periodic_orbit_handler.cc
Go to the documentation of this file.
1 // LIC// ====================================================================
2 // LIC// This file forms part of oomph-lib, the object-oriented,
3 // LIC// multi-physics finite-element library, available
4 // LIC// at http://www.oomph-lib.org.
5 // LIC//
6 // LIC// Copyright (C) 2006-2024 Matthias Heil and Andrew Hazel
7 // LIC//
8 // LIC// This library is free software; you can redistribute it and/or
9 // LIC// modify it under the terms of the GNU Lesser General Public
10 // LIC// License as published by the Free Software Foundation; either
11 // LIC// version 2.1 of the License, or (at your option) any later version.
12 // LIC//
13 // LIC// This library is distributed in the hope that it will be useful,
14 // LIC// but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // LIC// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
16 // LIC// Lesser General Public License for more details.
17 // LIC//
18 // LIC// You should have received a copy of the GNU Lesser General Public
19 // LIC// License along with this library; if not, write to the Free Software
20 // LIC// Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
21 // LIC// 02110-1301 USA.
22 // LIC//
23 // LIC// The authors may be contacted at oomph-lib@maths.man.ac.uk.
24 // LIC//
25 // LIC//====================================================================
26 #include "periodic_orbit_handler.h"
27 
28 namespace oomph
29 {
31  std::ostream& outfile,
32  const unsigned& n_plot)
33  {
34  // Find out how many nodes there are
35  const unsigned n_node = nnode();
36 
37  // Set up memory for the shape and test functions
38  Shape psi(n_node);
39  DShape dpsidt(n_node, 1);
40 
41  Vector<double> s(1);
42 
43  // Cast the element
44  PeriodicOrbitBaseElement* const base_el_pt =
45  dynamic_cast<PeriodicOrbitBaseElement*>(elem_pt);
46 
47  const double inverse_timescale = this->omega();
48 
49  // Loop over the plot point
50  for (unsigned i = 0; i < n_plot; i++)
51  {
52  // Get the coordinate
53  s[0] = -1.0 + 2.0 * i / ((double)(n_plot - 1));
54 
55  (void)dshape_eulerian(s, psi, dpsidt);
56 
57  // Sort out the timestepper weights and the time in here
58  // Calculate the time
59  double interpolated_time = 0.0;
60  for (unsigned l = 0; l < n_node; l++)
61  {
62  interpolated_time += raw_nodal_position(l, 0) * psi(l);
63  }
64 
65 
66  // Need to multiply by period and the set global time
67  this->time_pt()->time() = interpolated_time;
68 
69  // Set the weights of the timestepper
70  this->set_timestepper_weights(psi, dpsidt);
71 
72  base_el_pt->spacetime_output(
73  outfile, n_plot, interpolated_time / inverse_timescale);
74  }
75  }
76 
78  PeriodicOrbitAssemblyHandlerBase* const& assembly_handler_pt,
79  GeneralisedElement* const& elem_pt,
80  Vector<double>& residuals,
81  DenseMatrix<double>& jacobian,
82  const unsigned& flag)
83  {
84  // A simple integration loop
85  // Find out how many nodes there are
86  const unsigned n_node = nnode();
87 
88  // Set up memory for the shape and test functions
89  Shape psi(n_node), test(n_node);
90  DShape dpsidt(n_node, 1), dtestdt(n_node, 1);
91 
92  // Set the value of n_intpt
93  const unsigned n_intpt = integral_pt()->nweight();
94 
95  // Integers to store the local equation and unknown numbers
96  int local_eqn = 0, local_unknown = 0;
97 
98  // Storage for the underlying element's residuals
99  const unsigned n_elem_dof = elem_pt->ndof();
100  Vector<double> el_residuals(n_elem_dof);
101  DenseMatrix<double> el_mass;
102  DenseMatrix<double> el_jacobian;
103 
104  if (flag)
105  {
106  el_mass.resize(n_elem_dof, n_elem_dof);
107  el_jacobian.resize(n_elem_dof, n_elem_dof);
108  }
109 
110  // Storage for the current value of the unkowns
111  Vector<double> u(n_elem_dof);
112  // and the derivatives
113  Vector<double> du_dt(n_elem_dof);
114  // And the previous derivative
115  Vector<double> du_dt_old(n_elem_dof);
116  // Storage for the inner product matrix
117  DenseMatrix<double> inner_product(n_elem_dof);
118  // Cast the element
119  PeriodicOrbitBaseElement* const base_el_pt =
120  dynamic_cast<PeriodicOrbitBaseElement*>(elem_pt);
121  // Get the inner product matrix
122  base_el_pt->get_inner_product_matrix(inner_product);
123 
124  // Storage for "all" unknowns
125  Vector<double> all_current_unknowns;
126  Vector<double> all_previous_unknowns;
127 
128  // Get the value of omega
129  const double inverse_timescale = this->omega();
130 
131  // Loop over the integration points
132  for (unsigned ipt = 0; ipt < n_intpt; ipt++)
133  {
134  // Get the integral weight
135  double w = integral_pt()->weight(ipt);
136 
137  // Call the derivatives of the shape and test functions
139  ipt, psi, dpsidt, test, dtestdt);
140 
141  // Premultiply the weights and the Jacobian
142  double W = w * J;
143 
