axisym_advection_diffusion_elements.cc
Go to the documentation of this file.
1 // LIC// ====================================================================
2 // LIC// This file forms part of oomph-lib, the object-oriented,
3 // LIC// multi-physics finite-element library, available
4 // LIC// at http://www.oomph-lib.org.
5 // LIC//
6 // LIC// Copyright (C) 2006-2024 Matthias Heil and Andrew Hazel
7 // LIC//
8 // LIC// This library is free software; you can redistribute it and/or
9 // LIC// modify it under the terms of the GNU Lesser General Public
10 // LIC// License as published by the Free Software Foundation; either
11 // LIC// version 2.1 of the License, or (at your option) any later version.
12 // LIC//
13 // LIC// This library is distributed in the hope that it will be useful,
14 // LIC// but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // LIC// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
16 // LIC// Lesser General Public License for more details.
17 // LIC//
18 // LIC// You should have received a copy of the GNU Lesser General Public
19 // LIC// License along with this library; if not, write to the Free Software
20 // LIC// Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
21 // LIC// 02110-1301 USA.
22 // LIC//
23 // LIC// The authors may be contacted at oomph-lib@maths.man.ac.uk.
24 // LIC//
25 // LIC//====================================================================
26 // Non-inline functions for Advection Diffusion elements in a cylindrical
27 // coordinate system
29 
30 namespace oomph
31 {
32  // 2D Steady Axisymmetric Advection Diffusion elements
33 
34  /// Default value for Peclet number
36 
37  /// Default Diffusion coefficient
39 
40 
41  //======================================================================
42  /// Compute element residual Vector and/or element Jacobian matrix
43  ///
44  /// flag=1: compute both
45  /// flag=0: compute only residual Vector
46  ///
47  /// Pure version without hanging nodes
48  //======================================================================
51  Vector<double>& residuals,
52  DenseMatrix<double>& jacobian,
53  DenseMatrix<double>& mass_matrix,
54  unsigned flag)
55  {
56  // Find out how many nodes there are
57  const unsigned n_node = nnode();
58 
59  // Get the nodal index at which the unknown is stored
60  const unsigned u_nodal_index = u_index_axi_adv_diff();
61 
62  // Set up memory for the shape and test functions
63  Shape psi(n_node), test(n_node);
64  DShape dpsidx(n_node, 2), dtestdx(n_node, 2);
65 
66  // Set the value of n_intpt
67  const unsigned n_intpt = integral_pt()->nweight();
68 
69  // Set the Vector to hold local coordinates
70  Vector<double> s(2);
71 
72  // Get Physical Variables from Element
73  const double scaled_peclet = pe();
74 
75  // Get peclet number multiplied by Strouhal number
76  const double scaled_peclet_st = pe_st();
77 
78  // Integers used to store the local equation number and local unknown
79  // indices for the residuals and jacobians
80  int local_eqn = 0, local_unknown = 0;
81 
82  // Loop over the integration points
83  for (unsigned ipt = 0; ipt < n_intpt; ipt++)
84  {
85  // Assign values of s
86  for (unsigned i = 0; i < 2; i++) s[i] = integral_pt()->knot(ipt, i);
87 
88  // Get the integral weight
89  double w = integral_pt()->weight(ipt);
90 
91  // Call the derivatives of the shape and test functions
93  ipt, psi, dpsidx, test, dtestdx);
94 
95  // Premultiply the weights and the Jacobian
96  double W = w * J;
97 
98  // Calculate local values of the solution and its derivatives
99  // Allocate
100  double interpolated_u = 0.0;
101  double dudt = 0.0;
103  Vector<double> interpolated_dudx(2, 0.0);
104  Vector<double> mesh_velocity(2, 0.0);
105 
106  // Calculate function value and derivatives:
107  //-----------------------------------------
108  // Loop over nodes
109  for (unsigned l = 0; l < n_node; l++)
110  {
111  // Get the value at the node
