polar_fluid_traction_elements.h
Go to the documentation of this file.
1 // LIC// ====================================================================
2 // LIC// This file forms part of oomph-lib, the object-oriented,
3 // LIC// multi-physics finite-element library, available
4 // LIC// at http://www.oomph-lib.org.
5 // LIC//
6 // LIC// Copyright (C) 2006-2023 Matthias Heil and Andrew Hazel
7 // LIC//
8 // LIC// This library is free software; you can redistribute it and/or
9 // LIC// modify it under the terms of the GNU Lesser General Public
10 // LIC// License as published by the Free Software Foundation; either
11 // LIC// version 2.1 of the License, or (at your option) any later version.
12 // LIC//
13 // LIC// This library is distributed in the hope that it will be useful,
14 // LIC// but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // LIC// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
16 // LIC// Lesser General Public License for more details.
17 // LIC//
18 // LIC// You should have received a copy of the GNU Lesser General Public
19 // LIC// License along with this library; if not, write to the Free Software
20 // LIC// Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
21 // LIC// 02110-1301 USA.
22 // LIC//
23 // LIC// The authors may be contacted at oomph-lib@maths.man.ac.uk.
24 // LIC//
25 // LIC//====================================================================
26 // Header file for elements that are used to integrate fluid tractions
27 // This includes the guts (i.e. equations) because we want to inline them
28 // for faster operation, although it slows down the compilation!
29 
30 #ifndef OOMPH_POLAR_FLUID_TRACTION_ELEMENTS_HEADER
31 #define OOMPH_POLAR_FLUID_TRACTION_ELEMENTS_HEADER
32 
33 // Config header generated by autoconfig
34 #ifdef HAVE_CONFIG_H
35 #include <config.h>
36 #endif
37 
38 
39 // OOMPH-LIB headers
40 #include "../generic/Qelements.h"
41 
42 namespace oomph
43 {
44  //======================================================================
45  /// A class for elements that allow the imposition of an applied traction
46  /// to the Navier--Stokes equations
47  /// The geometrical information can be read from the FaceGeometery<ELEMENT>
48  /// class and and thus, we can be generic enough without the need to have
49  /// a separate equations class
50  //======================================================================
51  template<class ELEMENT>
52  class PolarNavierStokesTractionElement : public virtual FaceGeometry<ELEMENT>,
53  public virtual FaceElement
54  {
55  private:
56  /// Pointer to an imposed traction function
57  void (*Traction_fct_pt)(const double& time,
58  const Vector<double>& x,
59  Vector<double>& result);
60 
61  /// The highest dimension of the problem
62  unsigned Dim;
63 
64  protected:
65  /// Access function that returns the local equation numbers
66  /// for velocity components.
67  /// u_local_eqn(n,i) = local equation number or < 0 if pinned.
68  /// The default is to asssume that n is the local node number
69  /// and the i-th velocity component is the i-th unknown stored at the node.
70  virtual inline int u_local_eqn(const unsigned& n, const unsigned& i)
71  {
72  return nodal_local_eqn(n, i);
73  }
74 
75  /// Function to compute the shape and test functions and to return
76  /// the Jacobian of mapping
77  inline double shape_and_test_at_knot(const unsigned& ipt,
78  Shape& psi,
79  Shape& test) const
80  {
81  // Find number of nodes
82  unsigned n_node = nnode();
83  // Calculate the shape functions
84  shape_at_knot(ipt, psi);
85  // Set the test functions to be the same as the shape functions
86  for (unsigned i = 0; i < n_node; i++)
87  {
88  test[i] = psi[i];
89  }
90  // Return the value of the jacobian
91  return J_eulerian_at_knot(ipt);
92  }
93 
94 
95  /// Function to calculate the traction applied to the fluid
96  void get_traction(double time,
97  const Vector<double>& x,
98  Vector<double>& result)
99  {
100  // If the function pointer is zero return zero
101  if (Traction_fct_pt == 0)
102  {
103  // Loop over dimensions and set body forces to zero
104  for (unsigned i = 0; i < Dim; i++)
105  {
106  result[i] = 0.0;
107  }
108  }
109  // Otherwise call the function
110  else
111  {
112  (*Traction_fct_pt)(time, x, result);
113  }
114  }
115 
116  /// This function returns the residuals for the
117  /// traction function.
