navier_stokes_surface_power_elements.h
Go to the documentation of this file.
1 // LIC// ====================================================================
2 // LIC// This file forms part of oomph-lib, the object-oriented,
3 // LIC// multi-physics finite-element library, available
4 // LIC// at http://www.oomph-lib.org.
5 // LIC//
6 // LIC// Copyright (C) 2006-2024 Matthias Heil and Andrew Hazel
7 // LIC//
8 // LIC// This library is free software; you can redistribute it and/or
9 // LIC// modify it under the terms of the GNU Lesser General Public
10 // LIC// License as published by the Free Software Foundation; either
11 // LIC// version 2.1 of the License, or (at your option) any later version.
12 // LIC//
13 // LIC// This library is distributed in the hope that it will be useful,
14 // LIC// but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // LIC// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
16 // LIC// Lesser General Public License for more details.
17 // LIC//
18 // LIC// You should have received a copy of the GNU Lesser General Public
19 // LIC// License along with this library; if not, write to the Free Software
20 // LIC// Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
21 // LIC// 02110-1301 USA.
22 // LIC//
23 // LIC// The authors may be contacted at oomph-lib@maths.man.ac.uk.
24 // LIC//
25 // LIC//====================================================================
26 // Header file for specific surface elements
27 
28 #ifndef OOMPH_NAVIER_STOKES_SURFACE_POWER_ELEMENTS_HEADER
29 #define OOMPH_NAVIER_STOKES_SURFACE_POWER_ELEMENTS_HEADER
30 
31 // Config header generated by autoconfig
32 #ifdef HAVE_CONFIG_H
33 #include <oomph-lib-config.h>
34 #endif
35 
36 
37 // OOMPH-LIB headers
38 #include "../generic/Qelements.h"
39 
40 namespace oomph
41 {
42  //======================================================================
43  /// A class of elements that allow the determination of the power
44  /// input and various other fluxes over the domain boundaries.
45  /// The element operates as a FaceElement and attaches itself
46  /// to a bulk element of the type specified by the template
47  /// argument.
48  //======================================================================
49  template<class ELEMENT>
50  class NavierStokesSurfacePowerElement : public virtual FaceGeometry<ELEMENT>,
51  public virtual FaceElement
52  {
53  public:
54  /// Constructor, which takes a "bulk" element and the value of the index
55  /// and its limit
57  const int& face_index)
58  : FaceGeometry<ELEMENT>(), FaceElement()
59  {
60  // Attach the geometrical information to the element. N.B. This function
61  // also assigns nbulk_value from the required_nvalue of the bulk element
62  element_pt->build_face_element(face_index, this);
63 
64  // Set the dimension from the dimension of the first node
65  Dim = node_pt(0)->ndim();
66  }
67 
68 
69  /// The "global" intrinsic coordinate of the element when
70  /// viewed as part of a geometric object should be given by
71  /// the FaceElement representation, by default
72  /// This final over-ride is required for cases where the
73  /// FaceElement is a SolidFiniteElement because both SolidFiniteElements
74  /// and FaceElements overload zeta_nodal.
75  double zeta_nodal(const unsigned& n,
76  const unsigned& k,
77  const unsigned& i) const
78  {
79  return FaceElement::zeta_nodal(n, k, i);
80  }
81 
82 
83  /// Get drag force (traction acting on fluid)
85  {
86  std::ofstream dummy_file;
87  return drag_force(dummy_file);
88  }
89 
90 
91  /// Get drag force (traction acting on fluid)
92  /// Doc in outfile.