112  double u_value = raw_nodal_value(l, u_nodal_index);
113  interpolated_u += u_value * psi(l);
114  dudt += du_dt_axi_adv_diff(l) * psi(l);
115  // Loop over the two coordinates directions
116  for (unsigned j = 0; j < 2; j++)
117  {
118  interpolated_x[j] += raw_nodal_position(l, j) * psi(l);
119  interpolated_dudx[j] += u_value * dpsidx(l, j);
120  }
121  }
122 
123  if (!ALE_is_disabled)
124  {
125  for (unsigned l = 0; l < n_node; l++)
126  {
127  for (unsigned j = 0; j < 2; j++)
128  {
129  mesh_velocity[j] += raw_dnodal_position_dt(l, j) * psi(l);
130  }
131  }
132  }
133 
134 
135  // Get source function
136  //-------------------
137  double source;
139 
140 
141  // Get wind three potential components
142  //---------------------------------------
143  Vector<double> wind(3);
145 
146  // Get the diffusion
147  double diff = this->d();
148 
149  // r is the first position component
150  double r = interpolated_x[0];
151 
152  // TEMPERATURE EQUATION (Neglected viscous dissipation)
153  // Assemble residuals and Jacobian
154  //--------------------------------
155 
156  // Loop over the test functions
157  for (unsigned l = 0; l < n_node; l++)
158  {
159  // Set the local equation number
160  local_eqn = nodal_local_eqn(l, u_nodal_index);
161 
162  /*IF it's not a boundary condition*/
163  if (local_eqn >= 0)
164  {
165  // Add body force/source term
166  residuals[local_eqn] -=
167  (scaled_peclet_st * dudt + source) * r * test(l) * W;
168 
169  // The Advection Diffusion bit itself
170  residuals[local_eqn] -=
171  // radial terms
172  (interpolated_dudx[0] *
173  (scaled_peclet * wind[0] * test(l) + diff * dtestdx(l, 0)) +
174  // azimuthal terms
175  (interpolated_dudx[1] *
176  (scaled_peclet * wind[1] * test(l) + diff * dtestdx(l, 1)))) *
177  r * W;
178 
179  if (!ALE_is_disabled)
180  {
181  residuals[local_eqn] += scaled_peclet_st *
182  (mesh_velocity[0] * interpolated_dudx[0] +
183  mesh_velocity[1] * interpolated_dudx[1]) *
184  test(l) * r * W;
185  }
186 
187  // Calculate the jacobian
188  //-----------------------
189  if (flag)
190  {
191  // Loop over the velocity shape functions again
192  for (unsigned l2 = 0; l2 < n_node; l2++)
193  {
194  // Set the number of the unknown
195  local_unknown = nodal_local_eqn(l2, u_nodal_index);
196 
197  // If at a non-zero degree of freedom add in the entry
198  if (local_unknown >= 0)
199  {
200  // Mass matrix term
201  jacobian(local_eqn, local_unknown) -=
202  scaled_peclet_st * test(l) * psi(l2) *
203  node_pt(l2)->time_stepper_pt()->weight(1, 0) * r * W;
204 
205  // add the mass matrix term
206  if (flag == 2)
207  {
208  mass_matrix(local_eqn, local_unknown) +=
209  scaled_peclet_st * test(l) * psi(l2) * r * W;
210  }
211 
212  // Assemble Jacobian term
213  jacobian(local_eqn, local_unknown) -=
214  // radial terms
215  (dpsidx(l2, 0) * (scaled_peclet * wind[0] * test(l) +
216  diff * dtestdx(l, 0)) +
217  // azimuthal terms
218  (dpsidx(l2, 1) * (scaled_peclet * wind[1] * test(l) +
219  diff * dtestdx(l, 1)))) *
220  r * W;
221 
222  if (!ALE_is_disabled)
223  {
224  jacobian(local_eqn, local_unknown) +=
225  scaled_peclet_st *
226  (mesh_velocity[0] * dpsidx(l2, 0) +
227  mesh_velocity[1] * dpsidx(l2, 1)) *
228  test(l) * r * W;
229  }
230  }
231  }
232  }
233  }
234  }
235 
236 
237  } // End of loop over integration points
238  }
239 
240 
241  //======================================================================
242  /// Self-test: Return 0 for OK
243  //======================================================================
244  // template <unsigned DIM>
246  {
247  bool passed = true;
248 
249  // Check lower-level stuff
250  if (FiniteElement::self_test() != 0)
251  {
252  passed = false;
253  }
254 
255  // Return verdict
256  if (passed)
257  {
258  return 0;
259  }
260  else
261  {
262  return 1;
263  }
264  }
265 
266 
267  //======================================================================
268  /// Output function:
