helmholtz_time_harmonic_linear_elasticity_interaction.h
Go to the documentation of this file.
1 // LIC// ====================================================================
2 // LIC// This file forms part of oomph-lib, the object-oriented,
3 // LIC// multi-physics finite-element library, available
4 // LIC// at http://www.oomph-lib.org.
5 // LIC//
6 // LIC// Copyright (C) 2006-2024 Matthias Heil and Andrew Hazel
7 // LIC//
8 // LIC// This library is free software; you can redistribute it and/or
9 // LIC// modify it under the terms of the GNU Lesser General Public
10 // LIC// License as published by the Free Software Foundation; either
11 // LIC// version 2.1 of the License, or (at your option) any later version.
12 // LIC//
13 // LIC// This library is distributed in the hope that it will be useful,
14 // LIC// but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // LIC// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
16 // LIC// Lesser General Public License for more details.
17 // LIC//
18 // LIC// You should have received a copy of the GNU Lesser General Public
19 // LIC// License along with this library; if not, write to the Free Software
20 // LIC// Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
21 // LIC// 02110-1301 USA.
22 // LIC//
23 // LIC// The authors may be contacted at oomph-lib@maths.man.ac.uk.
24 // LIC//
25 // LIC//====================================================================
26 
27 
28 // Oomph-lib includes
29 #include "generic.h"
30 #include "helmholtz.h"
31 #include "time_harmonic_linear_elasticity.h"
32 
33 namespace oomph
34 {
35  //======================================================================
36  /// A class for elements that allow the imposition of an applied traction
37  /// in the equations of time-harmonic linear elasticity from a Helmholtz
38  /// potential (interpreted as a displacement potential for the fluid in a
39  /// quasi-steady, linearised FSI problem.)
40  /// The geometrical information can be read from the FaceGeometry<ELEMENT>
41  /// class and and thus, we can be generic enough without the need to have
42  /// a separate equations class.
43  //======================================================================
44  template<class ELASTICITY_BULK_ELEMENT, class HELMHOLTZ_BULK_ELEMENT>
46  : public virtual FaceGeometry<ELASTICITY_BULK_ELEMENT>,
47  public virtual FaceElement,
48  public virtual ElementWithExternalElement
49  {
50  protected:
51  /// Pointer to the ratio, \f$ Q \f$ , of the stress used to
52  /// non-dimensionalise the fluid stresses to the stress used to
53  /// non-dimensionalise the solid stresses.
54  double* Q_pt;
55 
56  /// Static default value for the ratio of stress scales
57  /// used in the fluid and solid equations (default is 1.0)
58  static double Default_Q_Value;
59 
60  /// Index at which the i-th displacement component is stored
63 
64  /// Helper function that actually calculates the residuals
65  // This small level of indirection is required to avoid calling
66  // fill_in_contribution_to_residuals in fill_in_contribution_to_jacobian
67  // which causes all kinds of pain if overloading later on
69  Vector<double>& residuals);
70 
71  public:
72  /// Constructor, which takes a "bulk" element and the
73  /// value of the index and its limit
75  FiniteElement* const& element_pt, const int& face_index)
76  : FaceGeometry<ELASTICITY_BULK_ELEMENT>(),
77  FaceElement(),
79  {
80  // Attach the geometrical information to the element. N.B. This function
81  // also assigns nbulk_value from the required_nvalue of the bulk element
82  element_pt->build_face_element(face_index, this);
83 
84 #ifdef PARANOID
85  {
86  // Check that the element is not a refineable 3d element
87  ELASTICITY_BULK_ELEMENT* elem_pt =
88  dynamic_cast<ELASTICITY_BULK_ELEMENT*>(element_pt);
89  // If it's three-d
90  if (elem_pt->dim() == 3)
91  {
92  // Is it refineable
93  RefineableElement* ref_el_pt =
94  dynamic_cast<RefineableElement*>(elem_pt);
95  if (ref_el_pt != 0)
96  {
97  if (this->has_hanging_nodes())
98  {
99  throw OomphLibError("This flux element will not work correctly "
100  "if nodes are hanging\n",
101  OOMPH_CURRENT_FUNCTION,
102  OOMPH_EXCEPTION_LOCATION);
103  }
104  }
105  }
106  }
107 #endif
108 
109  // Set source element storage: one interaction with an external
110  // element -- the Helmholtz bulk element that provides the pressure
111  this->set_ninteraction(1);
112 
113  // Find the dimension of the problem
114  unsigned n_dim = element_pt->nodal_dimension();
115 
116  // Find the index at which the displacement unknowns are stored
117  ELASTICITY_BULK_ELEMENT* cast_element_pt =
118  dynamic_cast<ELASTICITY_BULK_ELEMENT*>(element_pt);
120  n_dim);
121  for (unsigned i = 0; i < n_dim; i++)
122  {
124  cast_element_pt->u_index_time_harmonic_linear_elasticity(i);
125  }
126  }
127 
128 
129  /// Return the residuals
131  {
133  }
134 
135 
136  /// Fill in contribution from Jacobian
138  DenseMatrix<double>& jacobian)
139  {
140  // Call the residuals
142 
143  // Derivatives w.r.t. external data
145  }
146 
147  /// Return the ratio of the stress scales used to non-dimensionalise
148  /// the fluid and elasticity equations. E.g.
