generalised_newtonian_Tnavier_stokes_elements.h
Go to the documentation of this file.
1 // LIC// ====================================================================
2 // LIC// This file forms part of oomph-lib, the object-oriented,
3 // LIC// multi-physics finite-element library, available
4 // LIC// at http://www.oomph-lib.org.
5 // LIC//
6 // LIC// Copyright (C) 2006-2024 Matthias Heil and Andrew Hazel
7 // LIC//
8 // LIC// This library is free software; you can redistribute it and/or
9 // LIC// modify it under the terms of the GNU Lesser General Public
10 // LIC// License as published by the Free Software Foundation; either
11 // LIC// version 2.1 of the License, or (at your option) any later version.
12 // LIC//
13 // LIC// This library is distributed in the hope that it will be useful,
14 // LIC// but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // LIC// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
16 // LIC// Lesser General Public License for more details.
17 // LIC//
18 // LIC// You should have received a copy of the GNU Lesser General Public
19 // LIC// License along with this library; if not, write to the Free Software
20 // LIC// Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
21 // LIC// 02110-1301 USA.
22 // LIC//
23 // LIC// The authors may be contacted at oomph-lib@maths.man.ac.uk.
24 // LIC//
25 // LIC//====================================================================
26 // Header file for triangular/tetrahedaral Navier Stokes elements
27 
28 #ifndef OOMPH_GENERALISED_NEWTONIAN_TNAVIER_STOKES_ELEMENTS_HEADER
29 #define OOMPH_GENERALISED_NEWTONIAN_TNAVIER_STOKES_ELEMENTS_HEADER
30 
31 // Config header generated by autoconfig
32 #ifdef HAVE_CONFIG_H
33 #include <oomph-lib-config.h>
34 #endif
35 
36 
37 // OOMPH-LIB headers
38 #include "../generic/Telements.h"
40 #include "../generic/error_estimator.h"
41 
42 namespace oomph
43 {
44  /// ///////////////////////////////////////////////////////////////////////////
45  /// ///////////////////////////////////////////////////////////////////////////
46  // NOTE: TRI/TET CROZIER RAVIARTS REQUIRE BUBBLE FUNCTIONS! THEY'RE NOT
47  // STRAIGHTFORWARD GENERALISATIONS OF THE Q-EQUIVALENTS (WHICH ARE
48  // LBB UNSTABLE!)
49  /// ///////////////////////////////////////////////////////////////////////////
50  /// ///////////////////////////////////////////////////////////////////////////
51 
52 
53  //==========================================================================
54  /// TCrouzeix_Raviart elements are Navier--Stokes elements with quadratic
55  /// interpolation for velocities and positions enriched by a single cubic
56  /// bubble function, but a discontinuous linear
57  /// pressure interpolation
58  //==========================================================================
59  template<unsigned DIM>
61  : public virtual TBubbleEnrichedElement<DIM, 3>,
63  public virtual ElementWithZ2ErrorEstimator
64  {
65  protected:
66  /// Internal index that indicates at which internal datum the pressure is
67  /// stored
69 
70 
71  /// Velocity shape and test functions and their derivs
72  /// w.r.t. to global coords at local coordinate s (taken from geometry)
73  /// Return Jacobian of mapping between local and global coordinates.
74  inline double dshape_and_dtest_eulerian_nst(const Vector<double>& s,
75  Shape& psi,
76  DShape& dpsidx,
77  Shape& test,
78  DShape& dtestdx) const;
79 
80  /// Velocity shape and test functions and their derivs
81  /// w.r.t. to global coords at ipt-th integation point (taken from geometry)
82  /// Return Jacobian of mapping between local and global coordinates.
83  inline double dshape_and_dtest_eulerian_at_knot_nst(const unsigned& ipt,
84  Shape& psi,
85  DShape& dpsidx,
86  Shape& test,
87  DShape& dtestdx) const;
88 
89  /// Shape/test functions and derivs w.r.t. to global coords at
90  /// integration point ipt; return Jacobian of mapping (J). Also compute
91  /// derivatives of dpsidx, dtestdx and J w.r.t. nodal coordinates.
93  const unsigned& ipt,
94  Shape& psi,
95  DShape& dpsidx,
96  RankFourTensor<double>& d_dpsidx_dX,
97  Shape& test,
98  DShape& dtestdx,
99  RankFourTensor<double>& d_dtestdx_dX,
100  DenseMatrix<double>& djacobian_dX) const;
101 
102  /// Pressure shape and test functions and their derivs
103  /// w.r.t. to global coords at local coordinate s (taken from geometry)
104  /// Return Jacobian of mapping between local and global coordinates.
106  Shape& ppsi,
107  DShape& dppsidx,
108  Shape& ptest,
109  DShape& dptestdx) const;
110 
111  public:
112  /// Pressure shape functions at local coordinate s
113  inline void pshape_nst(const Vector<double>& s, Shape& psi) const;
114 
115  /// Pressure shape and test functions at local coordinte s
116  inline void pshape_nst(const Vector<double>& s,
117  Shape& psi,
118  Shape& test) const;
119 
120  /// Unpin all internal pressure dofs
122 
123  /// Return the local equation numbers for the pressure values.
124  inline int p_local_eqn(const unsigned& n) const
125  {
126  return this->internal_local_eqn(P_nst_internal_index, n);
127  }
128 
129  public:
130  /// Constructor, there are DIM+1 internal values (for the pressure)
132  : TBubbleEnrichedElement<DIM, 3>(),
134  {
135  // Allocate and a single internal datum with DIM+1 entries for the
136  // pressure
137  P_nst_internal_index = this->add_internal_data(new Data(DIM + 1));
138  }
139 
140  /// Broken copy constructor
143 
144  /// Broken assignment operator
145  // Commented out broken assignment operator because this can lead to a
146  // conflict warning when used in the virtual inheritence hierarchy.
147  // Essentially the compiler doesn't realise that two separate
148  // implementations of the broken function are the same and so, quite
149  // rightly, it shouts.
150  /*void operator=(const GeneralisedNewtonianTCrouzeixRaviartElement<DIM>&) =
151  delete;*/
152 
153 
154  /// Number of values (pinned or dofs) required at local node n.
155  inline virtual unsigned required_nvalue(const unsigned& n) const
156  {
157  return DIM;
158  }
159 
160 
161  /// Return the pressure values at internal dof i_internal
162  /// (Discontinous pressure interpolation -- no need to cater for hanging
163  /// nodes).
164  double p_nst(const unsigned& i) const
165  {
166  return this->internal_data_pt(P_nst_internal_index)->value(i);
167  }
168 
169  /// Return the pressure values at internal dof i_internal
170  /// (Discontinous pressure interpolation -- no need to cater for hanging
171  /// nodes).
172  double p_nst(const unsigned& t, const unsigned& i) const
173  {
174  return this->internal_data_pt(P_nst_internal_index)->value(t, i);
175  }
176 
177  /// Return number of pressure values
178  unsigned npres_nst() const
179  {
180  return DIM + 1;
181  }
182 
183  /// Pin p_dof-th pressure dof and set it to value specified by p_value.