269  ///
270  /// r,z,u,w_r,w_z
271  ///
272  /// nplot points in each coordinate direction
273  //======================================================================
274  void AxisymAdvectionDiffusionEquations::output(std::ostream& outfile,
275  const unsigned& nplot)
276  {
277  // Vector of local coordinates
278  Vector<double> s(2);
279 
280  // Tecplot header info
281  outfile << tecplot_zone_string(nplot);
282 
283  // Loop over plot points
284  unsigned num_plot_points = nplot_points(nplot);
285  for (unsigned iplot = 0; iplot < num_plot_points; iplot++)
286  {
287  // Get local coordinates of plot point
288  get_s_plot(iplot, nplot, s);
289 
290  // Get Eulerian coordinate of plot point
291  Vector<double> x(2);
292  interpolated_x(s, x);
293 
294  for (unsigned i = 0; i < 2; i++)
295  {
296  outfile << x[i] << " ";
297  }
298 
299  // Output concentration
300  outfile << this->interpolated_u_axi_adv_diff(s) << " ";
301 
302  // Get the wind
303  Vector<double> wind(3);
304  // Dummy ipt argument needed... ?
305  unsigned ipt = 0;
306  get_wind_axi_adv_diff(ipt, s, x, wind);
307  for (unsigned i = 0; i < 3; i++)
308  {
309  outfile << wind[i] << " ";
310  }
311  outfile << std::endl;
312  }
313 
314  // Write tecplot footer (e.g. FE connectivity lists)
315  write_tecplot_zone_footer(outfile, nplot);
316  }
317 
318 
319  //======================================================================
320  /// C-style output function:
321  ///
322  /// r,z,u
323  ///
324  /// nplot points in each coordinate direction
325  //======================================================================
326  // template <unsigned DIM>
328  const unsigned& nplot)
329  {
330  // Vector of local coordinates
331  Vector<double> s(2);
332 
333  // Tecplot header info
334  fprintf(file_pt, "%s", tecplot_zone_string(nplot).c_str());
335 
336  // Loop over plot points
337  unsigned num_plot_points = nplot_points(nplot);
338  for (unsigned iplot = 0; iplot < num_plot_points; iplot++)
339  {
340  // Get local coordinates of plot point
341  get_s_plot(iplot, nplot, s);
342 
343  for (unsigned i = 0; i < 2; i++)
344  {
345  fprintf(file_pt, "%g ", interpolated_x(s, i));
346  }
347 
348  fprintf(file_pt, "%g \n", interpolated_u_axi_adv_diff(s));
349  }
350 
351  // Write tecplot footer (e.g. FE connectivity lists)
352  write_tecplot_zone_footer(file_pt, nplot);
353  }
354 
355  //======================================================================
356  /// Output exact solution
357  ///
358  /// Solution is provided via function pointer.
359  /// Plot at a given number of plot points.
360  ///
361  /// r,z,u_exact
362  //======================================================================
363  // template <unsigned DIM>
365  std::ostream& outfile,
366  const unsigned& nplot,
368  {
369  // Vector of local coordinates
370  Vector<double> s(2);
371 
372  // Vector for coordintes
373  Vector<double> x(2);
374 
375  // Tecplot header info
376  outfile << tecplot_zone_string(nplot);
377 
378  // Exact solution Vector (here a scalar)
379  Vector<double> exact_soln(1);
380 
381  // Loop over plot points
382  unsigned num_plot_points = nplot_points(nplot);
383  for (unsigned iplot = 0; iplot < num_plot_points; iplot++)
384  {
385  // Get local coordinates of plot point
386  get_s_plot(iplot, nplot, s);
387 
388  // Get x position as Vector
389  interpolated_x(s, x);
390 
391  // Get exact solution at this point
392  (*exact_soln_pt)(x, exact_soln);
393 
394  // Output x,y,...,u_exact
395  for (unsigned i = 0; i < 2; i++)
396  {
397  outfile << x[i] << " ";
398  }
399  outfile << exact_soln[0] << std::endl;
400  }
401 
402  // Write tecplot footer (e.g. FE connectivity lists)
403  write_tecplot_zone_footer(outfile, nplot);
404  }
405 
406 
407  //======================================================================
408  /// Validate against exact solution
409  ///
410  /// Solution is provided via function pointer.