118  /// flag=1(or 0): do (or don't) compute the Jacobian as well.
120  DenseMatrix<double>& jacobian,
121  DenseMatrix<double>& mass_matrix,
122  unsigned flag);
123  /// Pointer to the angle alpha
124  double* Alpha_pt;
125 
126  /// Pointer to the Data item that stores the external pressure
128 
129  /// The Data that contains the traded pressure is stored
130  /// as external Data for the element. Which external Data item is it?
132 
133  // Traction elements need to know whether they're at the inlet or outlet
134  // as the unit outward normal has a differing sign dependent on
135  // the boundary
136  // -1=inlet, 1=outlet
137  int Boundary;
138 
139  // Pointer to homotopy parameter
140  double Eta;
141 
142  public:
143  /// Alpha
144  const double& alpha() const
145  {
146  return *Alpha_pt;
147  }
148 
149  /// Pointer to Alpha
150  double*& alpha_pt()
151  {
152  return Alpha_pt;
153  }
154 
155  /// Function for setting up external pressure
156  void set_external_pressure_data(Data* pext_data_pt)
157  {
158  // Set external pressure pointer
159  Pext_data_pt = pext_data_pt;
160 
161  // Add to the element's external data so it gets included
162  // in the black-box local equation numbering scheme
163  External_data_number_of_Pext = this->add_external_data(pext_data_pt);
164  }
165 
166  /// Boundary
167  const int boundary() const
168  {
169  return Boundary;
170  }
171 
172  /// Function to set boundary
173  void set_boundary(int bound)
174  {
175  Boundary = bound;
176  }
177 
178  /// Eta
179  const double get_eta() const
180  {
181  return Eta;
182  }
183 
184  /// Function to set Eta
185  void set_eta(double eta)
186  {
187  Eta = eta;
188  }
189 
190  /// Constructor, which takes a "bulk" element and the value of the index
191  /// and its limit
193  const int& face_index)
194  : FaceGeometry<ELEMENT>(), FaceElement()
195  {
196  // Attach the geometrical information to the element. N.B. This function
197  // also assigns nbulk_value from the required_nvalue of the bulk element
198  element_pt->build_face_element(face_index, this);
199 
200 #ifdef PARANOID
201  {
202  // Check that the element is not a refineable 3d element
203  ELEMENT* elem_pt = dynamic_cast<ELEMENT*>(element_pt);
204  // If it's three-d
205  if (elem_pt->dim() == 3)
206  {
207  // Is it refineable
208  RefineableElement* ref_el_pt =
209  dynamic_cast<RefineableElement*>(elem_pt);
210  if (ref_el_pt != 0)
211  {
212  if (this->has_hanging_nodes())
213  {
214  throw OomphLibError("This flux element will not work correctly "
215  "if nodes are hanging\n",
216  OOMPH_CURRENT_FUNCTION,
217  OOMPH_EXCEPTION_LOCATION);
218  }
219  }
220  }
221  }
222 #endif
223 
224  // Set the body force function pointer to zero
225  Traction_fct_pt = 0;
226 
227  // Set the external pressure pointer to be zero
228  Pext_data_pt = 0;
229 
230  // Set the dimension from the dimension of the first node
231  Dim = this->node_pt(0)->ndim();
232 
233  // Set Eta to one by default
234  Eta = 1.0;
235  }
236 
237  /// Destructor should not delete anything
239 
240  // Access function for the imposed traction pointer
241  void (*&traction_fct_pt())(const double& t,
242  const Vector<double>& x,
243  Vector<double>& result)
244  {
245  return Traction_fct_pt;
246  }
247 
248  /// This function returns just the residuals
250  {
251  // Call the generic residuals function with flag set to 0
252  // using a dummy matrix argument
256  0);
257  }
258 
259  /// This function returns the residuals and the jacobian
261  DenseMatrix<double>& jacobian)
262  {
263  // Call the generic routine with the flag set to 1
265  residuals, jacobian, GeneralisedElement::Dummy_matrix, 1);