184  void fix_pressure(const unsigned& p_dof, const double& p_value)
185  {
186  this->internal_data_pt(P_nst_internal_index)->pin(p_dof);
187  this->internal_data_pt(P_nst_internal_index)->set_value(p_dof, p_value);
188  }
189 
190 
191  /// Add to the set paired_load_data
192  /// pairs of pointers to data objects and unsignedegers that
193  /// index the values in the data object that affect the load (traction),
194  /// as specified in the get_load() function.
195  void identify_load_data(
196  std::set<std::pair<Data*, unsigned>>& paired_load_data);
197 
198  /// Add to the set \c paired_pressure_data pairs
199  /// containing
200  /// - the pointer to a Data object
201  /// and
202  /// - the index of the value in that Data object
203  /// .
204  /// for all pressure values that affect the
205  /// load computed in the \c get_load(...) function.
207  std::set<std::pair<Data*, unsigned>>& paired_pressure_data);
208 
209  /// Redirect output to NavierStokesEquations output
210  void output(std::ostream& outfile)
211  {
213  }
214 
215  /// Redirect output to NavierStokesEquations output
216  void output(std::ostream& outfile, const unsigned& nplot)
217  {
219  }
220 
221  /// Redirect output to NavierStokesEquations output
222  void output(FILE* file_pt)
223  {
225  }
226 
227  /// Redirect output to NavierStokesEquations output
228  void output(FILE* file_pt, const unsigned& n_plot)
229  {
231  }
232 
233 
234  /// Order of recovery shape functions for Z2 error estimation:
235  /// Same order as unenriched shape functions.
236  unsigned nrecovery_order()
237  {
238  return 2;
239  }
240 
241  /// Number of vertex nodes in the element
242  unsigned nvertex_node() const
243  {
244  return DIM + 1;
245  }
246 
247  /// Pointer to the j-th vertex node in the element
248  Node* vertex_node_pt(const unsigned& j) const
249  {
250  return node_pt(j);
251  }
252 
253  /// Number of 'flux' terms for Z2 error estimation
254  unsigned num_Z2_flux_terms()
255  {
256  // DIM diagonal strain rates, DIM(DIM -1) /2 off diagonal rates
257  return DIM + (DIM * (DIM - 1)) / 2;
258  }
259 
260  /// Get 'flux' for Z2 error recovery: Upper triangular entries
261  /// in strain rate tensor.
263  {
264 #ifdef PARANOID
265  unsigned num_entries = DIM + (DIM * (DIM - 1)) / 2;
266  if (flux.size() < num_entries)
267  {
268  std::ostringstream error_message;
269  error_message << "The flux vector has the wrong number of entries, "
270  << flux.size() << ", whereas it should be at least "
271  << num_entries << std::endl;
272  throw OomphLibError(error_message.str(),
273  OOMPH_CURRENT_FUNCTION,
274  OOMPH_EXCEPTION_LOCATION);
275  }
276 #endif
277 
278  // Get strain rate matrix
279  DenseMatrix<double> strainrate(DIM);
280  this->strain_rate(s, strainrate);
281 
282  // Pack into flux Vector
283  unsigned icount = 0;
284 
285  // Start with diagonal terms
286  for (unsigned i = 0; i < DIM; i++)
287  {
288  flux[icount] = strainrate(i, i);
289  icount++;
290  }
291 
292  // Off diagonals row by row
293  for (unsigned i = 0; i < DIM; i++)
294  {
295  for (unsigned j = i + 1; j < DIM; j++)
296  {
297  flux[icount] = strainrate(i, j);
298  icount++;
299  }
300  }
301  }
302 
303 
304  /// Full output function:
305  /// x,y,[z],u,v,[w],p,du/dt,dv/dt,[dw/dt],dissipation
306  /// in tecplot format. Default number of plot points
307  void full_output(std::ostream& outfile)
308  {
310  }
311 
312  /// Full output function:
313  /// x,y,[z],u,v,[w],p,du/dt,dv/dt,[dw/dt],dissipation
314  /// in tecplot format. nplot points in each coordinate direction
315  void full_output(std::ostream& outfile, const unsigned& nplot)
316  {
318  nplot);
319  }
320 
321  /// The number of "DOF types" that degrees of freedom in this element
322  /// are sub-divided into: Velocity and pressure.
323  unsigned ndof_types() const
324  {
325  return DIM + 1;
326  }
327 
328  /// Create a list of pairs for all unknowns in this element,
329  /// so that the first entry in each pair contains the global equation
330  /// number of the unknown, while the second one contains the number
331  /// of the "DOF types" that this unknown is associated with.
332  /// (Function can obviously only be called if the equation numbering
333  /// scheme has been set up.) Velocity=0; Pressure=1
335  std::list<std::pair<unsigned long, unsigned>>& dof_lookup_list) const;
336  };
337 
338  // Inline functions
339 
340  //=======================================================================
341  /// Derivatives of the shape functions and test functions w.r.t. to global
342  /// (Eulerian) coordinates. Return Jacobian of mapping between
343  /// local and global coordinates.
344  //=======================================================================
345  template<unsigned DIM>
346  inline double GeneralisedNewtonianTCrouzeixRaviartElement<
347  DIM>::dshape_and_dtest_eulerian_nst(const Vector<double>& s,
348  Shape& psi,
349  DShape& dpsidx,
350  Shape& test,
351  DShape& dtestdx) const
352  {
353  // Call the geometrical shape functions and derivatives
354  double J = this->dshape_eulerian(s, psi, dpsidx);
355  // The test functions are equal to the shape functions
356  test = psi;
357  dtestdx = dpsidx;
358  // Return the jacobian
359  return J;
360  }
361 
362 
363  //=======================================================================
364  /// Derivatives of the shape functions and test functions w.r.t. to global
365  /// (Eulerian) coordinates. Return Jacobian of mapping between
366  /// local and global coordinates.
367  //=======================================================================
368  template<unsigned DIM>
370  DIM>::dshape_and_dtest_eulerian_at_knot_nst(const unsigned& ipt,
371  Shape& psi,
372  DShape& dpsidx,
373  Shape& test,
374  DShape& dtestdx) const
375  {
376  // Call the geometrical shape functions and derivatives
377  double J = this->dshape_eulerian_at_knot(ipt, psi, dpsidx);
378  // The test functions are the shape functions
379  test = psi;
380  dtestdx = dpsidx;
381  // Return the jacobian
382  return J;
383  }
384 
385 
386  //=======================================================================
387  /// 2D
388  /// Define the shape functions (psi) and test functions (test) and
389  /// their derivatives w.r.t. global coordinates (dpsidx and dtestdx)
390  /// and return Jacobian of mapping (J). Additionally compute the
391  /// derivatives of dpsidx, dtestdx and J w.r.t. nodal coordinates.