411  /// Plot error at a given number of plot points.
412  ///
413  //======================================================================
414  // template <unsigned DIM>
416  std::ostream& outfile,
418  double& error,
419  double& norm)
420  {
421  // Initialise
422  error = 0.0;
423  norm = 0.0;
424 
425  // Vector of local coordinates
426  Vector<double> s(2);
427 
428  // Vector for coordintes
429  Vector<double> x(2);
430 
431  // Find out how many nodes there are in the element
432  unsigned n_node = nnode();
433 
434  Shape psi(n_node);
435 
436  // Set the value of n_intpt
437  unsigned n_intpt = integral_pt()->nweight();
438 
439  // Tecplot header info
440  outfile << "ZONE" << std::endl;
441 
442  // Exact solution Vector (here a scalar)
443  Vector<double> exact_soln(1);
444 
445  // Loop over the integration points
446  for (unsigned ipt = 0; ipt < n_intpt; ipt++)
447  {
448  // Assign values of s
449  for (unsigned i = 0; i < 2; i++)
450  {
451  s[i] = integral_pt()->knot(ipt, i);
452  }
453 
454  // Get the integral weight
455  double w = integral_pt()->weight(ipt);
456 
457  // Get jacobian of mapping
458  double J = J_eulerian(s);
459 
460  // Premultiply the weights and the Jacobian
461  double W = w * J;
462 
463  // Get x position as Vector
464  interpolated_x(s, x);
465 
466  // Get FE function value
467  double u_fe = interpolated_u_axi_adv_diff(s);
468 
469  // Get exact solution at this point
470  (*exact_soln_pt)(x, exact_soln);
471 
472  // Output x,y,...,error
473  for (unsigned i = 0; i < 2; i++)
474  {
475  outfile << x[i] << " ";
476  }
477  outfile << exact_soln[0] << " " << exact_soln[0] - u_fe << std::endl;
478 
479  // Add to error and norm
480  norm += exact_soln[0] * exact_soln[0] * x[0] * W;
481  error += (exact_soln[0] - u_fe) * (exact_soln[0] - u_fe) * x[0] * W;
482  }
483  }
484 
485 
486  //======================================================================
487  // Set the data for the number of Variables at each node
488  //======================================================================
489  template<unsigned NNODE_1D>
491 
492  //====================================================================
493  // Force build of templates
494  //====================================================================
495 
499 
500 
501 } // namespace oomph
static char t char * s
Definition: cfortran.h:568
cstr elem_len * i
Definition: cfortran.h:603
virtual void fill_in_generic_residual_contribution_axi_adv_diff(Vector< double > &residuals, DenseMatrix< double > &jacobian, DenseMatrix< double > &mass_matrix, unsigned flag)
Add the element's contribution to its residual vector only (if flag=and/or element Jacobian matrix.
virtual void get_wind_axi_adv_diff(const unsigned &ipt, const Vector< double > &s, const Vector< double > &x, Vector< double > &wind) const
Get wind at (Eulerian) position x and/or local coordinate s. This function is virtual to allow overlo...
virtual unsigned u_index_axi_adv_diff() const
Broken assignment operator.
double du_dt_axi_adv_diff(const unsigned &n) const
du/dt at local node n. Uses suitably interpolated value for hanging nodes.
virtual double dshape_and_dtest_eulerian_at_knot_axi_adv_diff(const unsigned &ipt, Shape &psi, DShape &dpsidx, Shape &test, DShape &dtestdx) const =0
Shape/test functions and derivs w.r.t. to global coords at integration point ipt; return Jacobian of ...
void output_fct(std::ostream &outfile, const unsigned &nplot, FiniteElement::SteadyExactSolutionFctPt exact_soln_pt)
Output exact soln: r,z,u_exact at nplot^2 plot points.
static double Default_peclet_number
Static default value for the Peclet number.