149  /// \f$ Q = (\omega a)^2 \rho/E \f$, i.e. the
150  /// ratio between the inertial fluid stress and the solid's elastic
151  /// modulus E.
152  const double& q() const
153  {
154  return *Q_pt;
155  }
156 
157  /// Return a pointer the ratio of stress scales used to
158  /// non-dimensionalise the fluid and solid equations.
159  double*& q_pt()
160  {
161  return Q_pt;
162  }
163 
164 
165  /// Output function
166  void output(std::ostream& outfile)
167  {
168  /// Dummy
169  unsigned nplot = 0;
170  output(outfile, nplot);
171  }
172 
173  /// Output function: Plot traction etc at Gauss points
174  /// nplot is ignored.
175  void output(std::ostream& outfile, const unsigned& n_plot)
176  {
177  // Dimension
178  unsigned n_dim = this->nodal_dimension();
179 
180  // Storage for traction
181  Vector<std::complex<double>> traction(n_dim);
182 
183  // Get FSI parameter
184  const double q_value = q();
185 
186  outfile << "ZONE\n";
187 
188  // Set the value of n_intpt
189  unsigned n_intpt = integral_pt()->nweight();
190 
191  // Loop over the integration points
192  for (unsigned ipt = 0; ipt < n_intpt; ipt++)
193  {
194  Vector<double> s_int(n_dim - 1);
195  for (unsigned i = 0; i < n_dim - 1; i++)
196  {
197  s_int[i] = integral_pt()->knot(ipt, i);
198  }
199 
200  // Get the outer unit normal
201  Vector<double> interpolated_normal(n_dim);
202  outer_unit_normal(ipt, interpolated_normal);
203 
204  // Boundary coordinate
205  Vector<double> zeta(1);
206  interpolated_zeta(s_int, zeta);
207 
208  // Get bulk element for potential
209  HELMHOLTZ_BULK_ELEMENT* ext_el_pt =
210  dynamic_cast<HELMHOLTZ_BULK_ELEMENT*>(external_element_pt(0, ipt));
212  std::complex<double> u_helmholtz =
213  ext_el_pt->interpolated_u_helmholtz(s_ext);
214 
215  // Traction: Pressure is proportional to POSITIVE potential
216  ext_el_pt->interpolated_u_helmholtz(s_ext);
217  traction[0] = -q_value * interpolated_normal[0] * u_helmholtz;
218  traction[1] = -q_value * interpolated_normal[1] * u_helmholtz;
219 
220  outfile << ext_el_pt->interpolated_x(s_ext, 0) << " "
221  << ext_el_pt->interpolated_x(s_ext, 1) << " "
222  << traction[0].real() << " " << traction[1].real() << " "
223  << traction[0].imag() << " " << traction[1].imag() << " "
224  << interpolated_normal[0] << " " << interpolated_normal[1]
225  << " " << u_helmholtz.real() << " " << u_helmholtz.imag() << " "
226  << interpolated_x(s_int, 0) << " " << interpolated_x(s_int, 1)
227  << " "
228 
229  << sqrt(pow(ext_el_pt->interpolated_x(s_ext, 0) -
230  interpolated_x(s_int, 0),
231  2) +
232  pow(ext_el_pt->interpolated_x(s_ext, 1) -
233  interpolated_x(s_int, 1),
234  2))
235  << " " << zeta[0] << std::endl;
236  }
237  }
238 
239  /// C_style output function
240  void output(FILE* file_pt)
241  {
243  }
244 
245  /// C-style output function
246  void output(FILE* file_pt, const unsigned& n_plot)
247  {
249  }
250  };
251 
252  /// ////////////////////////////////////////////////////////////////////
253  /// ////////////////////////////////////////////////////////////////////
254  /// ////////////////////////////////////////////////////////////////////
255 
256 
257  //=================================================================
258  /// Static default value for the ratio of stress scales
259  /// used in the fluid and solid equations (default is 1.0)
260  //=================================================================
261  template<class ELASTICITY_BULK_ELEMENT, class HELMHOLTZ_BULK_ELEMENT>
262  double TimeHarmonicLinElastLoadedByHelmholtzPressureBCElement<
263  ELASTICITY_BULK_ELEMENT,
264  HELMHOLTZ_BULK_ELEMENT>::Default_Q_Value = 1.0;
265 
266 
267  //=====================================================================
268  /// Return the residuals
269  //=====================================================================
270  template<class ELASTICITY_BULK_ELEMENT, class HELMHOLTZ_BULK_ELEMENT>
271  void TimeHarmonicLinElastLoadedByHelmholtzPressureBCElement<
272  ELASTICITY_BULK_ELEMENT,
273  HELMHOLTZ_BULK_ELEMENT>::
274  fill_in_contribution_to_residuals_helmholtz_traction(
275  Vector<double>& residuals)
276  {
277  // Find out how many nodes there are
278  unsigned n_node = nnode();
279 
280 #ifdef PARANOID
281  // Find out how many positional dofs there are
282  unsigned n_position_type = this->nnodal_position_type();
283  if (n_position_type != 1)
284  {
285  throw OomphLibError("LinearElasticity is not yet implemented for more "
286  "than one position type.",
287  OOMPH_CURRENT_FUNCTION,
288  OOMPH_EXCEPTION_LOCATION);
289  }
290 #endif
291 
292  // Find out the dimension of the node
293  const unsigned n_dim = this->nodal_dimension();
294 
295  // Cache the nodal indices at which the displacement components are stored
296  std::vector<std::complex<unsigned>> u_nodal_index(n_dim);