392  ///
393  /// Galerkin: Test functions = shape functions
394  //=======================================================================
395  template<unsigned DIM>
398  const unsigned& ipt,
399  Shape& psi,
400  DShape& dpsidx,
401  RankFourTensor<double>& d_dpsidx_dX,
402  Shape& test,
403  DShape& dtestdx,
404  RankFourTensor<double>& d_dtestdx_dX,
405  DenseMatrix<double>& djacobian_dX) const
406  {
407  // Call the geometrical shape functions and derivatives
408  const double J = this->dshape_eulerian_at_knot(
409  ipt, psi, dpsidx, djacobian_dX, d_dpsidx_dX);
410 
411  // Loop over the test functions and derivatives and set them equal to the
412  // shape functions
413  for (unsigned i = 0; i < 9; i++)
414  {
415  test[i] = psi[i];
416 
417  for (unsigned k = 0; k < 2; k++)
418  {
419  dtestdx(i, k) = dpsidx(i, k);
420 
421  for (unsigned p = 0; p < 2; p++)
422  {
423  for (unsigned q = 0; q < 9; q++)
424  {
425  d_dtestdx_dX(p, q, i, k) = d_dpsidx_dX(p, q, i, k);
426  }
427  }
428  }
429  }
430 
431  // Return the jacobian
432  return J;
433  }
434 
435 
436  //=======================================================================
437  /// 2D :
438  /// Pressure shape functions
439  //=======================================================================
440  template<>
442  const Vector<double>& s, Shape& psi) const
443  {
444  psi[0] = 1.0;
445  psi[1] = s[0];
446  psi[2] = s[1];
447  }
448 
449  //=======================================================================
450  /// Pressure shape and test functions
451  //=======================================================================
452  template<>
454  const Vector<double>& s, Shape& psi, Shape& test) const
455  {
456  // Call the pressure shape functions
457  this->pshape_nst(s, psi);
458  // The test functions are the shape functions
459  test = psi;
460  }
461 
462 
463  //=======================================================================
464  /// 3D :
465  /// Pressure shape functions
466  //=======================================================================
467  template<>
469  const Vector<double>& s, Shape& psi) const
470  {
471  psi[0] = 1.0;
472  psi[1] = s[0];
473  psi[2] = s[1];
474  psi[3] = s[2];
475  }
476 
477 
478  //=======================================================================
479  /// Pressure shape and test functions
480  //=======================================================================
481  template<>
483  const Vector<double>& s, Shape& psi, Shape& test) const
484  {
485  // Call the pressure shape functions
486  this->pshape_nst(s, psi);
487  // The test functions are the shape functions
488  test = psi;
489  }
490 
491 
492  //==========================================================================
493  /// 2D :
494  /// Pressure shape and test functions and derivs w.r.t. to Eulerian coords.
495  /// Return Jacobian of mapping between local and global coordinates.
496  //==========================================================================
497  template<>
499  2>::dpshape_and_dptest_eulerian_nst(const Vector<double>& s,
500  Shape& ppsi,
501  DShape& dppsidx,
502  Shape& ptest,
503  DShape& dptestdx) const
504  {
505  // Initalise with shape fcts and derivs. w.r.t. to local coordinates
506  ppsi[0] = 1.0;
507  ppsi[1] = s[0];
508  ppsi[2] = s[1];
509 
510  dppsidx(0, 0) = 0.0;
511  dppsidx(1, 0) = 1.0;
512  dppsidx(2, 0) = 0.0;
513 
514  dppsidx(0, 1) = 0.0;
515  dppsidx(1, 1) = 0.0;
516  dppsidx(2, 1) = 1.0;
517 
518 
519  // Get the values of the shape functions and their local derivatives
520  Shape psi(7);
521  DShape dpsi(7, 2);
522  dshape_local(s, psi, dpsi);
523 
524  // Allocate memory for the inverse 2x2 jacobian
525  DenseMatrix<double> inverse_jacobian(2);
526 
527  // Now calculate the inverse jacobian
528  const double det = local_to_eulerian_mapping(dpsi, inverse_jacobian);
529 
530  // Now set the values of the derivatives to be derivs w.r.t. to the
531  // Eulerian coordinates
532  transform_derivatives(inverse_jacobian, dppsidx);
533 
534  // The test functions are equal to the shape functions
535  ptest = ppsi;
536  dptestdx = dppsidx;
537 
538  // Return the determinant of the jacobian
539  return det;
540  }
541 
542 
543  //==========================================================================
544  /// 3D :
545  /// Pressure shape and test functions and derivs w.r.t. to Eulerian coords.
546  /// Return Jacobian of mapping between local and global coordinates.
547  //==========================================================================
548  template<>
550  3>::dpshape_and_dptest_eulerian_nst(const Vector<double>& s,
551  Shape& ppsi,
552  DShape& dppsidx,
553  Shape& ptest,
554  DShape& dptestdx) const
555  {
556  // Initalise with shape fcts and derivs. w.r.t. to local coordinates
557  ppsi[0] = 1.0;
558  ppsi[1] = s[0];
559  ppsi[2] = s[1];
560  ppsi[3] = s[2];
561 
562  dppsidx(0, 0) = 0.0;
563  dppsidx(1, 0) = 1.0;
564  dppsidx(2, 0) = 0.0;
565  dppsidx(3, 0) = 0.0;
566 
567  dppsidx(0, 1) = 0.0;
568  dppsidx(1, 1) = 0.0;
569  dppsidx(2, 1) = 1.0;
570  dppsidx(3, 1) = 0.0;
571 
572  dppsidx(0, 2) = 0.0;
573  dppsidx(1, 2) = 0.0;
574  dppsidx(2, 2) = 0.0;
575  dppsidx(3, 2) = 1.0;
576 
577 
578  // Get the values of the shape functions and their local derivatives
579  Shape psi(11);
580  DShape dpsi(11, 3);
581  dshape_local(s, psi, dpsi);
582 
583  // Allocate memory for the inverse 3x3 jacobian
584  DenseMatrix<double> inverse_jacobian(3);
585 
586  // Now calculate the inverse jacobian
587  const double det = local_to_eulerian_mapping(dpsi, inverse_jacobian);
588 
589  // Now set the values of the derivatives to be derivs w.r.t. to the
590  // Eulerian coordinates
591  transform_derivatives(inverse_jacobian, dppsidx);
592 
593  // The test functions are equal to the shape functions
594  ptest = ppsi;
595  dptestdx = dppsidx;
596 
597  // Return the determinant of the jacobian
598  return det;
599  }
600 
601 
602  //=======================================================================
603  /// Face geometry of the 2D Crouzeix_Raviart elements
604  //=======================================================================
605  template<>
607  : public virtual TElement<1, 3>
608  {
609  public:
610  FaceGeometry() : TElement<1, 3>() {}
611  };
612 
613  //=======================================================================
614  /// Face geometry of the 3D Crouzeix_Raviart elements
615  //=======================================================================
616  template<>
618  : public virtual TBubbleEnrichedElement<2, 3>
619  {
620  public:
622  };
623 
624 
625  //=======================================================================
626  /// Face geometry of the FaceGeometry of the 2D CrouzeixRaviart elements
627  //=======================================================================
628  template<>
631  : public virtual PointElement
632  {
633  public:
635  };
636 
637 
638  //=======================================================================
639  /// Face geometry of the FaceGeometry of the 3D Crouzeix_Raviart elements
640  //=======================================================================
641  template<>
644  : public virtual TElement<1, 3>
645  {
646  public:
647  FaceGeometry() : TElement<1, 3>() {}
648  };
649 
650 
651  //=============================================================================
652  /// Create a list of pairs for all unknowns in this element,
653  /// so that the first entry in each pair contains the global equation
654  /// number of the unknown, while the second one contains the number
655  /// of the DOF that this unknown is associated with.
656  /// (Function can obviously only be called if the equation numbering
657  /// scheme has been set up.)
