd_step);
1027  // }
1028  // }
1029 
1030  // Reset the (generalised) Eulerian nodal position
1031  *value_pt = old_var;
1032 
1033  // Perform any auxialiary node updates
1034  master_node_pt->perform_auxiliary_node_update_fct();
1035  }
1036  }
1037  }
1038  }
1039  } // End of hanging node case
1040 
1041  } // End of loop over nodes
1042 
1043  // End of finite difference loop
1044 
1045  // Final reset of any dependent data
1046  this->reset_after_solid_position_fd();
1047  }
1048 
1049 
1050  /// Specify Data that affects the geometry of the element
1051  /// by adding the position Data to the set that's passed in.
1052  /// (This functionality is required in FSI problems; set is used to
1053  /// avoid double counting). Refineable version includes hanging nodes
1054  void identify_geometric_data(std::set<Data*>& geometric_data_pt)
1055  {
1056  // Loop over the node update data and add to the set
1057  const unsigned n_node = this->nnode();
1058  for (unsigned j = 0; j < n_node; j++)
1059  {
1060  // If the node is a hanging node
1061  if (this->node_pt(j)->is_hanging())
1062  {
1063  // Find the local hang info object
1064  HangInfo* hang_info_pt = this->node_pt(j)->hanging_pt();
1065 
1066  // Find the number of master nodes
1067  unsigned n_master = hang_info_pt->nmaster();
1068 
1069  // Loop over the master nodes
1070  for (unsigned m = 0; m < n_master; m++)
1071  {
1072  // Get the m-th master node
1073  Node* Master_node_pt = hang_info_pt->master_node_pt(m);
1074 
1075  // Add to set
1076  geometric_data_pt.insert(
1077  dynamic_cast<SolidNode*>(Master_node_pt)->variable_position_pt());
1078  }
1079  }
1080  // Not hanging
1081  else
1082  {
1083  // Add node itself to set
1084  geometric_data_pt.insert(
1085  dynamic_cast<SolidNode*>(this->node_pt(j))->variable_position_pt());
1086  }
1087  }
1088  }
1089 
1090 
1091  /// Final override for the assign__additional_local_eqn_numbers():
1092  /// Call the version for the BASIC element
1094  {
1095  BASIC::assign_additional_local_eqn_numbers();
1096  SOLID::assign_additional_local_eqn_numbers();
1097  }
1098 
1099  /// Call rebuild_from_sons() for both of the underlying element types
1100  void rebuild_from_sons(Mesh*& mesh_pt)
1101  {
1102  BASIC::rebuild_from_sons(mesh_pt);
1103  SOLID::rebuild_from_sons(mesh_pt);
1104  }
1105 
1106  /// Call get_interpolated_values(...) for both of the underlying element
1107  /// types
1108  void get_interpolated_values(const unsigned& t,
1109  const Vector<double>& s,
1110  Vector<double>& values)
1111  {
1112  Vector<double> basic_values;
1113  BASIC::get_interpolated_values(t, s, basic_values);
1114  Vector<double> solid_values;
1115  SOLID::get_interpolated_values(t, s, solid_values);
1116 
1117  // Now add the basic value first
1118  for (Vector<double>::iterator it = basic_values.begin();
1119  it != basic_values.end();
1120  ++it)
1121  {
1122  values.push_back(*it);
1123  }
1124  // Then the solid
1125  for (Vector<double>::iterator it = solid_values.begin();
1126  it != solid_values.end();
1127  ++it)
1128  {
1129  values.push_back(*it);
1130  }
1131  }
1132 
1133 
1134  /// Call get_interpolated_values(...) for both of the underlying element
1135  /// types
1137  Vector<double>& values)
1138  {
1139  Vector<double> basic_values;
1140  BASIC::get_interpolated_values(s, basic_values);
1141  Vector<double> solid_values;
1142  SOLID::get_interpolated_values(s, solid_values);
1143 
1144  // Now add the basic value first
1145  for (Vector<double>::iterator it = basic_values.begin();