double interpolated_u_axi_adv_diff(const Vector< double > &s) const
Return FE representation of function value u(s) at local coordinate s.
void compute_error(std::ostream &outfile, FiniteElement::SteadyExactSolutionFctPt exact_soln_pt, double &error, double &norm)
Get error against and norm of exact solution.
const double & d() const
Peclet number multiplied by Strouhal number.
static double Default_diffusion_parameter
Static default value for the Peclet number.
bool ALE_is_disabled
Boolean flag to indicate whether AlE formulation is disable.
virtual void get_source_axi_adv_diff(const unsigned &ipt, const Vector< double > &x, double &source) const
Get source term at (Eulerian) position x. This function is virtual to allow overloading in multi-phys...
void output(std::ostream &outfile)
Output with default number of plot points.
const double & pe_st() const
Peclet number multiplied by Strouhal number.
A Class for the derivatives of shape functions The class design is essentially the same as Shape,...
Definition: shape.h:278
TimeStepper *& time_stepper_pt()
Return the pointer to the timestepper.
Definition: nodes.h:238
virtual double J_eulerian(const Vector< double > &s) const
Return the Jacobian of mapping from local to global coordinates at local position s.
Definition: elements.cc:4133
Node *& node_pt(const unsigned &n)
Return a pointer to the local node n.
Definition: elements.h:2179
virtual std::string tecplot_zone_string(const unsigned &nplot) const
Return string for tecplot zone header (when plotting nplot points in each "coordinate direction")
Definition: elements.h:3165
virtual double interpolated_x(const Vector< double > &s, const unsigned &i) const
Return FE interpolated coordinate x[i] at local coordinate s.
Definition: elements.cc:3992
int nodal_local_eqn(const unsigned &n, const unsigned &i) const
Return the local equation number corresponding to the i-th value at the n-th local node.
Definition: elements.h:1436
unsigned nnode() const
Return the number of nodes.
Definition: elements.h:2214
void(* SteadyExactSolutionFctPt)(const Vector< double > &, Vector< double > &)
Function pointer for function that computes vector-valued steady "exact solution" as .
Definition: elements.h:1763
Integral *const & integral_pt() const
Return the pointer to the integration scheme (const version)
Definition: elements.h:1967
virtual void get_s_plot(const unsigned &i, const unsigned &nplot, Vector< double > &s, const bool &shifted_to_interior=false) const
Get cector of local coordinates of plot point i (when plotting nplot points in each "coordinate direc...
Definition: elements.h:3152
virtual unsigned nplot_points(const unsigned &nplot) const
Return total number of plot points (when plotting nplot points in each "coordinate direction")
Definition: elements.h:3190
double raw_dnodal_position_dt(const unsigned &n, const unsigned &i) const
Return the i-th component of nodal velocity: dx/dt at local node n. Do not use the hanging node repre...
Definition: elements.h:2260
double raw_nodal_value(const unsigned &n, const unsigned &i) const
Return the i-th value stored at local node n but do NOT take hanging nodes into account.
Definition: elements.h:2580
double raw_nodal_position(const unsigned &n, const unsigned &i) const
Return the i-th coordinate at local node n. Do not use the hanging node representation....
Definition: elements.cc:1714
virtual void write_tecplot_zone_footer(std::ostream &outfile, const unsigned &nplot) const
Add tecplot zone "footer" to output stream (when plotting nplot points in each "coordinate direction"...
Definition: elements.h:3178
virtual unsigned self_test()
Self-test: Check inversion of element & do self-test for GeneralisedElement. Return 0 if OK.
Definition: elements.cc:4470
virtual double knot(const unsigned &i, const unsigned &j) const =0
Return local coordinate s[j] of i-th integration point.
virtual unsigned nweight() const =0
Return the number of integration points of the scheme.
virtual double weight(const unsigned &i) const =0
Return weight of i-th integration point.
//////////////////////////////////////////////////////////////////////// ////////////////////////////...
A Class for shape functions. In simple cases, the shape functions have only one index that can be tho...
Definition: shape.h:76
virtual double weight(const unsigned &i, const unsigned &j) const
Access function for j-th weight for the i-th derivative.
Definition: timesteppers.h:594
//////////////////////////////////////////////////////////////////// ////////////////////////////////...