658  //=============================================================================
659  template<unsigned DIM>
662  std::list<std::pair<unsigned long, unsigned>>& dof_lookup_list) const
663  {
664  // number of nodes
665  unsigned n_node = this->nnode();
666 
667  // number of pressure values
668  unsigned n_press = this->npres_nst();
669 
670  // temporary pair (used to store dof lookup prior to being added to list)
671  std::pair<unsigned, unsigned> dof_lookup;
672 
673  // pressure dof number
674  unsigned pressure_dof_number = DIM;
675 
676  // loop over the pressure values
677  for (unsigned n = 0; n < n_press; n++)
678  {
679  // determine local eqn number
680  int local_eqn_number = this->p_local_eqn(n);
681 
682  // ignore pinned values - far away degrees of freedom resulting
683  // from hanging nodes can be ignored since these are be dealt
684  // with by the element containing their master nodes
685  if (local_eqn_number >= 0)
686  {
687  // store dof lookup in temporary pair: First entry in pair
688  // is global equation number; second entry is dof type
689  dof_lookup.first = this->eqn_number(local_eqn_number);
690  dof_lookup.second = pressure_dof_number;
691 
692  // add to list
693  dof_lookup_list.push_front(dof_lookup);
694  }
695  }
696 
697  // loop over the nodes
698  for (unsigned n = 0; n < n_node; n++)
699  {
700  // find the number of values at this node
701  unsigned nv = this->node_pt(n)->nvalue();
702 
703  // loop over these values
704  for (unsigned v = 0; v < nv; v++)
705  {
706  // determine local eqn number
707  int local_eqn_number = this->nodal_local_eqn(n, v);
708 
709  // ignore pinned values
710  if (local_eqn_number >= 0)
711  {
712  // store dof lookup in temporary pair: First entry in pair
713  // is global equation number; second entry is dof type
714  dof_lookup.first = this->eqn_number(local_eqn_number);
715  dof_lookup.second = v;
716 
717  // add to list
718  dof_lookup_list.push_front(dof_lookup);
719  }
720  }
721  }
722  }
723 
724  /// /////////////////////////////////////////////////////////////////////////
725  /// /////////////////////////////////////////////////////////////////////////
726  /// /////////////////////////////////////////////////////////////////////////
727 
728 
729  //=======================================================================
730  /// Taylor--Hood elements are Navier--Stokes elements
731  /// with quadratic interpolation for velocities and positions and
732  /// continous linear pressure interpolation
733  //=======================================================================
734  template<unsigned DIM>
736  : public virtual TElement<DIM, 3>,
737  public virtual GeneralisedNewtonianNavierStokesEquations<DIM>,
738  public virtual ElementWithZ2ErrorEstimator
739 
740  {
741  private:
742  /// Static array of ints to hold number of variables at node
743  static const unsigned Initial_Nvalue[];
744 
745  protected:
746  /// Static array of ints to hold conversion from pressure
747  /// node numbers to actual node numbers
748  static const unsigned Pconv[];
749 
750  /// Velocity shape and test functions and their derivs
751  /// w.r.t. to global coords at local coordinate s (taken from geometry)
752  /// Return Jacobian of mapping between local and global coordinates.
753  inline double dshape_and_dtest_eulerian_nst(const Vector<double>& s,
754  Shape& psi,
755  DShape& dpsidx,
756  Shape& test,
757  DShape& dtestdx) const;
758 
759  /// Velocity shape and test functions and their derivs
760  /// w.r.t. to global coords at local coordinate s (taken from geometry)
761  /// Return Jacobian of mapping between local and global coordinates.
762  inline double dshape_and_dtest_eulerian_at_knot_nst(const unsigned& ipt,
763  Shape& psi,
764  DShape& dpsidx,
765  Shape& test,
766  DShape& dtestdx) const;
767 
768  /// Shape/test functions and derivs w.r.t. to global coords at
769  /// integration point ipt; return Jacobian of mapping (J). Also compute
770  /// derivatives of dpsidx, dtestdx and J w.r.t. nodal coordinates.
772  const unsigned& ipt,
773  Shape& psi,
774  DShape& dpsidx,
775  RankFourTensor<double>& d_dpsidx_dX,
776  Shape& test,
777  DShape& dtestdx,
778  RankFourTensor<double>& d_dtestdx_dX,
779  DenseMatrix<double>& djacobian_dX) const;
780 
781  /// Compute the pressure shape and test functions and derivatives
782  /// w.r.t. global coords at local coordinate s.
783  /// Return Jacobian of mapping between local and global coordinates.
785  Shape& ppsi,
786  DShape& dppsidx,
787  Shape& ptest,
788  DShape& dptestdx) const;
789 
790  /// Unpin all pressure dofs
792 
793  /// Pin all nodal pressure dofs
795 
796  /// Unpin the proper nodal pressure dofs
798 
799 
800  public:
801  /// Constructor, no internal data points
804  {
805  }
806 
807 
808  /// Broken copy constructor
810  const GeneralisedNewtonianTTaylorHoodElement<DIM>& dummy) = delete;
811 
812  /// Broken assignment operator
813  /*void operator=(const GeneralisedNewtonianTTaylorHoodElement<DIM>&) =
814  delete;*/
815 
816  /// Number of values (pinned or dofs) required at node n. Can
817  /// be overwritten for hanging node version
818  inline virtual unsigned required_nvalue(const unsigned& n) const
819  {
820  return Initial_Nvalue[n];
821  }
822 
823  /// Test whether the pressure dof p_dof hanging or not?
824  // bool pressure_dof_is_hanging(const unsigned& p_dof)
825  // {return this->node_pt(Pconv[p_dof])->is_hanging(DIM);}
826 
827 
828  /// Pressure shape functions at local coordinate s
829  inline void pshape_nst(const Vector<double>& s, Shape& psi) const;
830 
831  /// Pressure shape and test functions at local coordinte s
832  inline void pshape_nst(const Vector<double>& s,
833  Shape& psi,
834  Shape& test) const;
835 
836  /// Which nodal value represents the pressure?
837  unsigned p_index_nst()
838  {
839  return DIM;
840  }
841 
842  /// Pointer to n_p-th pressure node
843  // Node* pressure_node_pt(const unsigned &n_p)
844  //{return this->Node_pt[Pconv[n_p]];}
845 
846  /// Return the local equation numbers for the pressure values.
847  inline int p_local_eqn(const unsigned& n) const
848  {
849  return this->nodal_local_eqn(Pconv[n], DIM);
850  }
851 
852  /// Access function for the pressure values at local pressure
853  /// node n_p (const version)
854  double p_nst(const unsigned& n_p) const
855  {
856  return this->nodal_value(Pconv[n_p], DIM);
857  }
858 
859  /// Access function for the pressure values at local pressure
860  /// node n_p (const version)
861  double p_nst(const unsigned& t, const unsigned& n_p) const
862  {
863  return this->nodal_value(t, Pconv[n_p], DIM);
864  }
865 
866  /// Set the value at which the pressure is stored in the nodes
867  int p_nodal_index_nst() const
868  {
869  return static_cast<int>(DIM);
870  }
871 
872  /// Return number of pressure values
873  unsigned npres_nst() const;
874 
875  /// Pin p_dof-th pressure dof and set it to value specified by p_value.