1146  it != basic_values.end();
1147  ++it)
1148  {
1149  values.push_back(*it);
1150  }
1151  // Then the solid
1152  for (Vector<double>::iterator it = solid_values.begin();
1153  it != solid_values.end();
1154  ++it)
1155  {
1156  values.push_back(*it);
1157  }
1158  }
1159 
1160  /// We must compose the underlying interpolating nodes from
1161  /// the BASIC and SOLID equations, the BASIC ones are first
1162  Node* interpolating_node_pt(const unsigned& n, const int& value_id)
1163  {
1164  // Find the number of interpolated values in the BASIC equations
1165  int n_basic_values = BASIC::ncont_interpolated_values();
1166  // If the id is below this number, we call the BASIC functon
1167  if (value_id < n_basic_values)
1168  {
1169  return BASIC::interpolating_node_pt(n, value_id);
1170  }
1171  // Otherwise it's the solid and its value_id is the the current
1172  // it minus n_basic_values
1173  else
1174  {
1175  return SOLID::interpolating_node_pt(n, (value_id - n_basic_values));
1176  }
1177  }
1178 
1179  /// The pressure nodes are the corner nodes, so when value_id==0,
1180  /// the fraction is the same as the 1d node number, 0 or 1.
1182  const unsigned& i,
1183  const int& value_id)
1184  {
1185  // Find the number of interpolated values in the BASIC equations
1186  int n_basic_values = BASIC::ncont_interpolated_values();
1187  // If the id is below this number, we call the BASIC functon
1188  if (value_id < n_basic_values)
1189  {
1190  return BASIC::local_one_d_fraction_of_interpolating_node(
1191  n1d, i, value_id);
1192  }
1193  // Otherwise it's the solid and its value_id is the the current
1194  // it minus n_basic_values
1195  else
1196  {
1197  return SOLID::local_one_d_fraction_of_interpolating_node(
1198  n1d, i, (value_id - n_basic_values));
1199  }
1200  }
1201 
1202 
1203  /// The velocity nodes are the same as the geometric nodes. The
1204  /// pressure nodes must be calculated by using the same methods as
1205  /// the geometric nodes, but by recalling that there are only two pressure
1206  /// nodes per edge.
1208  const int& value_id)
1209  {
1210  // Find the number of interpolated values in the BASIC equations
1211  int n_basic_values = BASIC::ncont_interpolated_values();
1212  // If the id is below this number, we call the BASIC functon
1213  if (value_id < n_basic_values)
1214  {
1215  return BASIC::get_interpolating_node_at_local_coordinate(s, value_id);
1216  }
1217  // Otherwise it's the solid and its value_id is the the current
1218  // it minus n_basic_values
1219  else
1220  {
1221  return SOLID::get_interpolating_node_at_local_coordinate(
1222  s, (value_id - n_basic_values));
1223  }
1224  }
1225 
1226  /// The number of 1d pressure nodes is 2, otherwise we have
1227  /// the positional nodes
1228  unsigned ninterpolating_node_1d(const int& value_id)
1229  {
1230  // Find the number of interpolated values in the BASIC equations
1231  int n_basic_values = BASIC::ncont_interpolated_values();
1232  // If the id is below this number, we call the BASIC functon
1233  if (value_id < n_basic_values)
1234  {
1235  return BASIC::ninterpolating_node_1d(value_id);
1236  }
1237  // Otherwise it's the solid and its value_id is the the current
1238  // it minus n_basic_values
1239  else
1240  {
1241  return SOLID::ninterpolating_node_1d((value_id - n_basic_values));
1242  }
1243  }
1244 
1245  /// The number of pressure nodes is 2^DIM. The number of
1246  /// velocity nodes is the same as the number of geometric nodes.