266  }
267 
268  /// Compute the element's residual Vector and the jacobian matrix
269  /// Plus the mass matrix especially for eigenvalue problems
271  Vector<double>& residuals,
272  DenseMatrix<double>& jacobian,
273  DenseMatrix<double>& mass_matrix)
274  {
275  // Call the generic routine with the flag set to 2
277  residuals, jacobian, GeneralisedElement::Dummy_matrix, 2);
278  }
279 
280  /// Overload the output function
281  void output(std::ostream& outfile)
282  {
283  FiniteElement::output(outfile);
284  }
285 
286  /// Output function: x,y,[z],u,v,[w],p in tecplot format
287  void output(std::ostream& outfile, const unsigned& nplot)
288  {
289  FiniteElement::output(outfile, nplot);
290  }
291 
292  /// local velocities
293  double u(const unsigned& l, const unsigned& i)
294  {
295  return nodal_value(l, i);
296  }
297 
298  /// local position
299  double x(const unsigned& l, const unsigned& i)
300  {
301  return nodal_position(l, i);
302  }
303  };
304 
305 
306  /// ////////////////////////////////////////////////////////////////////
307  /// ////////////////////////////////////////////////////////////////////
308  /// ////////////////////////////////////////////////////////////////////
309 
310 
311  //============================================================================
312  /// Function that returns the residuals for the imposed traction Navier_Stokes
313  /// equations
314  //============================================================================
315  template<class ELEMENT>
318  DenseMatrix<double>& jacobian,
319  DenseMatrix<double>& mass_matrix,
320  unsigned flag)
321  {
322  // Find out how many nodes there are
323  unsigned n_node = nnode();
324 
325  // Get continuous time from timestepper of first node
326  double time = node_pt(0)->time_stepper_pt()->time_pt()->time();
327 
328  // Set up memory for the shape and test functions
329  Shape psif(n_node), testf(n_node);
330 
331  // Set the value of n_intpt
332  unsigned n_intpt = integral_pt()->nweight();
333 
334  // Get Alpha
335  const double Alpha = alpha();
336 
337  // Storage for external pressure
338  double pext = 0.0;
339 
340  // Get boundary multiplier
341  // This is necessary because the sign of the traction is
342  // dependent on the boundary
343  const int multiplier = boundary();
344 
345  // Get the homotopy parameter (if necessary)
346  const double eta = get_eta();
347 
348  // Integers to store local equation numbers
349  int local_eqn = 0, local_unknown = 0, pext_local_eqn = 0,
350  pext_local_unknown = 0;
351 
352  /// /////////////////////////////////////NEW//////////////////////////////////////////
353 
354  // Get local equation number of external pressure
355  // Note that if we have not passed an external pressure pointer to this
356  // element (and at the same time added it to the element's external data)
357  // than this will be -1 to indicate that it is not a degree of freedom here
358  if (Pext_data_pt == 0)
359  {
360  pext_local_eqn = -1;
361  }
362  else
363  {
364  // If at a non-zero degree of freedom add in the entry
365  pext_local_eqn = external_local_eqn(External_data_number_of_Pext, 0);
366 
367  // Get external pressure
368  pext = Pext_data_pt->value(0);
369  }
370 
371  // The local unkown number of pext will be the same
372  pext_local_unknown = pext_local_eqn;
373 
374  /// /////////////////////////////////////NEW//////////////////////////////////////////
375 
376  // Loop over the integration points
377  for (unsigned ipt = 0; ipt < n_intpt; ipt++)
378  {
379  // Get the integral weight
380  double w = integral_pt()->weight(ipt);
381 