297  for (unsigned i = 0; i < n_dim; i++)
298  {
299  u_nodal_index[i] =
300  this->U_index_time_harmonic_linear_elasticity_helmholtz_traction[i];
301  }
302 
303  // Integer to hold the local equation number
304  int local_eqn = 0;
305 
306  // Set up memory for the shape functions
307  Shape psi(n_node);
308  DShape dpsids(n_node, n_dim - 1);
309 
310  // Get FSI parameter
311  const double q_value = q();
312 
313  // Storage for traction
314  Vector<std::complex<double>> traction(2);
315 
316  // Set the value of n_intpt
317  unsigned n_intpt = integral_pt()->nweight();
318 
319  // Loop over the integration points
320  for (unsigned ipt = 0; ipt < n_intpt; ipt++)
321  {
322  // Get the integral weight
323  double w = integral_pt()->weight(ipt);
324 
325  // Only need to call the local derivatives
326  dshape_local_at_knot(ipt, psi, dpsids);
327 
328  // Calculate the coordinates
329  Vector<double> interpolated_x(n_dim, 0.0);
330 
331  // Also calculate the surface tangent vectors
332  DenseMatrix<double> interpolated_A(n_dim - 1, n_dim, 0.0);
333 
334  // Calculate displacements and derivatives
335  for (unsigned l = 0; l < n_node; l++)
336  {
337  // Loop over directions
338  for (unsigned i = 0; i < n_dim; i++)
339  {
340  // Calculate the Eulerian coords
341  const double x_local = nodal_position(l, i);
342  interpolated_x[i] += x_local * psi(l);
343 
344  // Loop over LOCAL derivative directions, to calculate the tangent(s)
345  for (unsigned j = 0; j < n_dim - 1; j++)
346  {
347  interpolated_A(j, i) += x_local * dpsids(l, j);
348  }
349  }
350  }
351 
352  // Now find the local metric tensor from the tangent Vectors
353  DenseMatrix<double> A(n_dim - 1);
354  for (unsigned i = 0; i < n_dim - 1; i++)
355  {
356  for (unsigned j = 0; j < n_dim - 1; j++)
357  {
358  // Initialise surface metric tensor to zero
359  A(i, j) = 0.0;
360 
361  // Take the dot product
362  for (unsigned k = 0; k < n_dim; k++)
363  {
364  A(i, j) += interpolated_A(i, k) * interpolated_A(j, k);
365  }
366  }
367  }
368 
369  // Get the outer unit normal
370  Vector<double> interpolated_normal(n_dim);
371  outer_unit_normal(ipt, interpolated_normal);
372 
373  // Find the determinant of the metric tensor
374  double Adet = 0.0;
375  switch (n_dim)
376  {
377  case 2:
378  Adet = A(0, 0);
379  break;
380  case 3:
381  Adet = A(0, 0) * A(1, 1) - A(0, 1) * A(1, 0);
382  break;
383  default:
384  throw OomphLibError(
385  "Wrong dimension in TimeHarmonicLinElastLoadedByPressureElement",
386  "TimeHarmonicLinElastLoadedByPressureElement::fill_in_contribution_"
387  "to_residuals()",
388  OOMPH_EXCEPTION_LOCATION);
389  }
390 
391  // Premultiply the weights and the square-root of the determinant of
392  // the metric tensor
393  double W = w * sqrt(Adet);
394 
395  // Get bulk element for potential
396  HELMHOLTZ_BULK_ELEMENT* ext_el_pt =
397  dynamic_cast<HELMHOLTZ_BULK_ELEMENT*>(external_element_pt(0, ipt));
398  Vector<double> s_ext(external_element_local_coord(0, ipt));
399 
400  // Traction: Pressure is proportional to POSITIVE potential
401  std::complex<double> u_helmholtz =
402  ext_el_pt->interpolated_u_helmholtz(s_ext);
403  traction[0] = -q_value * interpolated_normal[0] * u_helmholtz;
404  traction[1] = -q_value * interpolated_normal[1] * u_helmholtz;
405 
406  // Loop over the test functions, nodes of the element
407  for (unsigned l = 0; l < n_node; l++)
408  {
409  // Loop over the displacement components
410  for (unsigned i = 0; i < n_dim; i++)
411  {
412  local_eqn = this->nodal_local_eqn(l, u_nodal_index[i].real());
413  /*IF it's not a boundary condition*/
414  if (local_eqn >= 0)
415  {
416  // Add the loading terms to the residuals
417  residuals[local_eqn] -= traction[i].real() * psi(l) * W;
418  }
419 
420  local_eqn = this->nodal_local_eqn(l, u_nodal_index[i].imag());
421  /*IF it's not a boundary condition*/
422  if (local_eqn >= 0)
423  {
424  // Add the loading terms to the residuals
425  residuals[local_eqn] -= traction[i].imag() * psi(l) * W;
426  }
427 
428  } // End of if not boundary condition
429  } // End of loop over shape functions
430  } // End of loop over integration points
431  }
432 
433 
434  /// ////////////////////////////////////////////////////////////////////
435  /// ////////////////////////////////////////////////////////////////////
436  /// ////////////////////////////////////////////////////////////////////
437 
438 
439  //======================================================================
440  /// A class for elements that allow the imposition of an
441  /// prescribed flux (determined from the normal displacements of an
442  /// adjacent linearly elastic solid. Normal derivative for displacement
443  /// potential is given by normal displacement of adjacent solid multiplies
444  /// by FSI parameter (q = k^2 B/E).