1247  unsigned ninterpolating_node(const int& value_id)
1248  {
1249  // Find the number of interpolated values in the BASIC equations
1250  int n_basic_values = BASIC::ncont_interpolated_values();
1251  // If the id is below this number, we call the BASIC functon
1252  if (value_id < n_basic_values)
1253  {
1254  return BASIC::ninterpolating_node(value_id);
1255  }
1256  // Otherwise it's the solid and its value_id is the the current
1257  // it minus n_basic_values
1258  else
1259  {
1260  return SOLID::ninterpolating_node((value_id - n_basic_values));
1261  }
1262  }
1263 
1264  /// The basis interpolating the pressure is given by pshape().
1265  /// / The basis interpolating the velocity is shape().
1267  Shape& psi,
1268  const int& value_id) const
1269  {
1270  // Find the number of interpolated values in the BASIC equations
1271  int n_basic_values = BASIC::ncont_interpolated_values();
1272  // If the id is below this number, we call the BASIC functon
1273  if (value_id < n_basic_values)
1274  {
1275  return BASIC::interpolating_basis(s, psi, value_id);
1276  }
1277  // Otherwise it's the solid and its value_id is the the current
1278  // it minus n_basic_values
1279  else
1280  {
1281  return SOLID::interpolating_basis(s, psi, (value_id - n_basic_values));
1282  }
1283  }
1284 
1285 
1286  /// Number of 'flux' terms for Z2 error estimation: Error estimation
1287  /// is based on error in BASIC element
1289  {
1290  return BASIC::num_Z2_flux_terms();
1291  }
1292 
1293  /// 'Flux' vector for Z2 error estimation: Error estimation
1294  /// is based on error in BASIC element
1296  {
1297  BASIC::get_Z2_flux(s, flux);
1298  }
1299 
1300  /// Perform additional hanging node procedures for variables
1301  /// that are not interpolated by all nodes. Done for both of the
1302  /// underlying element types.
1304  {
1305  BASIC::further_setup_hanging_nodes();
1306  SOLID::further_setup_hanging_nodes();
1307  }
1308 
1309 
1310  /// Build function: Call the one for the SOLID element since it
1311  /// calls the one basic build function automatically.
1312  void build(Mesh*& mesh_pt,
1313  Vector<Node*>& new_node_pt,
1314  bool& was_already_built,
1315  std::ofstream& new_nodes_file)
1316  {
1317  SOLID::build(mesh_pt, new_node_pt, was_already_built, new_nodes_file);
1318  }
1319 
1320 
1321  /// Build function: Call the one for the SOLID element since it
1322  /// calls the one basic build function automatically.
1323  void build(Mesh*& mesh_pt,
1324  Vector<Node*>& new_node_pt,
1325  bool& was_already_built)
1326  {
1327  SOLID::build(mesh_pt, new_node_pt, was_already_built);
1328  }
1329 
1330  /// Further build: Done for both of the
1331  /// underlying element types.
1333  {
1334  BASIC::further_build();
1335  SOLID::further_build();
1336  }
1337 
1338 
1339  /// Number of vertex nodes in the element
1340  unsigned nvertex_node() const
1341  {
1342  return BASIC::nvertex_node();
1343  }
1344 
1345  /// Pointer to the j-th vertex node in the element
1346  Node* vertex_node_pt(const unsigned& j) const
1347  {
1348  return BASIC::vertex_node_pt(j);
1349  }
1350 
1351  /// Compute norm of solution. Use version in BASIC element.
1352  void compute_norm(double& norm)
1353  {
1354  BASIC::compute_norm(norm);
1355  }
1356 
1357  /// Plot the error when compared against a given exact flux.
1358  /// Also calculates the norm of the error and that of the exact flux.