93  Vector<double> drag_force(std::ofstream& outfile)
94  {
95  // Spatial dimension of element
96  unsigned ndim = dim();
97 
98  // Initialise
99  Vector<double> drag(ndim + 1, 0.0);
100 
101  // Vector of local coordinates in face element
103 
104  // Vector for global Eulerian coordinates
105  Vector<double> x(ndim + 1);
106 
107  // Vector for local coordinates in bulk element
108  Vector<double> s_bulk(ndim + 1);
109 
110  // Set the value of n_intpt
111  unsigned n_intpt = integral_pt()->nweight();
112 
113 
114  // Get pointer to assocated bulk element
115  ELEMENT* bulk_el_pt = dynamic_cast<ELEMENT*>(bulk_element_pt());
116 
117  // Hacky: This is only appropriate for 3 point integration of
118  // 1D line elements
119  if (outfile.is_open()) outfile << "ZONE I=3" << std::endl;
120 
121  // Loop over the integration points
122  for (unsigned ipt = 0; ipt < n_intpt; ipt++)
123  {
124  // Assign values of s in FaceElement and local coordinates in bulk
125  // element
126  for (unsigned i = 0; i < ndim; i++)
127  {
128  s[i] = integral_pt()->knot(ipt, i);
129  }
130 
131  // Get the bulk coordinates
132  this->get_local_coordinate_in_bulk(s, s_bulk);
133 
134  // Get the integral weight
135  double w = integral_pt()->weight(ipt);
136 
137  // Get jacobian of mapping
138  double J = J_eulerian(s);
139 
140  // Premultiply the weights and the Jacobian
141  double W = w * J;
142 
143  // Get x position as Vector
144  interpolated_x(s, x);
145 
146 #ifdef PARANOID
147 
148  // Get x position as Vector from bulk element
149  Vector<double> x_bulk(ndim + 1);
150  bulk_el_pt->interpolated_x(s_bulk, x_bulk);
151 
152  double max_legal_error = 1.0e-5;
153  double error = 0.0;
154  for (unsigned i = 0; i < ndim + 1; i++)
155  {
156  error += fabs(x[i] - x_bulk[i]);
157  }
158  if (error > max_legal_error)
159  {
160  std::ostringstream error_stream;
161  error_stream << "difference in Eulerian posn from bulk and face: "
162  << error << " exceeds threshold " << max_legal_error
163  << std::endl;
164  throw OomphLibError(error_stream.str(),
165  OOMPH_CURRENT_FUNCTION,
166  OOMPH_EXCEPTION_LOCATION);
167  }
168 #endif
169 
170  // Outer unit normal
171  Vector<double> normal(ndim + 1);
172  outer_unit_normal(s, normal);
173 
174  // Get velocity from bulk element
175  Vector<double> veloc(ndim + 1);
176  bulk_el_pt->interpolated_u_nst(s_bulk, veloc);
177 
178  // Get traction from bulk element
179  Vector<double> traction(ndim + 1);
180  bulk_el_pt->get_traction(s_bulk, normal, traction);
181 
182  // Integrate
183  for (unsigned i = 0; i < ndim + 1; i++)
184  {
185  drag[i] += traction[i] * W;
186  }
187 
188  if (outfile.is_open())
189  {
190  // Output x,y,...,
191  for (unsigned i = 0; i < ndim + 1; i++)
192  {
193  outfile << x[i] << " ";
194  }
195 
196  // Output traction
197  for (unsigned i = 0; i < ndim + 1; i++)
198  {
199  outfile << traction[i] << " ";
200  }
201 
202 
203  // Output normal
204  for (unsigned i = 0; i < ndim + 1; i++)
205  {
206  outfile << normal[i] << " ";
207  }
208 
209  outfile << std::endl;
210  }
211  }
212  return drag;
213  }
214 
215  /// Get integral of instantaneous rate of work done by
216  /// the traction that's exerted onto the fluid.
218  {
219  std::ofstream dummy_file;
220  return get_rate_of_traction_work(dummy_file);
221  }
222 
223 
224  /// Get integral of instantaneous rate of work done by
225  /// the traction that's exerted onto the fluid. Doc in outfile.