876  void fix_pressure(const unsigned& p_dof, const double& p_value)
877  {
878  this->node_pt(Pconv[p_dof])->pin(DIM);
879  this->node_pt(Pconv[p_dof])->set_value(DIM, p_value);
880  }
881 
882 
883  /// Add to the set \c paired_load_data pairs containing
884  /// - the pointer to a Data object
885  /// and
886  /// - the index of the value in that Data object
887  /// .
888  /// for all values (pressures, velocities) that affect the
889  /// load computed in the \c get_load(...) function.
890  void identify_load_data(
891  std::set<std::pair<Data*, unsigned>>& paired_load_data);
892 
893  /// Add to the set \c paired_pressure_data pairs
894  /// containing
895  /// - the pointer to a Data object
896  /// and
897  /// - the index of the value in that Data object
898  /// .
899  /// for all pressure values that affect the
900  /// load computed in the \c get_load(...) function.
902  std::set<std::pair<Data*, unsigned>>& paired_pressure_data);
903 
904  /// Redirect output to NavierStokesEquations output
905  void output(std::ostream& outfile)
906  {
908  }
909 
910  /// Redirect output to NavierStokesEquations output
911  void output(std::ostream& outfile, const unsigned& nplot)
912  {
914  }
915 
916  /// Redirect output to NavierStokesEquations output
917  void output(FILE* file_pt)
918  {
920  }
921 
922  /// Redirect output to NavierStokesEquations output
923  void output(FILE* file_pt, const unsigned& n_plot)
924  {
926  }
927 
928  /// Order of recovery shape functions for Z2 error estimation:
929  /// Same order as shape functions.
930  unsigned nrecovery_order()
931  {
932  return 2;
933  }
934 
935  /// Number of vertex nodes in the element
936  unsigned nvertex_node() const
937  {
938  return DIM + 1;
939  }
940 
941  /// Pointer to the j-th vertex node in the element
942  Node* vertex_node_pt(const unsigned& j) const
943  {
944  return node_pt(j);
945  }
946 
947 
948  /// Number of 'flux' terms for Z2 error estimation
949  unsigned num_Z2_flux_terms()
950  {
951  // DIM diagonal strain rates, DIM(DIM -1) /2 off diagonal rates
952  return DIM + (DIM * (DIM - 1)) / 2;
953  }
954 
955  /// Get 'flux' for Z2 error recovery: Upper triangular entries
956  /// in strain rate tensor.
958  {
959 #ifdef PARANOID
960  unsigned num_entries = DIM + (DIM * (DIM - 1)) / 2;
961  if (flux.size() < num_entries)
962  {
963  std::ostringstream error_message;
964  error_message << "The flux vector has the wrong number of entries, "
965  << flux.size() << ", whereas it should be at least "
966  << num_entries << std::endl;
967  throw OomphLibError(error_message.str(),
968  OOMPH_CURRENT_FUNCTION,
969  OOMPH_EXCEPTION_LOCATION);
970  }
971 #endif
972 
973  // Get strain rate matrix
974  DenseMatrix<double> strainrate(DIM);
975  this->strain_rate(s, strainrate);
976 
977  // Pack into flux Vector
978  unsigned icount = 0;
979 
980  // Start with diagonal terms
981  for (unsigned i = 0; i < DIM; i++)
982  {
983  flux[icount] = strainrate(i, i);
984  icount++;
985  }
986 
987  // Off diagonals row by row
988  for (unsigned i = 0; i < DIM; i++)
989  {
990  for (unsigned j = i + 1; j < DIM; j++)
991  {
992  flux[icount] = strainrate(i, j);
993  icount++;
994  }
995  }
996  }
997 
998  /// The number of "DOF types" that degrees of freedom in this element
999  /// are sub-divided into: Velocity and pressure.
1000  unsigned ndof_types() const
1001  {
1002  return DIM + 1;
1003  }
1004 
1005  /// Create a list of pairs for all unknowns in this element,
1006  /// so that the first entry in each pair contains the global equation
1007  /// number of the unknown, while the second one contains the number
1008  /// of the "DOF type" that this unknown is associated with.
1009  /// (Function can obviously only be called if the equation numbering
1010  /// scheme has been set up.) Velocity=0; Pressure=1
1012  std::list<std::pair<unsigned long, unsigned>>& dof_lookup_list) const
1013  {
1014  // number of nodes
1015  unsigned n_node = this->nnode();
1016 
1017  // temporary pair (used to store dof lookup prior to being added to list)
1018  std::pair<unsigned, unsigned> dof_lookup;
1019 
1020  // loop over the nodes
1021  for (unsigned n = 0; n < n_node; n++)
1022  {
1023  // find the number of Navier Stokes values at this node
1024  unsigned nv = this->required_nvalue(n);
1025 
1026  // loop over these values
1027  for (unsigned v = 0; v < nv; v++)
1028  {
1029  // determine local eqn number
1030  int local_eqn_number = this->nodal_local_eqn(n, v);
1031 
1032  // ignore pinned values - far away degrees of freedom resulting
1033  // from hanging nodes can be ignored since these are be dealt
1034  // with by the element containing their master nodes
1035  if (local_eqn_number >= 0)
1036  {
1037  // store dof lookup in temporary pair: Global equation number
1038  // is the first entry in pair
1039  dof_lookup.first = this->eqn_number(local_eqn_number);
1040 
1041  // set dof numbers: Dof number is the second entry in pair
1042  dof_lookup.second = v;
1043 
1044  // add to list
1045  dof_lookup_list.push_front(dof_lookup);
1046  }
1047  }
1048  }
1049  }
1050  };
1051 
1052 
1053  // Inline functions
1054 
1055  //==========================================================================
1056  /// 2D :
1057  /// Number of pressure values
1058  //==========================================================================
1059  template<>
1061  {
1062  return 3;
1063  }
1064 
1065  //==========================================================================
1066  /// 3D :
1067  /// Number of pressure values
1068  //==========================================================================
1069  template<>
1071  {
1072  return 4;
1073  }
1074 
1075 
1076  //==========================================================================
1077  /// 2D :
1078  /// Derivatives of the shape functions and test functions w.r.t to
1079  /// global (Eulerian) coordinates. Return Jacobian of mapping between
1080  /// local and global coordinates.
1081  //==========================================================================
1082  template<unsigned DIM>
1084  DIM>::dshape_and_dtest_eulerian_nst(const Vector<double>& s,
1085  Shape& psi,
1086  DShape& dpsidx,
1087  Shape& test,
1088  DShape& dtestdx) const
1089  {
1090  // Call the geometrical shape functions and derivatives
1091  double J = this->dshape_eulerian(s, psi, dpsidx);
1092  // Test functions are the shape functions
1093  test = psi;
1094  dtestdx = dpsidx;
1095  // Return the jacobian
1096  return J;
1097  }
1098 
1099 
1100  //==========================================================================
1101  /// Derivatives of the shape functions and test functions w.r.t to
1102  /// global (Eulerian) coordinates. Return Jacobian of mapping between
1103  /// local and global coordinates.