1359  /// Use version in BASIC element
1361  std::ostream& outfile,
1363  double& error,
1364  double& norm)
1365  {
1366  BASIC::compute_exact_Z2_error(outfile, exact_flux_pt, error, norm);
1367  }
1368 
1369  /// Order of recovery shape functions for Z2 error estimation: Done
1370  /// for BASIC element since it determines the refinement
1371  unsigned nrecovery_order()
1372  {
1373  return BASIC::nrecovery_order();
1374  }
1375 
1376  /// Overload the output function: Use that of the BASIC element
1377  void output(std::ostream& outfile)
1378  {
1379  BASIC::output(outfile);
1380  }
1381 
1382  /// Output function, plotting at n_p points: Use that of the BASIC element
1383  void output(std::ostream& outfile, const unsigned& n_p)
1384  {
1385  BASIC::output(outfile, n_p);
1386  }
1387 
1388  /// Overload the output function: Use that of the BASIC element
1389  void output(FILE* file_pt)
1390  {
1391  BASIC::output(file_pt);
1392  }
1393 
1394  /// Output function: Use that of the BASIC element
1395  void output(FILE* file_pt, const unsigned& n_p)
1396  {
1397  BASIC::output(file_pt, n_p);
1398  }
1399 
1400  /// The number of "DOF types" that degrees of freedom in this element
1401  /// are sub-divided into.
1402  unsigned ndof_types() const
1403  {
1404  return BASIC::ndof_types() + SOLID::ndof_types();
1405  }
1406 
1407  /// return the number of DOF types associated with the BASIC
1408  /// elements in this combined element
1409  unsigned nbasic_dof_types() const
1410  {
1411  return BASIC::ndof_types();
1412  }
1413 
1414  /// return the number of DOF types associated with the SOLID
1415  /// elements in this combined element
1416  unsigned nsolid_dof_types() const
1417  {
1418  return SOLID::ndof_types();
1419  }
1420 
1421  /// Create a list of pairs for all unknowns in this element,
1422  /// so that the first entry in each pair contains the global equation
1423  /// number of the unknown, while the second one contains the number
1424  /// of the "DOF type" that this unknown is associated with.
1425  /// This method combines the get_dof_numbers_for_unknowns(...)
1426  /// method for the BASIC and SOLID elements. The basic elements
1427  /// retain their DOF type numbering and the SOLID elements
1428  /// DOF type numbers are incremented by nbasic_dof_types().
1430  std::list<std::pair<unsigned long, unsigned>>& dof_lookup_list) const
1431  {
1432  // get the solid list
1433  std::list<std::pair<unsigned long, unsigned>> solid_list;
1434  SOLID::get_dof_numbers_for_unknowns(solid_list);
1435 
1436  // get the basic list
1437  BASIC::get_dof_numbers_for_unknowns(dof_lookup_list);
1438 
1439  // get the number of basic dof types
1440  unsigned nbasic_dof_types = BASIC::ndof_types();
1441 
1442  // add the solid lookup list to the basic lookup list
1443  // incrementing the solid dof numbers by nbasic_dof_types
1444  typedef std::list<std::pair<unsigned long, unsigned>>::iterator IT;
1445  for (IT it = solid_list.begin(); it != solid_list.end(); it++)
1446  {
1447  std::pair<unsigned long, unsigned> new_pair;
1448  new_pair.first = it->first;
1449  new_pair.second = it->second + nbasic_dof_types;
1450  dof_lookup_list.push_front(new_pair);
1451  }
1452  }
1453  };
1454 
1455 
1456  /// Explicit definition of the face geometry of these elements
1457  template<class BASIC, class SOLID>
1459  : public virtual FaceGeometry<SOLID>
1460  {
1461  public:
1462  /// Constructor calls the constructor of the SolidQElement
1463  /// (Only the Intel compiler seems to need this!)
1464  FaceGeometry() : FaceGeometry<SOLID>() {}
1465 
1466  protected:
1467  };
1468 
1469  /// Explicit definition of the face geometry of these elements
1470  template<class BASIC, class SOLID>
1473  : public virtual FaceGeometry<FaceGeometry<SOLID>>
1474  {
1475  public:
1476  /// Constuctor calls the constructor of the SolidQElement
1477  /// (Only the Intel compiler seems to need this!)