382  // Find the shape and test functions and return the Jacobian
383  // of the mapping
384  double J = shape_and_test_at_knot(ipt, psif, testf);
385 
386  // Premultiply the weights and the Jacobian
387  double W = w * J;
388 
389  // Need to find position to feed into Traction function
390  Vector<double> interpolated_x(Dim);
391  Vector<double> interpolated_u(Dim);
392 
393  // Initialise to zero
394  for (unsigned i = 0; i < Dim; i++)
395  {
396  interpolated_x[i] = 0.0;
397  interpolated_u[i] = 0.0;
398  }
399 
400  // Calculate velocities and derivatives:
401  // Loop over nodes
402  for (unsigned l = 0; l < n_node; l++)
403  {
404  // Loop over directions
405  for (unsigned i = 0; i < Dim; i++)
406  {
407  // Get the nodal value
408  interpolated_u[i] += this->nodal_value(l, i) * psif[l];
409  interpolated_x[i] += this->nodal_position(l, i) * psif[l];
410  }
411  }
412 
413  // Get the user-defined traction terms
414  Vector<double> traction(Dim);
415  get_traction(time, interpolated_x, traction);
416 
417  // Now add to the appropriate equations
418 
419  // Loop over the test functions
420  for (unsigned l = 0; l < n_node; l++)
421  {
422  // Only alter u velocity component
423  {
424  unsigned i = 0;
425  local_eqn = u_local_eqn(l, i);
426  /*IF it's not a boundary condition*/
427  if (local_eqn >= 0)
428  {
429  // Add the user-defined traction terms
430  residuals[local_eqn] -= multiplier * eta * 3.0 *
431  (interpolated_u[i] / interpolated_x[0]) *
432  testf[l] * interpolated_x[0] * Alpha * W;
433 
434  /// /////////////////////////////////////NEW//////////////////////////////////////////
435 
436  // Plus additional external pressure contribution at inlet
437  // This is zero if we haven't passed a Pext_data_pt to the element
438  residuals[local_eqn] +=
439  pext * testf[l] * interpolated_x[0] * Alpha * W;
440 
441  /// /////////////////////////////////////NEW//////////////////////////////////////////
442 
443  // CALCULATE THE JACOBIAN
444  if (flag)
445  {
446  // Loop over the velocity shape functions again
447  for (unsigned l2 = 0; l2 < n_node; l2++)
448  {
449  // We only have an i2=0 contribution
450  unsigned i2 = 0;
451  {
452  // If at a non-zero degree of freedom add in the entry
453  local_unknown = u_local_eqn(l2, i2);
454  if (local_unknown >= 0)
455  {
456  // Add contribution to Elemental Matrix
457  jacobian(local_eqn, local_unknown) -=
458  multiplier * eta * 3.0 * (psif[l2] / interpolated_x[0]) *
459  testf[l] * interpolated_x[0] * Alpha * W;
460 
461  } // End of (Jacobian's) if not boundary condition statement
462  } // End of i2=0 section
463  } // End of l2 loop
464 
465  /// /////////////////////////////////////NEW//////////////////////////////////////////
466  // Add pext's contribution to these residuals
467  // This only needs to be done once hence why it is outside the l2
468  // loop
469  if (pext_local_unknown >= 0)
470  {
471  // Add contribution to Elemental Matrix
472  jacobian(local_eqn, pext_local_unknown) +=
473  testf[l] * interpolated_x[0] * Alpha * W;
474  }
475  /// /////////////////////////////////////NEW//////////////////////////////////////////
476 
477  } /*End of Jacobian calculation*/
478 
479  } // end of if not boundary condition statement
480  } // End of i=0 section
481 
482  } // End of loop over shape functions
483 
484  /// /////////////////////////////////////NEW//////////////////////////////////////////
485 
486  /// The additional residual for the mass flux
487  /// (ie. the extra equation for pext)
488  /// This is an integral equation along the whole boundary
489  /// It lies outside the loop over shape functions above
490  {