445  /// The element geometry is obtained from the FaceGeometry<ELEMENT>
446  /// policy class.
447  //======================================================================
448  template<class HELMHOLTZ_BULK_ELEMENT, class ELASTICITY_BULK_ELEMENT>
450  : public virtual FaceGeometry<HELMHOLTZ_BULK_ELEMENT>,
451  public virtual FaceElement,
452  public virtual ElementWithExternalElement
453  {
454  public:
455  /// Constructor, takes the pointer to the "bulk" element and the
456  /// face index identifying the face to which the element is attached.
458  FiniteElement* const& bulk_el_pt, const int& face_index);
459 
460  /// Broken copy constructor
462  const HelmholtzFluxFromNormalDisplacementBCElement& dummy) = delete;
463 
464  /// Broken assignment operator
465  // Commented out broken assignment operator because this can lead to a
466  // conflict warning when used in the virtual inheritence hierarchy.
467  // Essentially the compiler doesn't realise that two separate
468  // implementations of the broken function are the same and so, quite
469  // rightly, it shouts.
470  /*void operator=(const HelmholtzFluxFromNormalDisplacementBCElement&) =
471  delete;*/
472 
473 
474  /// Add the element's contribution to its residual vector
476  {
477  // Call the generic residuals function with flag set to 0
478  // using a dummy matrix argument
480  residuals, GeneralisedElement::Dummy_matrix, 0);
481  }
482 
483 
484  /// Add the element's contribution to its residual vector and its
485  /// Jacobian matrix
487  DenseMatrix<double>& jacobian)
488  {
489  // Call the generic routine with the flag set to 1
491  residuals, jacobian, 1);
492 
493  // Derivatives w.r.t. external data
495  }
496 
497  /// Output function
498  void output(std::ostream& outfile)
499  {
500  // Dummy
501  unsigned nplot = 0;
502  output(outfile, nplot);
503  }
504 
505  /// Output function: flux etc at Gauss points; n_plot is ignored.
506  void output(std::ostream& outfile, const unsigned& n_plot)
507  {
508  outfile << "ZONE\n";
509 
510  // Get the value of Nintpt
511  const unsigned n_intpt = integral_pt()->nweight();
512 
513  // Set the Vector to hold local coordinates
514  Vector<double> s_int(Dim - 1);
515 
516  // Loop over the integration points
517  for (unsigned ipt = 0; ipt < n_intpt; ipt++)
518  {
519  // Assign values of s
520  for (unsigned i = 0; i < (Dim - 1); i++)
521  {
522  s_int[i] = integral_pt()->knot(ipt, i);
523  }
524 
525  // Get the unit normal
526  Vector<double> interpolated_normal(Dim);
527  outer_unit_normal(ipt, interpolated_normal);
528 
529  Vector<double> zeta(1);
530  interpolated_zeta(s_int, zeta);
531 
532  // Get displacements
533  ELASTICITY_BULK_ELEMENT* ext_el_pt =
534  dynamic_cast<ELASTICITY_BULK_ELEMENT*>(external_element_pt(0, ipt));
536  Vector<std::complex<double>> displ(2);
537  ext_el_pt->interpolated_u_time_harmonic_linear_elasticity(s_ext, displ);
538 
539  // Convert into flux BC: This takes the dot product of the
540  // actual displacement with the flux element's own outer
541  // unit normal so the plus sign is OK.