1479 
1480  protected:
1481  };
1482 
1483 
1484 } // namespace oomph
1485 
1486 #endif
static char t char * s
Definition: cfortran.h:568
cstr elem_len * i
Definition: cfortran.h:603
char t
Definition: cfortran.h:568
FaceGeometry()
Constuctor calls the constructor of the SolidQElement (Only the Intel compiler seems to need this!...
FaceGeometry()
Constuctor calls the constructor of the SolidQElement (Only the Intel compiler seems to need this!...
FaceGeometry()
Constuctor calls the constructor of the SolidQElement (Only the Intel compiler seems to need this!...
FaceGeometry()
Constructor calls the constructor of the SolidQElement (Only the Intel compiler seems to need this!...
//////////////////////////////////////////////////////////////////// ////////////////////////////////...
Definition: elements.h:5002
void(* SteadyExactSolutionFctPt)(const Vector< double > &, Vector< double > &)
Function pointer for function that computes vector-valued steady "exact solution" as .
Definition: elements.h:1763
Class that contains data for hanging nodes.
Definition: nodes.h:742
Node *const & master_node_pt(const unsigned &i) const
Return a pointer to the i-th master node.
Definition: nodes.h:791
unsigned nmaster() const
Return the number of master nodes.
Definition: nodes.h:785
A general mesh class.
Definition: mesh.h:67
Nodes are derived from Data, but, in addition, have a definite (Eulerian) position in a space of a gi...
Definition: nodes.h:906
double & x_gen(const unsigned &k, const unsigned &i)
Reference to the generalised position x(k,i). ‘Type’: k; Coordinate direction: i.
Definition: nodes.h:1126
HangInfo *const & hanging_pt() const
Return pointer to hanging node data (this refers to the geometric hanging node status) (const version...
Definition: nodes.h:1228
void perform_auxiliary_node_update_fct()
Execute auxiliary update function (if any) – this can be used to update any nodal values following th...
Definition: nodes.h:1615
bool is_hanging() const
Test whether the node is geometrically hanging.
Definition: nodes.h:1285
An OomphLibError object which should be thrown when an run-time error is encountered....
A templated class that permits combination two different element types, for the solution of problems ...
bool Shape_derivs_by_direct_fd
Boolean flag to indicate shape derivative method.
void fill_in_contribution_to_residuals(Vector< double > &residuals)
Final override for the residuals function. Contributions are added from both underlying element types...
void describe_local_dofs(std::ostream &out, const std::string &current_string) const
Function to describe the local dofs of the element. The ostream specifies the output stream to which ...
void compute_exact_Z2_error(std::ostream &outfile, FiniteElement::SteadyExactSolutionFctPt exact_flux_pt, double &error, double &norm)
Plot the error when compared against a given exact flux. Also calculates the norm of the error and th...
unsigned required_nvalue(const unsigned &n) const
The required number of values is the sum of the two.
unsigned nsolid_dof_types() const
return the number of DOF types associated with the SOLID elements in this combined element
void fill_in_shape_derivatives(DenseMatrix< double > &jacobian)
Fill in the shape derivatives of the BASIC equations w.r.t. the solid position dofs.
void output(std::ostream &outfile, const unsigned &n_p)
Output function: Plot at n_p plot points using the basic element's output function.
void output(std::ostream &outfile)
Overload the output function: Call that of the basic element.
void compute_norm(double &el_norm)
Compute norm of solution: use the version in the BASIC class if there's any ambiguity.
unsigned nrecovery_order()
Order of recovery shape functions for Z2 error estimation: Done for BASIC element since it determines...
void get_Z2_flux(const Vector< double > &s, Vector< double > &flux)
'Flux' vector for Z2 error estimation: Error estimation is based on error in BASIC element
void fill_in_contribution_to_jacobian(Vector< double > &residuals, DenseMatrix< double > &jacobian)
Final override for jacobian function: Contributions are included from both the underlying element typ...