491  /*IF it's not a boundary condition*/
492  if (pext_local_eqn >= 0)
493  {
494  // Add the user-defined traction terms
495  residuals[pext_local_eqn] +=
496  interpolated_u[0] * interpolated_x[0] * Alpha * W;
497 
498  // No longer necessary due to my FluxCosntraint element
499  // Now take off a fraction of the desired mass flux
500  // Divided by number of elements and number of int points in each
501  // HACK
502  // residuals[pext_local_eqn] -= (1.0/(30.*3.));
503  // HACK
504 
505  // CALCULATE THE JACOBIAN
506  if (flag)
507  {
508  // Loop over the velocity shape functions again
509  for (unsigned l2 = 0; l2 < n_node; l2++)
510  {
511  // We only have an i2=0 contribution
512  unsigned i2 = 0;
513  {
514  // If at a non-zero degree of freedom add in the entry
515  local_unknown = u_local_eqn(l2, i2);
516  if (local_unknown >= 0)
517  {
518  // Add contribution to Elemental Matrix
519  jacobian(pext_local_eqn, local_unknown) +=
520  psif[l2] * interpolated_x[0] * Alpha * W;
521 
522  } // End of (Jacobian's) if not boundary condition statement
523  } // End of i2=0 section
524 
525  } // End of l2 loop
526  } /*End of Jacobian calculation*/
527 
528  } // end of if not boundary condition statement
529  } // End of additional residual for the mass flux
530 
531  /// /////////////////////////////////////NEW//////////////////////////////////////////
532 
533  } // End of loop over integration points
534 
535  } // End of fill_in_generic_residual_contribution
536 
537 } // End of namespace oomph
538 
539 #endif
cstr elem_len * i
Definition: cfortran.h:603
char t
Definition: cfortran.h:568
A class that represents a collection of data; each Data object may contain many different individual ...
Definition: nodes.h:86
double value(const unsigned &i) const
Return i-th stored value. This function is not virtual so that it can be inlined. This means that if ...
Definition: nodes.h:293
FaceElements are elements that coincide with the faces of higher-dimensional "bulk" elements....
Definition: elements.h:4338
int & face_index()
Index of the face (a number that uniquely identifies the face in the element)
Definition: elements.h:4626
double J_eulerian_at_knot(const unsigned &ipt) const
Return the Jacobian of the mapping from local to global coordinates at the ipt-th integration point O...
Definition: elements.cc:5328
//////////////////////////////////////////////////////////////////// ////////////////////////////////...
Definition: elements.h:4998
A general Finite Element class.
Definition: elements.h:1313
Node *& node_pt(const unsigned &n)
Return a pointer to the local node n.
Definition: elements.h:2175
double nodal_value(const unsigned &n, const unsigned &i) const
Return the i-th value stored at local node n. Produces suitably interpolated values for hanging nodes...
Definition: elements.h:2593
virtual void output(std::ostream &outfile)
Output the element data — typically the values at the nodes in a format suitable for post-processing.
Definition: elements.h:3050
int nodal_local_eqn(const unsigned &n, const unsigned &i) const
Return the local equation number corresponding to the i-th value at the n-th local node.
Definition: elements.h:1432
unsigned nnode() const
Return the number of nodes.
Definition: elements.h:2210
double nodal_position(const unsigned &n, const unsigned &i) const
Return the i-th coordinate at local node n. If the node is hanging, the appropriate interpolation is ...
Definition: elements.h:2317
virtual void build_face_element(const int &face_index, FaceElement *face_element_pt)
Function for building a lower dimensional FaceElement on the specified face of the FiniteElement....