542  std::complex<double> flux = (displ[0] * interpolated_normal[0] +
543  displ[1] * interpolated_normal[1]);
544 
545  // Output
546  outfile << ext_el_pt->interpolated_x(s_ext, 0) << " "
547  << ext_el_pt->interpolated_x(s_ext, 1) << " "
548  << flux.real() * interpolated_normal[0] << " "
549  << flux.real() * interpolated_normal[1] << " "
550  << flux.imag() * interpolated_normal[0] << " "
551  << flux.imag() * interpolated_normal[1] << " "
552  << interpolated_normal[0] << " " << interpolated_normal[1]
553  << " " << flux.real() << " " << flux.imag() << " "
554  << interpolated_x(s_int, 0) << " " << interpolated_x(s_int, 1)
555  << " "
556  << sqrt(pow(ext_el_pt->interpolated_x(s_ext, 0) -
557  interpolated_x(s_int, 0),
558  2) +
559  pow(ext_el_pt->interpolated_x(s_ext, 1) -
560  interpolated_x(s_int, 1),
561  2))
562  << " " << zeta[0] << std::endl;
563  }
564  }
565 
566 
567  /// C-style output function
568  void output(FILE* file_pt)
569  {
571  }
572 
573  /// C-style output function
574  void output(FILE* file_pt, const unsigned& n_plot)
575  {
577  }
578 
579 
580  protected:
581  /// Function to compute the shape and test functions and to return
582  /// the Jacobian of mapping between local and global (Eulerian)
583  /// coordinates
584  inline double shape_and_test(const Vector<double>& s,
585  Shape& psi,
586  Shape& test) const
587  {
588  // Find number of nodes
589  unsigned n_node = nnode();
590 
591  // Get the shape functions
592  shape(s, psi);
593 
594  // Set the test functions to be the same as the shape functions
595  for (unsigned i = 0; i < n_node; i++)
596  {
597  test[i] = psi[i];
598  }
599 
600  // Return the value of the jacobian
601  return J_eulerian(s);
602  }
603 
604 
605  /// Function to compute the shape and test functions and to return
606  /// the Jacobian of mapping between local and global (Eulerian)
607  /// coordinates
608  inline double shape_and_test_at_knot(const unsigned& ipt,
609  Shape& psi,
610  Shape& test) const
611  {
612  // Find number of nodes
613  unsigned n_node = nnode();
614 
615  // Get the shape functions
616  shape_at_knot(ipt, psi);
617 
618  // Set the test functions to be the same as the shape functions
619  for (unsigned i = 0; i < n_node; i++)
620  {
621  test[i] = psi[i];
622  }
623 
624  // Return the value of the jacobian
625  return J_eulerian_at_knot(ipt);
626  }
627 
628 
629  private:
630  /// Add the element's contribution to its residual vector.
631  /// flag=1(or 0): do (or don't) compute the contribution to the
632  /// Jacobian as well.
634  Vector<double>& residuals,
635  DenseMatrix<double>& jacobian,
636  const unsigned& flag);
637 
638  /// The spatial dimension of the problem
639  unsigned Dim;
640 
641  /// The index at which the unknown is stored at the nodes
642  std::complex<unsigned> U_index_helmholtz_from_displacement;
643  };
644 
645  /// ///////////////////////////////////////////////////////////////////
646  /// ///////////////////////////////////////////////////////////////////
647  /// ///////////////////////////////////////////////////////////////////
648 
649 
650  //===========================================================================
651  /// Constructor, takes the pointer to the "bulk" element, and the
652  /// face index that identifies the face of the bulk element to which
653  /// this face element is to be attached.
654  //===========================================================================
655  template<class HELMHOLTZ_BULK_ELEMENT, class ELASTICITY_BULK_ELEMENT>
656  HelmholtzFluxFromNormalDisplacementBCElement<HELMHOLTZ_BULK_ELEMENT,
657  ELASTICITY_BULK_ELEMENT>::
658  HelmholtzFluxFromNormalDisplacementBCElement(
659  FiniteElement* const& bulk_el_pt, const int& face_index)
660  : FaceGeometry<HELMHOLTZ_BULK_ELEMENT>(), FaceElement()
661  {
662  // Let the bulk element build the FaceElement, i.e. setup the pointers
663  // to its nodes (by referring to the appropriate nodes in the bulk
664  // element), etc.