144  // Sort out the timestepper weights and the time in here
145  // Calculate the time
146  double interpolated_time = 0.0;
147  for (unsigned l = 0; l < n_node; l++)
148  {
149  interpolated_time += raw_nodal_position(l, 0) * psi(l);
150  }
151 
152 
153  // Need to multiply by period and the set global time
154  this->time_pt()->time() = interpolated_time / inverse_timescale;
155  // Set the weights of the timestepper
156  this->set_timestepper_weights(psi, dpsidt);
157 
158  // Get the residuals of the element or residuals and jacobian
159  if (flag)
160  {
162  el_residuals, el_jacobian, el_mass);
163  }
164  else
165  {
166  elem_pt->get_residuals(el_residuals);
167  }
168 
169  // Get the current value of the unknown time derivatives
170  base_el_pt->get_non_external_ddofs_dt(du_dt);
171 
172  // Multiply the elemental residuals by the appropriate test functions
173  for (unsigned l = 0; l < n_node; l++)
174  {
175  // Get the local equation number
176  local_eqn = nodal_local_eqn(l, 0);
177  // If it's not a boundary condition (it will never be)
178  if (local_eqn >= 0)
179  {
180  // Work out the offset which is the GLOBAL time unknown
181  // multiplied by the number of elemental unknowns
182  unsigned offset = this->eqn_number(local_eqn) * n_elem_dof;
183  // Add to the appropriate residuals
184  for (unsigned i = 0; i < n_elem_dof; i++)
185  {
186  residuals[i + offset] += el_residuals[i] * psi(l) * W;
187  }
188 
189 
190  // Add the jacobian contributions
191  if (flag)
192  {
193  // The form of the equations is -M du/dt + R = 0
194 
195  // Now add the contribution to the jacobian
196  for (unsigned l2 = 0; l2 < n_node; l2++)
197  {
198  local_unknown = nodal_local_eqn(l2, 0);
199  if (local_unknown >= 0)
200  {
201  // Work out the second offset
202  unsigned offset2 = this->eqn_number(local_unknown) * n_elem_dof;
203  // Add to the appropriate jacobian terms
204  for (unsigned i = 0; i < n_elem_dof; i++)
205  {
206  for (unsigned j = 0; j < n_elem_dof; j++)
207  {
208  // Add in the Jacobian terms
209  jacobian(i + offset, j + offset2) +=
210  el_jacobian(i, j) * psi(l2) * psi(l) * W;
211 
212  // Add the time derivative terms,
213  jacobian(i + offset, j + offset2) -=
214  el_mass(i, j) * dpsidt(l2, 0) * inverse_timescale *
215  psi(l) * W;
216  }
217  }
218  }
219  }
220 
221 
222  // Add the variation of the period
223  for (unsigned i = 0; i < n_elem_dof; i++)
224  {
225  for (unsigned j = 0; j < n_elem_dof; j++)
226  {
227  jacobian(i + offset, Ntstorage * n_elem_dof) -=
228  el_mass(i, j) * (du_dt[j] / inverse_timescale) * psi(l) * W;
229  }
230  }
231  } // End of Jacobian flag
232  }
233  }
234 
235  // Sort out the phase condition
236 
237  // Get the current value of the unknowns
238  base_el_pt->get_non_external_dofs(u);
239 
240  // Now get the unknowns required by the assembly handler
241  // i.e. including all values throughout the period for backup
242  assembly_handler_pt->get_dofs_for_element(elem_pt, all_current_unknowns);
243  // Get the previous values as stored by the assembly handler
244  assembly_handler_pt->get_previous_dofs_for_element(elem_pt,
245  all_previous_unknowns);
246 
247  // Now set the elemental values to the previous values
248  assembly_handler_pt->set_dofs_for_element(elem_pt, all_previous_unknowns);
249  // Get the previous time derivatives
250  base_el_pt->get_non_external_ddofs_dt(du_dt_old);
251  // Reset the element's values to the current
252  assembly_handler_pt->set_dofs_for_element(elem_pt, all_current_unknowns);
253 
254 
255  // Assemble the inner product
256  double sum = 0.0;
257  for (unsigned i = 0; i < n_elem_dof; i++)
258  {
259  for (unsigned j = 0; j < n_elem_dof; j++)
260  {
261  sum += u[i] * inner_product(i, j) * du_dt_old[j];
262  }
263  }
264 
265  // Add to the residuals
266  residuals[Ntstorage * n_elem_dof] += sum * W;
267 
268  // Sort out the jacobian
269  if (flag)
270  {
271  // Loop over the unknown time points
272  for (unsigned l2 = 0; l2 < n_node; l2++)
273  {
274  // Get the local unknown
275  local_unknown = nodal_local_eqn(l2, 0);
276  if (local_unknown >= 0)
277  {
278  // Work out the offset
279  unsigned offset2 = this->eqn_number(local_unknown) * n_elem_dof;
280  // Now add in the appropriate jacobian terms
281  for (unsigned i2 = 0; i2 < n_elem_dof; i2++)
282  {
283  double sum2 = 0.0;
284  for (unsigned j = 0; j < n_elem_dof; j++)
285  {
286  sum2 += inner_product(i2, j) * du_dt_old[j];
287  }
288  jacobian(Ntstorage * n_elem_dof, i2 + offset2) +=
289  psi(l2) * sum2 * W;
290  }
291  }
292  }
293  } // End of jacobian calculation
294 
295  } // End of loop over time period integration points
296  }
297 
298 
299 } // namespace oomph
static char t char * s
Definition: cfortran.h:568
cstr elem_len * i
Definition: cfortran.h:603
A Class for the derivatives of shape functions The class design is essentially the same as Shape,...