Node * vertex_node_pt(const unsigned &j) const
Pointer to the j-th vertex node in the element.
void fill_in_shape_derivatives_by_fd(DenseMatrix< double > &jacobian)
Fill in the derivatives of the BASIC equations w.r.t. the solid position dofs.
unsigned nbasic_dof_types() const
return the number of DOF types associated with the BASIC elements in this combined element
unsigned nvertex_node() const
Number of vertex nodes in the element.
void evaluate_shape_derivs_by_chain_rule()
Evaluate shape derivatives by chain rule.
void fill_in_contribution_to_jacobian_and_mass_matrix(Vector< double > &residuals, DenseMatrix< double > &jacobian, DenseMatrix< double > &mass_matrix)
Final override for mass matrix function: contributions are included from both the underlying element ...
void output(FILE *file_pt, const unsigned &n_p)
Output function is just the same as the basic equations.
void evaluate_shape_derivs_by_direct_fd()
Evaluate shape derivatives by direct finite differencing.
int solid_p_nodal_index() const
We assume that the solid stuff is stored at the end of the nodes, i.e. its index is the number of con...
unsigned num_Z2_flux_terms()
Number of 'flux' terms for Z2 error estimation: Error estimation is based on error in BASIC element.
void output(FILE *file_pt)
Overload the output function: Call that of the basic element.
void identify_geometric_data(std::set< Data * > &geometric_data_pt)
Specify Data that affects the geometry of the element by adding the position Data to the set that's p...
void get_dof_numbers_for_unknowns(std::list< std::pair< unsigned long, unsigned >> &dof_lookup_list) const
Create a list of pairs for all unknowns in this element, so that the first entry in each pair contain...
unsigned ndof_types() const
The number of "DOF types" that degrees of freedom in this element are sub-divided into.
PseudoSolidNodeUpdateElement()
Constructor, call the BASIC and SOLID elements' constructors and set the "density" parameter for soli...
////////////////////////////////////////////////////////////////// //////////////////////////////////...
Definition: matrices.h:1370
RefineableElements are FiniteElements that may be subdivided into children to provide a better local ...
Refineable version of the PseudoSolidNodeUpdateELement.
unsigned nbasic_dof_types() const
return the number of DOF types associated with the BASIC elements in this combined element
void get_interpolated_values(const Vector< double > &s, Vector< double > &values)
Call get_interpolated_values(...) for both of the underlying element types.
unsigned ndof_types() const
The number of "DOF types" that degrees of freedom in this element are sub-divided into.
void get_interpolated_values(const unsigned &t, const Vector< double > &s, Vector< double > &values)
Call get_interpolated_values(...) for both of the underlying element types.
Node * get_interpolating_node_at_local_coordinate(const Vector< double > &s, const int &value_id)
The velocity nodes are the same as the geometric nodes. The pressure nodes must be calculated by usin...
void further_build()
Further build: Done for both of the underlying element types.
Node * interpolating_node_pt(const unsigned &n, const int &value_id)
We must compose the underlying interpolating nodes from the BASIC and SOLID equations,...
void output(FILE *file_pt)
Overload the output function: Use that of the BASIC element.
void compute_norm(double &norm)
Compute norm of solution. Use version in BASIC element.
unsigned nvertex_node() const
Number of vertex nodes in the element.
void fill_in_contribution_to_residuals(Vector< double > &residuals)
Final override for residuals function: adds contributions from both underlying element types.
unsigned nrecovery_order()
Order of recovery shape functions for Z2 error estimation: Done for BASIC element since it determines...
void output(std::ostream &outfile, const unsigned &n_p)
Output function, plotting at n_p points: Use that of the BASIC element.
unsigned ncont_interpolated_values() const
The number of continuously interpolated values is the sum of the SOLID and BASIC values.
int solid_p_nodal_index() const
We assume that the solid stuff is stored at the end of the nodes, i.e. its index is the number of con...
unsigned nsolid_dof_types() const
return the number of DOF types associated with the SOLID elements in this combined element
void interpolating_basis(const Vector< double > &s, Shape &psi, const int &value_id) const
The basis interpolating the pressure is given by pshape(). / The basis interpolating the velocity is ...