665  bulk_el_pt->build_face_element(face_index, this);
666 
667 #ifdef PARANOID
668  {
669  // Check that the element is not a refineable 3d element
670  HELMHOLTZ_BULK_ELEMENT* elem_pt =
671  dynamic_cast<HELMHOLTZ_BULK_ELEMENT*>(bulk_el_pt);
672  // If it's three-d
673  if (elem_pt->dim() == 3)
674  {
675  // Is it refineable
676  RefineableElement* ref_el_pt =
677  dynamic_cast<RefineableElement*>(elem_pt);
678  if (ref_el_pt != 0)
679  {
680  if (this->has_hanging_nodes())
681  {
682  throw OomphLibError("This flux element will not work correctly if "
683  "nodes are hanging\n",
684  OOMPH_CURRENT_FUNCTION,
685  OOMPH_EXCEPTION_LOCATION);
686  }
687  }
688  }
689  }
690 #endif
691 
692  // Set source element storage: one interaction with an external element
693  // that provides the displacement of the adjacent linear elasticity
694  // element
695  this->set_ninteraction(1);
696 
697  // Extract the dimension of the problem from the dimension of
698  // the first node
699  Dim = this->node_pt(0)->ndim();
700 
701  // Set up U_index_helmholtz_displacement. Initialise to zero, which
702  // probably won't change in most cases, oh well, the price we
703  // pay for generality
704  U_index_helmholtz_from_displacement = std::complex<unsigned>(0, 0);
705 
706  // Cast to the appropriate HelmholtzEquation so that we can
707  // find the index at which the variable is stored
708  // We assume that the dimension of the full problem is the same
709  // as the dimension of the node, if this is not the case you will have
710  // to write custom elements, sorry
711  switch (Dim)
712  {
713  // One dimensional problem
714  case 1:
715  {
716  HelmholtzEquations<1>* eqn_pt =
717  dynamic_cast<HelmholtzEquations<1>*>(bulk_el_pt);
718  // If the cast has failed die
719  if (eqn_pt == 0)
720  {
721  std::string error_string =
722  "Bulk element must inherit from HelmholtzEquations.";
723  error_string +=
724  "Nodes are one dimensional, but cannot cast the bulk element to\n";
725  error_string += "HelmholtzEquations<1>\n.";
726  error_string += "If you desire this functionality, you must "
727  "implement it yourself\n";
728 
729  throw OomphLibError(
730  error_string, OOMPH_CURRENT_FUNCTION, OOMPH_EXCEPTION_LOCATION);
731  }
732  // Otherwise read out the value
733  else
734  {
735  // Read the index from the (cast) bulk element
737  }
738  }
739  break;
740 
741  // Two dimensional problem
742  case 2:
743  {
744  HelmholtzEquations<2>* eqn_pt =
745  dynamic_cast<HelmholtzEquations<2>*>(bulk_el_pt);
746  // If the cast has failed die
747  if (eqn_pt == 0)
748  {
749  std::string error_string =
750  "Bulk element must inherit from HelmholtzEquations.";
751  error_string +=
752  "Nodes are two dimensional, but cannot cast the bulk element to\n";
753  error_string += "HelmholtzEquations<2>\n.";
754  error_string += "If you desire this functionality, you must "
755  "implement it yourself\n";
756 
757  throw OomphLibError(
758  error_string, OOMPH_CURRENT_FUNCTION, OOMPH_EXCEPTION_LOCATION);
759  }
760  else
761  {
762  // Read the index from the (cast) bulk element.
764  }
765  }
766  break;
767 
768  // Three dimensional problem
769  case 3:
770  {
771  HelmholtzEquations<3>* eqn_pt =
772  dynamic_cast<HelmholtzEquations<3>*>(bulk_el_pt);
773  // If the cast has failed die
774  if (eqn_pt == 0)
775  {
776  std::string error_string =
777  "Bulk element must inherit from HelmholtzEquations.";
778  error_string += "Nodes are three dimensional, but cannot cast the "
779  "bulk element to\n";
780  error_string += "HelmholtzEquations<3>\n.";
781  error_string += "If you desire this functionality, you must "
782  "implement it yourself\n";
783 
784  throw OomphLibError(
785  error_string, OOMPH_CURRENT_FUNCTION, OOMPH_EXCEPTION_LOCATION);
786  }
787  else
788  {
789  // Read the index from the (cast) bulk element.
791  }
792  }
793  break;
794 
795  // Any other case is an error
796  default:
797  std::ostringstream error_stream;
798  error_stream << "Dimension of node is " << Dim
799  << ". It should be 1,2, or 3!" << std::endl;
800 
801  throw OomphLibError(
802  error_stream.str(), OOMPH_CURRENT_FUNCTION, OOMPH_EXCEPTION_LOCATION);
803  break;
804  }
805  }
806 
807 
808  //===========================================================================
809  /// Helper function to compute the element's residual vector and
810  /// the Jacobian matrix.
811  //===========================================================================
812  template<class HELMHOLTZ_BULK_ELEMENT, class ELASTICITY_BULK_ELEMENT>
813  void HelmholtzFluxFromNormalDisplacementBCElement<HELMHOLTZ_BULK_ELEMENT,
814  ELASTICITY_BULK_ELEMENT>::
815  fill_in_generic_residual_contribution_helmholtz_flux_from_displacement(
816  Vector<double>& residuals,
817  DenseMatrix<double>& jacobian,
818  const unsigned& flag)
819  {
820  // Find out how many nodes there are
821  const unsigned n_node = nnode();
822 
823  // Set up memory for the shape and test functions
824  Shape psif(n_node), testf(n_node);
825 
826  // Set the value of Nintpt
827  const unsigned n_intpt = integral_pt()->nweight();
828 
829  // Set the Vector to hold local coordinates
830  Vector<double> s(Dim - 1);
831 
832  // Integers to hold the local equation and unknown numbers
833  int local_eqn = 0;
834 
835  // Locally cache the index at which the variable is stored
836  const std::complex<unsigned> u_index_helmholtz =
837  U_index_helmholtz_from_displacement;
838 
839  // Loop over the integration points
840  //--------------------------------
841  for (unsigned ipt = 0; ipt < n_intpt; ipt++)
842  {
843  // Assign values of s
844  for (unsigned i = 0; i < (Dim - 1); i++)
845  {
846  s[i] = integral_pt()->knot(ipt, i);
847  }
848 
849  // Get the integral weight
850  double w = integral_pt()->weight(ipt);
851 
852  // Find the shape and test functions and return the Jacobian
853  // of the mapping
854  double J = shape_and_test(s, psif, testf);
855 
856  // Premultiply the weights and the Jacobian
857  double W = w * J;
858 
859  // Need to find position to feed into flux function, initialise to zero
860  Vector<double> interpolated_x(Dim, 0.0);
861 
862  // Calculate velocities and derivatives
863  for (unsigned l = 0; l < n_node; l++)
864  {
865  // Loop over velocity components
866  for (unsigned i = 0; i < Dim; i++)
867  {
868  interpolated_x[i] += nodal_position(l, i) * psif[l];
869  }
870  }
871 
872  // Get the outer unit normal
873  Vector<double> interpolated_normal(2);
874  outer_unit_normal(ipt, interpolated_normal);
875 
876  // Get displacements
877  ELASTICITY_BULK_ELEMENT* ext_el_pt =
878  dynamic_cast<ELASTICITY_BULK_ELEMENT*>(external_element_pt(0, ipt));
879  Vector<double> s_ext(external_element_local_coord(0, ipt));
880  Vector<std::complex<double>> displ(2);
881  ext_el_pt->interpolated_u_time_harmonic_linear_elasticity(s_ext, displ);
882 
883  // Convert into flux BC: This takes the dot product of the
884  // actual displacement with the flux element's own outer
885  // unit normal so the plus sign is OK.