Definition: elements.cc:5132
virtual void shape_at_knot(const unsigned &ipt, Shape &psi) const
Return the geometric shape function at the ipt-th integration point.
Definition: elements.cc:3220
bool has_hanging_nodes() const
Return boolean to indicate if any of the element's nodes are geometrically hanging.
Definition: elements.h:2470
static DenseMatrix< double > Dummy_matrix
Empty dense matrix used as a dummy argument to combined residual and jacobian functions in the case w...
Definition: elements.h:227
unsigned add_external_data(Data *const &data_pt, const bool &fd=true)
Add a (pointer to an) external data object to the element and return its index (i....
Definition: elements.cc:307
unsigned ndim() const
Return (Eulerian) spatial dimension of the node.
Definition: nodes.h:1054
An OomphLibError object which should be thrown when an run-time error is encountered....
A class for elements that allow the imposition of an applied traction to the Navier–Stokes equations ...
void output(std::ostream &outfile)
Overload the output function.
void get_traction(double time, const Vector< double > &x, Vector< double > &result)
Function to calculate the traction applied to the fluid.
double * Alpha_pt
Pointer to the angle alpha.
~PolarNavierStokesTractionElement()
Destructor should not delete anything.
PolarNavierStokesTractionElement(FiniteElement *const &element_pt, const int &face_index)
Constructor, which takes a "bulk" element and the value of the index and its limit.
void fill_in_contribution_to_jacobian(Vector< double > &residuals, DenseMatrix< double > &jacobian)
This function returns the residuals and the jacobian.
void(*&)(const double &t, const Vector< double > &x, Vector< double > &result) traction_fct_pt()
void fill_in_generic_residual_contribution(Vector< double > &residuals, DenseMatrix< double > &jacobian, DenseMatrix< double > &mass_matrix, unsigned flag)
This function returns the residuals for the traction function. flag=1(or 0): do (or don't) compute th...
unsigned External_data_number_of_Pext
The Data that contains the traded pressure is stored as external Data for the element....
void(* Traction_fct_pt)(const double &time, const Vector< double > &x, Vector< double > &result)
Pointer to an imposed traction function.
unsigned Dim
The highest dimension of the problem.
Data * Pext_data_pt
Pointer to the Data item that stores the external pressure.
double x(const unsigned &l, const unsigned &i)
local position
double shape_and_test_at_knot(const unsigned &ipt, Shape &psi, Shape &test) const
Function to compute the shape and test functions and to return the Jacobian of mapping.
double u(const unsigned &l, const unsigned &i)
local velocities
void fill_in_contribution_to_jacobian_and_mass_matrix(Vector< double > &residuals, DenseMatrix< double > &jacobian, DenseMatrix< double > &mass_matrix)
Compute the element's residual Vector and the jacobian matrix Plus the mass matrix especially for eig...
void set_external_pressure_data(Data *pext_data_pt)
Function for setting up external pressure.
void set_eta(double eta)
Function to set Eta.
void set_boundary(int bound)
Function to set boundary.
void fill_in_contribution_to_residuals(Vector< double > &residuals)
This function returns just the residuals.
virtual int u_local_eqn(const unsigned &n, const unsigned &i)
Access function that returns the local equation numbers for velocity components. u_local_eqn(n,...
void output(std::ostream &outfile, const unsigned &nplot)
Output function: x,y,[z],u,v,[w],p in tecplot format.
RefineableElements are FiniteElements that may be subdivided into children to provide a better local ...
A Class for shape functions. In simple cases, the shape functions have only one index that can be tho...
Definition: shape.h:76
unsigned Dim
Dimension of zeta tuples (set by get_dim_helper) – needed because we store the scalar coordinates in ...
Definition: multi_domain.cc:60
//////////////////////////////////////////////////////////////////// ////////////////////////////////...