1104  //==========================================================================
1105  template<unsigned DIM>
1107  DIM>::dshape_and_dtest_eulerian_at_knot_nst(const unsigned& ipt,
1108  Shape& psi,
1109  DShape& dpsidx,
1110  Shape& test,
1111  DShape& dtestdx) const
1112  {
1113  // Call the geometrical shape functions and derivatives
1114  double J = this->dshape_eulerian_at_knot(ipt, psi, dpsidx);
1115  // Test functions are the shape functions
1116  test = psi;
1117  dtestdx = dpsidx;
1118  // Return the jacobian
1119  return J;
1120  }
1121 
1122  //==========================================================================
1123  /// 2D :
1124  /// Pressure shape and test functions and derivs w.r.t. to Eulerian coords.
1125  /// Return Jacobian of mapping between local and global coordinates.
1126  //==========================================================================
1127  template<>
1129  2>::dpshape_and_dptest_eulerian_nst(const Vector<double>& s,
1130  Shape& ppsi,
1131  DShape& dppsidx,
1132  Shape& ptest,
1133  DShape& dptestdx) const
1134  {
1135  ppsi[0] = s[0];
1136  ppsi[1] = s[1];
1137  ppsi[2] = 1.0 - s[0] - s[1];
1138 
1139  dppsidx(0, 0) = 1.0;
1140  dppsidx(0, 1) = 0.0;
1141 
1142  dppsidx(1, 0) = 0.0;
1143  dppsidx(1, 1) = 1.0;
1144 
1145  dppsidx(2, 0) = -1.0;
1146  dppsidx(2, 1) = -1.0;
1147 
1148  // Allocate memory for the inverse 2x2 jacobian
1149  DenseMatrix<double> inverse_jacobian(2);
1150 
1151 
1152  // Get the values of the shape functions and their local derivatives
1153  Shape psi(6);
1154  DShape dpsi(6, 2);
1155  dshape_local(s, psi, dpsi);
1156 
1157  // Now calculate the inverse jacobian
1158  const double det = local_to_eulerian_mapping(dpsi, inverse_jacobian);
1159 
1160  // Now set the values of the derivatives to be derivs w.r.t. to the
1161  // Eulerian coordinates
1162  transform_derivatives(inverse_jacobian, dppsidx);
1163 
1164  // Test functions are shape functions
1165  ptest = ppsi;
1166  dptestdx = dppsidx;
1167 
1168  // Return the determinant of the jacobian
1169  return det;
1170  }
1171 
1172 
1173  //==========================================================================
1174  /// 3D :
1175  /// Pressure shape and test functions and derivs w.r.t. to Eulerian coords.
1176  /// Return Jacobian of mapping between local and global coordinates.
1177  //==========================================================================
1178  template<>
1180  3>::dpshape_and_dptest_eulerian_nst(const Vector<double>& s,
1181  Shape& ppsi,
1182  DShape& dppsidx,
1183  Shape& ptest,
1184  DShape& dptestdx) const
1185  {
1186  ppsi[0] = s[0];
1187  ppsi[1] = s[1];
1188  ppsi[2] = s[2];
1189  ppsi[3] = 1.0 - s[0] - s[1] - s[2];
1190 
1191  dppsidx(0, 0) = 1.0;
1192  dppsidx(0, 1) = 0.0;
1193  dppsidx(0, 2) = 0.0;
1194 
1195  dppsidx(1, 0) = 0.0;
1196  dppsidx(1, 1) = 1.0;
1197  dppsidx(1, 2) = 0.0;
1198 
1199  dppsidx(2, 0) = 0.0;
1200  dppsidx(2, 1) = 0.0;
1201  dppsidx(2, 2) = 1.0;
1202 
1203  dppsidx(3, 0) = -1.0;
1204  dppsidx(3, 1) = -1.0;
1205  dppsidx(3, 2) = -1.0;
1206 
1207 
1208  // Get the values of the shape functions and their local derivatives
1209  Shape psi(10);
1210  DShape dpsi(10, 3);
1211  dshape_local(s, psi, dpsi);
1212 
1213  // Allocate memory for the inverse 3x3 jacobian
1214  DenseMatrix<double> inverse_jacobian(3);
1215 
1216  // Now calculate the inverse jacobian
1217  const double det = local_to_eulerian_mapping(dpsi, inverse_jacobian);
1218 
1219  // Now set the values of the derivatives to be derivs w.r.t. to the
1220  // Eulerian coordinates
1221  transform_derivatives(inverse_jacobian, dppsidx);
1222 
1223  // Test functions are shape functions
1224  ptest = ppsi;
1225  dptestdx = dppsidx;
1226 
1227  // Return the determinant of the jacobian
1228  return det;
1229  }
1230 
1231 
1232  //==========================================================================
1233  /// 2D :
1234  /// Define the shape functions (psi) and test functions (test) and
1235  /// their derivatives w.r.t. global coordinates (dpsidx and dtestdx)
1236  /// and return Jacobian of mapping (J). Additionally compute the
1237  /// derivatives of dpsidx, dtestdx and J w.r.t. nodal coordinates.
1238  ///
1239  /// Galerkin: Test functions = shape functions
1240  //==========================================================================
1241  template<>
1244  const unsigned& ipt,
1245  Shape& psi,
1246  DShape& dpsidx,
1247  RankFourTensor<double>& d_dpsidx_dX,
1248  Shape& test,
1249  DShape& dtestdx,
1250  RankFourTensor<double>& d_dtestdx_dX,
1251  DenseMatrix<double>& djacobian_dX) const
1252  {
1253  // Call the geometrical shape functions and derivatives
1254  const double J = this->dshape_eulerian_at_knot(
1255  ipt, psi, dpsidx, djacobian_dX, d_dpsidx_dX);
1256 
1257  // Loop over the test functions and derivatives and set them equal to the
1258  // shape functions
1259  for (unsigned i = 0; i < 6; i++)
1260  {
1261  test[i] = psi[i];
1262 
1263  for (unsigned k = 0; k < 2; k++)
1264  {
1265  dtestdx(i, k) = dpsidx(i, k);
1266 
1267  for (unsigned p = 0; p < 2; p++)
1268  {
1269  for (unsigned q = 0; q < 6; q++)
1270  {
1271  d_dtestdx_dX(p, q, i, k) = d_dpsidx_dX(p, q, i, k);
1272  }
1273  }
1274  }
1275  }
1276 
1277  // Return the jacobian
1278  return J;
1279  }
1280 
1281 
1282  //==========================================================================
1283  /// 3D :
1284  /// Define the shape functions (psi) and test functions (test) and
1285  /// their derivatives w.r.t. global coordinates (dpsidx and dtestdx)
1286  /// and return Jacobian of mapping (J). Additionally compute the
1287  /// derivatives of dpsidx, dtestdx and J w.r.t. nodal coordinates.