886  std::complex<double> flux =
887  (displ[0] * interpolated_normal[0] + displ[1] * interpolated_normal[1]);
888 
889  // Now add to the appropriate equations
890 
891  // Loop over the test functions
892  for (unsigned l = 0; l < n_node; l++)
893  {
894  local_eqn = nodal_local_eqn(l, u_index_helmholtz.real());
895  /*IF it's not a boundary condition*/
896  if (local_eqn >= 0)
897  {
898  // Add the prescribed flux terms
899  residuals[local_eqn] -= flux.real() * testf[l] * W;
900 
901  // Imposed traction doesn't depend upon the solution,
902  // --> the Jacobian is always zero, so no Jacobian
903  // terms are required
904  }
905 
906  local_eqn = nodal_local_eqn(l, u_index_helmholtz.imag());
907  /*IF it's not a boundary condition*/
908  if (local_eqn >= 0)
909  {
910  // Add the prescribed flux terms
911  residuals[local_eqn] -= flux.imag() * testf[l] * W;
912 
913  // Imposed traction doesn't depend upon the solution,
914  // --> the Jacobian is always zero, so no Jacobian
915  // terms are required
916  }
917  }
918  }
919  }
920 } // namespace oomph
static char t char * s
Definition: cfortran.h:568
cstr elem_len * i
Definition: cfortran.h:603
A Class for the derivatives of shape functions The class design is essentially the same as Shape,...
Definition: shape.h:278
This is a base class for all elements that require external sources (e.g. FSI, multi-domain problems ...
Vector< double > & external_element_local_coord(const unsigned &interaction_index, const unsigned &ipt)
Access function to get source element's local coords for specified interaction index at specified int...
void set_ninteraction(const unsigned &n_interaction)
Set the number of interactions in the element This function is usually called in the specific element...
FiniteElement *& external_element_pt(const unsigned &interaction_index, const unsigned &ipt)
Access function to source element for specified interaction index at specified integration point.
void fill_in_jacobian_from_external_interaction_by_fd(Vector< double > &residuals, DenseMatrix< double > &jacobian)
Calculate the contributions to the jacobian from all external interaction degrees of freedom (geometr...
FaceElements are elements that coincide with the faces of higher-dimensional "bulk" elements....
Definition: elements.h:4342
int & face_index()
Index of the face (a number that uniquely identifies the face in the element)
Definition: elements.h:4630
void outer_unit_normal(const Vector< double > &s, Vector< double > &unit_normal) const
Compute outer unit normal at the specified local coordinate.
Definition: elements.cc:6036
double interpolated_x(const Vector< double > &s, const unsigned &i) const
Return FE interpolated coordinate x[i] at local coordinate s. Overloaded to get information from bulk...
Definition: elements.h:4532
double J_eulerian(const Vector< double > &s) const
Return the Jacobian of mapping from local to global coordinates at local position s....
Definition: elements.cc:5272
double J_eulerian_at_knot(const unsigned &ipt) const
Return the Jacobian of the mapping from local to global coordinates at the ipt-th integration point O...
Definition: elements.cc:5358
//////////////////////////////////////////////////////////////////// ////////////////////////////////...
Definition: elements.h:5002
A general Finite Element class.
Definition: elements.h:1317
Node *& node_pt(const unsigned &n)
Return a pointer to the local node n.
Definition: elements.h:2179
void interpolated_zeta(const Vector< double > &s, Vector< double > &zeta) const
Calculate the interpolated value of zeta, the intrinsic coordinate of the element when viewed as a co...
Definition: elements.cc:4705
virtual void shape(const Vector< double > &s, Shape &psi) const =0
Calculate the geometric shape functions at local coordinate s. This function must be overloaded for e...
unsigned nnode() const
Return the number of nodes.