void compute_exact_Z2_error(std::ostream &outfile, FiniteElement::SteadyExactSolutionFctPt exact_flux_pt, double &error, double &norm)
Plot the error when compared against a given exact flux. Also calculates the norm of the error and th...
void fill_in_contribution_to_jacobian(Vector< double > &residuals, DenseMatrix< double > &jacobian)
Final override for jacobian function: Calls get_jacobian() for both of the underlying element types.
unsigned num_Z2_flux_terms()
Number of 'flux' terms for Z2 error estimation: Error estimation is based on error in BASIC element.
void get_dof_numbers_for_unknowns(std::list< std::pair< unsigned long, unsigned >> &dof_lookup_list) const
Create a list of pairs for all unknowns in this element, so that the first entry in each pair contain...
RefineablePseudoSolidNodeUpdateElement()
Constructor, call the BASIC and SOLID elements' constructors and set the "density" parameter for soli...
void build(Mesh *&mesh_pt, Vector< Node * > &new_node_pt, bool &was_already_built)
Build function: Call the one for the SOLID element since it calls the one basic build function automa...
unsigned ninterpolating_node_1d(const int &value_id)
The number of 1d pressure nodes is 2, otherwise we have the positional nodes.
void fill_in_contribution_to_jacobian_and_mass_matrix(Vector< double > &residuals, DenseMatrix< double > &jacobian, DenseMatrix< double > &mass_matrix)
Final override for mass matrix function: contributions are included from both the underlying element ...
void further_setup_hanging_nodes()
Perform additional hanging node procedures for variables that are not interpolated by all nodes....
void output(std::ostream &outfile)
Overload the output function: Use that of the BASIC element.
double local_one_d_fraction_of_interpolating_node(const unsigned &n1d, const unsigned &i, const int &value_id)
The pressure nodes are the corner nodes, so when value_id==0, the fraction is the same as the 1d node...
void output(FILE *file_pt, const unsigned &n_p)
Output function: Use that of the BASIC element.
void build(Mesh *&mesh_pt, Vector< Node * > &new_node_pt, bool &was_already_built, std::ofstream &new_nodes_file)
Build function: Call the one for the SOLID element since it calls the one basic build function automa...
void assign_additional_local_eqn_numbers()
Final override for the assign__additional_local_eqn_numbers(): Call the version for the BASIC element...
unsigned ninterpolating_node(const int &value_id)
The number of pressure nodes is 2^DIM. The number of velocity nodes is the same as the number of geom...
Node * vertex_node_pt(const unsigned &j) const
Pointer to the j-th vertex node in the element.
void rebuild_from_sons(Mesh *&mesh_pt)
Call rebuild_from_sons() for both of the underlying element types.
void fill_in_shape_derivatives_by_fd(DenseMatrix< double > &jacobian)
Fill in the derivatives of the BASIC equations w.r.t. to the solid position dofs, taking hanging node...
void get_Z2_flux(const Vector< double > &s, Vector< double > &flux)
'Flux' vector for Z2 error estimation: Error estimation is based on error in BASIC element
void describe_local_dofs(std::ostream &out, const std::string &current_string) const
Function to describe the local dofs of the element. The ostream specifies the output stream to which ...
unsigned required_nvalue(const unsigned &n) const
The required number of values is the sum of the two.
void identify_geometric_data(std::set< Data * > &geometric_data_pt)
Specify Data that affects the geometry of the element by adding the position Data to the set that's p...
A Class for shape functions. In simple cases, the shape functions have only one index that can be tho...
Definition: shape.h:76
A Class for nodes that deform elastically (i.e. position is an unknown in the problem)....
Definition: nodes.h:1686
void output()
Doc the command line arguments.
std::string string(const unsigned &i)
Return the i-th string or "" if the relevant string hasn't been defined.
double Zero
Static variable to hold the default value for the pseudo-solid's inertia parameter Lambda^2.
//////////////////////////////////////////////////////////////////// ////////////////////////////////...