1288  ///
1289  /// Galerkin: Test functions = shape functions
1290  //==========================================================================
1291  template<>
1294  const unsigned& ipt,
1295  Shape& psi,
1296  DShape& dpsidx,
1297  RankFourTensor<double>& d_dpsidx_dX,
1298  Shape& test,
1299  DShape& dtestdx,
1300  RankFourTensor<double>& d_dtestdx_dX,
1301  DenseMatrix<double>& djacobian_dX) const
1302  {
1303  // Call the geometrical shape functions and derivatives
1304  const double J = this->dshape_eulerian_at_knot(
1305  ipt, psi, dpsidx, djacobian_dX, d_dpsidx_dX);
1306 
1307  // Loop over the test functions and derivatives and set them equal to the
1308  // shape functions
1309  for (unsigned i = 0; i < 10; i++)
1310  {
1311  test[i] = psi[i];
1312 
1313  for (unsigned k = 0; k < 3; k++)
1314  {
1315  dtestdx(i, k) = dpsidx(i, k);
1316 
1317  for (unsigned p = 0; p < 3; p++)
1318  {
1319  for (unsigned q = 0; q < 10; q++)
1320  {
1321  d_dtestdx_dX(p, q, i, k) = d_dpsidx_dX(p, q, i, k);
1322  }
1323  }
1324  }
1325  }
1326 
1327  // Return the jacobian
1328  return J;
1329  }
1330 
1331 
1332  //==========================================================================
1333  /// 2D :
1334  /// Pressure shape functions
1335  //==========================================================================
1336  template<>
1338  const Vector<double>& s, Shape& psi) const
1339  {
1340  psi[0] = s[0];
1341  psi[1] = s[1];
1342  psi[2] = 1.0 - s[0] - s[1];
1343  }
1344 
1345  //==========================================================================
1346  /// 3D :
1347  /// Pressure shape functions
1348  //==========================================================================
1349  template<>
1351  const Vector<double>& s, Shape& psi) const
1352  {
1353  psi[0] = s[0];
1354  psi[1] = s[1];
1355  psi[2] = s[2];
1356  psi[3] = 1.0 - s[0] - s[1] - s[2];
1357  }
1358 
1359 
1360  //==========================================================================
1361  /// Pressure shape and test functions
1362  //==========================================================================
1363  template<unsigned DIM>
1365  const Vector<double>& s, Shape& psi, Shape& test) const
1366  {
1367  // Call the pressure shape functions
1368  this->pshape_nst(s, psi);
1369  // Test functions are shape functions
1370  test = psi;
1371  }
1372 
1373 
1374  //=======================================================================
1375  /// Face geometry of the 2D Taylor_Hood elements
1376  //=======================================================================
1377  template<>
1379  : public virtual TElement<1, 3>
1380  {
1381  public:
1382  /// Constructor: Call constructor of base
1383  FaceGeometry() : TElement<1, 3>() {}
1384  };
1385 
1386 
1387  //=======================================================================
1388  /// Face geometry of the 3D Taylor_Hood elements
1389  //=======================================================================
1390  template<>
1392  : public virtual TElement<2, 3>
1393  {
1394  public:
1395  /// Constructor: Call constructor of base
1396  FaceGeometry() : TElement<2, 3>() {}
1397  };
1398 
1399 
1400  //=======================================================================
1401  /// Face geometry of the FaceGeometry of the 2D TaylorHood elements
1402  //=======================================================================
1403  template<>
1405  : public virtual PointElement
1406  {
1407  public:
1409  };
1410 
1411 
1412  //=======================================================================
1413  /// Face geometry of the FaceGeometry of the 3D Crouzeix_Raviart elements
1414  //=======================================================================
1415  template<>
1417  : public virtual TElement<1, 3>
1418  {
1419  public:
1420  FaceGeometry() : TElement<1, 3>() {}
1421  };
1422 
1423 
1424 } // namespace oomph
1425 
1426 #endif
static char t char * s
Definition: cfortran.h:568
cstr elem_len * i
Definition: cfortran.h:603
char t
Definition: cfortran.h:568
A Class for the derivatives of shape functions The class design is essentially the same as Shape,...
Definition: shape.h:278
A class that represents a collection of data; each Data object may contain many different individual ...
Definition: nodes.h:86
void pin(const unsigned &i)
Pin the i-th stored variable.
Definition: nodes.h:385
void set_value(const unsigned &i, const double &value_)
Set the i-th stored data value to specified value. The only reason that we require an explicit set fu...
Definition: nodes.h:271
double value(const unsigned &i) const
Return i-th stored value. This function is not virtual so that it can be inlined. This means that if ...
Definition: nodes.h:293
Base class for finite elements that can compute the quantities that are required for the Z2 error est...
//////////////////////////////////////////////////////////////////// ////////////////////////////////...
Definition: elements.h:5002
Node *& node_pt(const unsigned &n)
Return a pointer to the local node n.
Definition: elements.h:2179
double nodal_value(const unsigned &n, const unsigned &i) const
Return the i-th value stored at local node n. Produces suitably interpolated values for hanging nodes...
Definition: elements.h:2597
int nodal_local_eqn(const unsigned &n, const unsigned &i) const
Return the local equation number corresponding to the i-th value at the n-th local node.
Definition: elements.h:1436
unsigned nnode() const
Return the number of nodes.
Definition: elements.h:2214
unsigned add_internal_data(Data *const &data_pt, const bool &fd=true)
Add a (pointer to an) internal data object to the element and return the index required to obtain it ...
Definition: elements.cc:67
unsigned long eqn_number(const unsigned &ieqn_local) const
Return the global equation number corresponding to the ieqn_local-th local equation number.
Definition: elements.h:708
int local_eqn_number(const unsigned long &ieqn_global) const
Return the local equation number corresponding to the ieqn_global-th global equation number....
Definition: elements.h:730
Data *& internal_data_pt(const unsigned &i)
Return a pointer to i-th internal data object.
Definition: elements.h:622
int internal_local_eqn(const unsigned &i, const unsigned &j) const
Return the local equation number corresponding to the j-th value stored at the i-th internal data.
Definition: elements.h:267
//////////////////////////////////////////////////////////////////// ////////////////////////////////...
void output(std::ostream &outfile)
Output function: x,y,[z],u,v,[w],p in tecplot format. Default number of plot points.
void strain_rate(const Vector< double > &s, DenseMatrix< double > &strain_rate) const
Strain-rate tensor: 1/2 (du_i/dx_j + du_j/dx_i)
void full_output(std::ostream &outfile)
Full output function: x,y,[z],u,v,[w],p,du/dt,dv/dt,[dw/dt],dissipation in tecplot format....
///////////////////////////////////////////////////////////////////////////
void output(FILE *file_pt)
Redirect output to NavierStokesEquations output.
void identify_load_data(std::set< std::pair< Data *, unsigned >> &paired_load_data)
Add to the set paired_load_data pairs of pointers to data objects and unsignedegers that index the va...
unsigned num_Z2_flux_terms()
Number of 'flux' terms for Z2 error estimation.
void output(std::ostream &outfile)
Redirect output to NavierStokesEquations output.
void output(std::ostream &outfile, const unsigned &nplot)
Redirect output to NavierStokesEquations output.
void output(FILE *file_pt, const unsigned &n_plot)
Redirect output to NavierStokesEquations output.