Definition: elements.h:2214
Integral *const & integral_pt() const
Return the pointer to the integration scheme (const version)
Definition: elements.h:1967
virtual void build_face_element(const int &face_index, FaceElement *face_element_pt)
Function for building a lower dimensional FaceElement on the specified face of the FiniteElement....
Definition: elements.cc:5162
unsigned nodal_dimension() const
Return the required Eulerian dimension of the nodes in this element.
Definition: elements.h:2488
virtual void shape_at_knot(const unsigned &ipt, Shape &psi) const
Return the geometric shape function at the ipt-th integration point.
Definition: elements.cc:3250
bool has_hanging_nodes() const
Return boolean to indicate if any of the element's nodes are geometrically hanging.
Definition: elements.h:2474
static DenseMatrix< double > Dummy_matrix
Empty dense matrix used as a dummy argument to combined residual and jacobian functions in the case w...
Definition: elements.h:227
A class for all isoparametric elements that solve the Helmholtz equations.
virtual std::complex< unsigned > u_index_helmholtz() const
Broken assignment operator.
//////////////////////////////////////////////////////////////////// ////////////////////////////////...
void output(FILE *file_pt, const unsigned &n_plot)
C-style output function.
void fill_in_contribution_to_jacobian(Vector< double > &residuals, DenseMatrix< double > &jacobian)
Add the element's contribution to its residual vector and its Jacobian matrix.
void fill_in_generic_residual_contribution_helmholtz_flux_from_displacement(Vector< double > &residuals, DenseMatrix< double > &jacobian, const unsigned &flag)
Add the element's contribution to its residual vector. flag=1(or 0): do (or don't) compute the contri...
std::complex< unsigned > U_index_helmholtz_from_displacement
The index at which the unknown is stored at the nodes.
double shape_and_test(const Vector< double > &s, Shape &psi, Shape &test) const
Function to compute the shape and test functions and to return the Jacobian of mapping between local ...
void fill_in_contribution_to_residuals(Vector< double > &residuals)
Broken assignment operator.
double shape_and_test_at_knot(const unsigned &ipt, Shape &psi, Shape &test) const
Function to compute the shape and test functions and to return the Jacobian of mapping between local ...
HelmholtzFluxFromNormalDisplacementBCElement(FiniteElement *const &bulk_el_pt, const int &face_index)
Constructor, takes the pointer to the "bulk" element and the face index identifying the face to which...
HelmholtzFluxFromNormalDisplacementBCElement(const HelmholtzFluxFromNormalDisplacementBCElement &dummy)=delete
Broken copy constructor.
void output(std::ostream &outfile, const unsigned &n_plot)
Output function: flux etc at Gauss points; n_plot is ignored.
virtual double knot(const unsigned &i, const unsigned &j) const =0
Return local coordinate s[j] of i-th integration point.
virtual unsigned nweight() const =0
Return the number of integration points of the scheme.
unsigned ndim() const
Return (Eulerian) spatial dimension of the node.
Definition: nodes.h:1054
An OomphLibError object which should be thrown when an run-time error is encountered....
RefineableElements are FiniteElements that may be subdivided into children to provide a better local ...
A Class for shape functions. In simple cases, the shape functions have only one index that can be tho...
Definition: shape.h:76
A class for elements that allow the imposition of an applied traction in the equations of time-harmon...
void fill_in_contribution_to_jacobian(Vector< double > &residuals, DenseMatrix< double > &jacobian)
Fill in contribution from Jacobian.
void output(std::ostream &outfile, const unsigned &n_plot)
Output function: Plot traction etc at Gauss points nplot is ignored.
void fill_in_contribution_to_residuals_helmholtz_traction(Vector< double > &residuals)
Helper function that actually calculates the residuals.
Vector< std::complex< unsigned > > U_index_time_harmonic_linear_elasticity_helmholtz_traction
Index at which the i-th displacement component is stored.
static double Default_Q_Value
Static default value for the ratio of stress scales used in the fluid and solid equations (default is...
double *& q_pt()
Return a pointer the ratio of stress scales used to non-dimensionalise the fluid and solid equations.
void output(FILE *file_pt, const unsigned &n_plot)
C-style output function.
double * Q_pt
Pointer to the ratio, , of the stress used to non-dimensionalise the fluid stresses to the stress us...
TimeHarmonicLinElastLoadedByHelmholtzPressureBCElement(FiniteElement *const &element_pt, const int &face_index)
Constructor, which takes a "bulk" element and the value of the index and its limit.
const double & q() const
Return the ratio of the stress scales used to non-dimensionalise the fluid and elasticity equations....
A slight extension to the standard template vector class so that we can include "graceful" array rang...
Definition: Vector.h:58
void output()
Doc the command line arguments.
std::string string(const unsigned &i)
Return the i-th string or "" if the relevant string hasn't been defined.
unsigned Dim
Dimension of zeta tuples (set by get_dim_helper) – needed because we store the scalar coordinates in ...
Definition: multi_domain.cc:60
//////////////////////////////////////////////////////////////////// ////////////////////////////////...