Definition: shape.h:278
void resize(const unsigned long &n)
Resize to a square nxn matrix; any values already present will be transfered.
Definition: matrices.h:498
int nodal_local_eqn(const unsigned &n, const unsigned &i) const
Return the local equation number corresponding to the i-th value at the n-th local node.
Definition: elements.h:1436
unsigned nnode() const
Return the number of nodes.
Definition: elements.h:2214
Integral *const & integral_pt() const
Return the pointer to the integration scheme (const version)
Definition: elements.h:1967
double dshape_eulerian(const Vector< double > &s, Shape &psi, DShape &dpsidx) const
Compute the geometric shape functions and also first derivatives w.r.t. global coordinates at local c...
Definition: elements.cc:3328
double raw_nodal_position(const unsigned &n, const unsigned &i) const
Return the i-th coordinate at local node n. Do not use the hanging node representation....
Definition: elements.cc:1714
A Generalised Element class.
Definition: elements.h:73
unsigned ndof() const
Return the number of equations/dofs in the element.
Definition: elements.h:839
unsigned long eqn_number(const unsigned &ieqn_local) const
Return the global equation number corresponding to the ieqn_local-th local equation number.
Definition: elements.h:708
virtual void get_residuals(Vector< double > &residuals)
Calculate the vector of residuals of the equations in the element. By default initialise the vector t...
Definition: elements.h:984
virtual void get_jacobian_and_mass_matrix(Vector< double > &residuals, DenseMatrix< double > &jacobian, DenseMatrix< double > &mass_matrix)
Calculate the residuals and jacobian and elemental "mass" matrix, the matrix that multiplies the time...
Definition: elements.h:1020
virtual unsigned nweight() const =0
Return the number of integration points of the scheme.
virtual double weight(const unsigned &i) const =0
Return weight of i-th integration point.
=============================================================== Base class to avoid template complica...
virtual void set_dofs_for_element(GeneralisedElement *const elem_pt, Vector< double > const &dofs)=0
virtual void get_dofs_for_element(GeneralisedElement *const elem_pt, Vector< double > &dofs)=0
virtual void get_previous_dofs_for_element(GeneralisedElement *const elem_pt, Vector< double > &dofs)=0
virtual void get_non_external_ddofs_dt(Vector< double > &du_dt)
Interface to get the current value of the time derivative of all (internal and shared) unknowns.
virtual void spacetime_output(std::ostream &outilfe, const unsigned &Nplot, const double &time=0.0)
virtual void get_non_external_dofs(Vector< double > &u)
Interface to get the current value of all (internal and shared) unknowns.
virtual void get_inner_product_matrix(DenseMatrix< double > &inner_product)
Get the inner product matrix.
void orbit_output(GeneralisedElement *const &elem_pt, std::ostream &outfile, const unsigned &n_plot)
void set_timestepper_weights(const Shape &psi, const DShape &dpsidt)
Set the timestepper weights.
virtual double dshape_and_dtest_eulerian_at_knot_orbit(const unsigned &ipt, Shape &psi, DShape &dpsidt, Shape &test, DShape &dtestdt) const =0
Shape/test functions and derivs w.r.t. to global coords at integration point ipt; return Jacobian of ...
Time *& time_pt()
Retun the pointer to the global time.
void fill_in_generic_residual_contribution_orbit(PeriodicOrbitAssemblyHandlerBase *const &assembly_handler_pt, GeneralisedElement *const &elem_pt, Vector< double > &residuals, DenseMatrix< double > &jacobian, const unsigned &flag)
The routine that actually does all the work!
double omega()
Return the frequency.
A Class for shape functions. In simple cases, the shape functions have only one index that can be tho...
Definition: shape.h:76
double & time()
Return the current value of the continuous time.
Definition: timesteppers.h:123
//////////////////////////////////////////////////////////////////// ////////////////////////////////...