Node * vertex_node_pt(const unsigned &j) const
Pointer to the j-th vertex node in the element.
unsigned nvertex_node() const
Number of vertex nodes in the element.
void fix_pressure(const unsigned &p_dof, const double &p_value)
Pin p_dof-th pressure dof and set it to value specified by p_value.
double dshape_and_dtest_eulerian_nst(const Vector< double > &s, Shape &psi, DShape &dpsidx, Shape &test, DShape &dtestdx) const
Velocity shape and test functions and their derivs w.r.t. to global coords at local coordinate s (tak...
double dpshape_and_dptest_eulerian_nst(const Vector< double > &s, Shape &ppsi, DShape &dppsidx, Shape &ptest, DShape &dptestdx) const
Pressure shape and test functions and their derivs w.r.t. to global coords at local coordinate s (tak...
void identify_pressure_data(std::set< std::pair< Data *, unsigned >> &paired_pressure_data)
Add to the set paired_pressure_data pairs containing.
double p_nst(const unsigned &t, const unsigned &i) const
Return the pressure values at internal dof i_internal (Discontinous pressure interpolation – no need ...
int p_local_eqn(const unsigned &n) const
Return the local equation numbers for the pressure values.
double dshape_and_dtest_eulerian_at_knot_nst(const unsigned &ipt, Shape &psi, DShape &dpsidx, Shape &test, DShape &dtestdx) const
Velocity shape and test functions and their derivs w.r.t. to global coords at ipt-th integation point...
void full_output(std::ostream &outfile, const unsigned &nplot)
Full output function: x,y,[z],u,v,[w],p,du/dt,dv/dt,[dw/dt],dissipation in tecplot format....
unsigned ndof_types() const
The number of "DOF types" that degrees of freedom in this element are sub-divided into: Velocity and ...
void pshape_nst(const Vector< double > &s, Shape &psi) const
Pressure shape functions at local coordinate s.
void pshape_nst(const Vector< double > &s, Shape &psi, Shape &test) const
Pressure shape and test functions at local coordinte s.
double p_nst(const unsigned &i) const
Return the pressure values at internal dof i_internal (Discontinous pressure interpolation – no need ...
virtual unsigned required_nvalue(const unsigned &n) const
Broken assignment operator.
void full_output(std::ostream &outfile)
Full output function: x,y,[z],u,v,[w],p,du/dt,dv/dt,[dw/dt],dissipation in tecplot format....
unsigned P_nst_internal_index
Internal index that indicates at which internal datum the pressure is stored.
GeneralisedNewtonianTCrouzeixRaviartElement()
Constructor, there are DIM+1 internal values (for the pressure)
void get_dof_numbers_for_unknowns(std::list< std::pair< unsigned long, unsigned >> &dof_lookup_list) const
Create a list of pairs for all unknowns in this element, so that the first entry in each pair contain...
GeneralisedNewtonianTCrouzeixRaviartElement(const GeneralisedNewtonianTCrouzeixRaviartElement< DIM > &dummy)=delete
Broken copy constructor.
unsigned nrecovery_order()
Order of recovery shape functions for Z2 error estimation: Same order as unenriched shape functions.
void get_Z2_flux(const Vector< double > &s, Vector< double > &flux)
Get 'flux' for Z2 error recovery: Upper triangular entries in strain rate tensor.
///////////////////////////////////////////////////////////////////////// ///////////////////////////...
double p_nst(const unsigned &n_p) const
Access function for the pressure values at local pressure node n_p (const version)
void identify_load_data(std::set< std::pair< Data *, unsigned >> &paired_load_data)
Add to the set paired_load_data pairs containing.
static const unsigned Initial_Nvalue[]
Static array of ints to hold number of variables at node.
void fix_pressure(const unsigned &p_dof, const double &p_value)
Pin p_dof-th pressure dof and set it to value specified by p_value.
unsigned npres_nst() const
Return number of pressure values.
void output(std::ostream &outfile, const unsigned &nplot)
Redirect output to NavierStokesEquations output.
int p_local_eqn(const unsigned &n) const
Pointer to n_p-th pressure node.
double dshape_and_dtest_eulerian_nst(const Vector< double > &s, Shape &psi, DShape &dpsidx, Shape &test, DShape &dtestdx) const
Velocity shape and test functions and their derivs w.r.t. to global coords at local coordinate s (tak...
void output(FILE *file_pt)
Redirect output to NavierStokesEquations output.
void get_dof_numbers_for_unknowns(std::list< std::pair< unsigned long, unsigned >> &dof_lookup_list) const
Create a list of pairs for all unknowns in this element, so that the first entry in each pair contain...
void unpin_proper_nodal_pressure_dofs()
Unpin the proper nodal pressure dofs.
unsigned p_index_nst()
Which nodal value represents the pressure?
void pshape_nst(const Vector< double > &s, Shape &psi) const
Test whether the pressure dof p_dof hanging or not?
virtual unsigned required_nvalue(const unsigned &n) const
Broken assignment operator.
void get_Z2_flux(const Vector< double > &s, Vector< double > &flux)
Get 'flux' for Z2 error recovery: Upper triangular entries in strain rate tensor.
double dshape_and_dtest_eulerian_at_knot_nst(const unsigned &ipt, Shape &psi, DShape &dpsidx, Shape &test, DShape &dtestdx) const
Velocity shape and test functions and their derivs w.r.t. to global coords at local coordinate s (tak...
static const unsigned Pconv[]
Static array of ints to hold conversion from pressure node numbers to actual node numbers.
unsigned ndof_types() const
The number of "DOF types" that degrees of freedom in this element are sub-divided into: Velocity and ...
void output(std::ostream &outfile)
Redirect output to NavierStokesEquations output.
double p_nst(const unsigned &t, const unsigned &n_p) const
Access function for the pressure values at local pressure node n_p (const version)
Node * vertex_node_pt(const unsigned &j) const
Pointer to the j-th vertex node in the element.
double dshape_and_dtest_eulerian_at_knot_nst(const unsigned &ipt, Shape &psi, DShape &dpsidx, RankFourTensor< double > &d_dpsidx_dX, Shape &test, DShape &dtestdx, RankFourTensor< double > &d_dtestdx_dX, DenseMatrix< double > &djacobian_dX) const
Shape/test functions and derivs w.r.t. to global coords at integration point ipt; return Jacobian of ...
GeneralisedNewtonianTTaylorHoodElement(const GeneralisedNewtonianTTaylorHoodElement< DIM > &dummy)=delete
Broken copy constructor.
unsigned nvertex_node() const
Number of vertex nodes in the element.
virtual double dpshape_and_dptest_eulerian_nst(const Vector< double > &s, Shape &ppsi, DShape &dppsidx, Shape &ptest, DShape &dptestdx) const
Compute the pressure shape and test functions and derivatives w.r.t. global coords at local coordinat...
void output(FILE *file_pt, const unsigned &n_plot)
Redirect output to NavierStokesEquations output.
unsigned nrecovery_order()
Order of recovery shape functions for Z2 error estimation: Same order as shape functions.
int p_nodal_index_nst() const
Set the value at which the pressure is stored in the nodes.
unsigned num_Z2_flux_terms()
Number of 'flux' terms for Z2 error estimation.
void identify_pressure_data(std::set< std::pair< Data *, unsigned >> &paired_pressure_data)
Add to the set paired_pressure_data pairs containing.
Nodes are derived from Data, but, in addition, have a definite (Eulerian) position in a space of a gi...
Definition: nodes.h:906
An OomphLibError object which should be thrown when an run-time error is encountered....
/////////////////////////////////////////////////////////////////////// /////////////////////////////...
Definition: elements.h:3443
////////////////////////////////////////////////////////////////// //////////////////////////////////...
Definition: matrices.h:1701
A Class for shape functions. In simple cases, the shape functions have only one index that can be tho...
Definition: shape.h:76
//////////////////////////////////////////////////////////////////// ////////////////////////////////...
Definition: Telements.h:3570
General TElement class.
Definition: Telements.h:1208
//////////////////////////////////////////////////////////////////// ////////////////////////////////...