226  double get_rate_of_traction_work(std::ofstream& outfile)
227  {
228  // Initialise
229  double rate_of_work_integral = 0.0;
230 
231  // Spatial dimension of element
232  unsigned ndim = dim();
233 
234  // Vector of local coordinates in face element
236 
237  // Vector for global Eulerian coordinates
238  Vector<double> x(ndim + 1);
239 
240  // Vector for local coordinates in bulk element
241  Vector<double> s_bulk(ndim + 1);
242 
243  // Set the value of n_intpt
244  unsigned n_intpt = integral_pt()->nweight();
245 
246 
247  // Get pointer to assocated bulk element
248  ELEMENT* bulk_el_pt = dynamic_cast<ELEMENT*>(bulk_element_pt());
249 
250  // Hacky: This is only appropriate for 3x3 integration of
251  // 2D quad elements
252  if (outfile.is_open()) outfile << "ZONE I=3, J=3" << std::endl;
253 
254  // Loop over the integration points
255  for (unsigned ipt = 0; ipt < n_intpt; ipt++)
256  {
257  // Assign values of s in FaceElement and local coordinates in bulk
258  // element
259  for (unsigned i = 0; i < ndim; i++)
260  {
261  s[i] = integral_pt()->knot(ipt, i);
262  }
263 
264  // Get the bulk coordinates
265  this->get_local_coordinate_in_bulk(s, s_bulk);
266 
267  // Get the integral weight
268  double w = integral_pt()->weight(ipt);
269 
270  // Get jacobian of mapping
271  double J = J_eulerian(s);
272 
273  // Premultiply the weights and the Jacobian
274  double W = w * J;
275 
276  // Get x position as Vector
277  interpolated_x(s, x);
278 
279 #ifdef PARANOID
280 
281  // Get x position as Vector from bulk element
282  Vector<double> x_bulk(ndim + 1);
283  bulk_el_pt->interpolated_x(s_bulk, x_bulk);
284 
285  double max_legal_error = 1.0e-5;
286  double error = 0.0;
287  for (unsigned i = 0; i < ndim + 1; i++)
288  {
289  error += fabs(x[i] - x_bulk[i]);
290  }
291  if (error > max_legal_error)
292  {
293  std::ostringstream error_stream;
294  error_stream << "difference in Eulerian posn from bulk and face: "
295  << error << " exceeds threshold " << max_legal_error
296  << std::endl;
297  throw OomphLibError(error_stream.str(),
298  OOMPH_CURRENT_FUNCTION,
299  OOMPH_EXCEPTION_LOCATION);
300  }
301 #endif
302 
303  // Outer unit normal
304  Vector<double> normal(ndim + 1);
305  outer_unit_normal(s, normal);
306 
307 
308  // Get velocity from bulk element
309  Vector<double> veloc(ndim + 1);
310  bulk_el_pt->interpolated_u_nst(s_bulk, veloc);
311 
312  // Get traction from bulk element
313  Vector<double> traction(ndim + 1);
314  bulk_el_pt->get_traction(s_bulk, normal, traction);
315 
316 
317  // Local rate of work:
318  double rate_of_work = 0.0;
319  for (unsigned i = 0; i < ndim + 1; i++)
320  {
321  rate_of_work += traction[i] * veloc[i];
322  }
323 
324  // Add rate of work
325  rate_of_work_integral += rate_of_work * W;
326 
327  if (outfile.is_open())
328  {
329  // Output x,y,...,
330  for (unsigned i = 0; i < ndim + 1; i++)
331  {
332  outfile << x[i] << " ";
333  }
334 
335  // Output traction
336  for (unsigned i = 0; i < ndim + 1; i++)
337  {
338  outfile << traction[i] << " ";
339  }
340 
341  // Output veloc
342  for (unsigned i = 0; i < ndim + 1; i++)
343  {
344  outfile << veloc[i] << " ";
345  }
346 
347  // Output normal
348  for (unsigned i = 0; i < ndim + 1; i++)
349  {
350  outfile << normal[i] << " ";
351  }
352 
353  // Output local rate of work
354  for (unsigned i = 0; i < ndim + 1; i++)
355  {
356  outfile << rate_of_work << " ";
357  }
358 
359  outfile << std::endl;
360  }
361  }
362 
363  return rate_of_work_integral;
364  }
365 
366 
367  /// Get integral of instantaneous rate of work done by
368  /// the traction that's exerted onto the fluid, decomposed into pressure
369  /// and normal and tangential viscous components.
370  void get_rate_of_traction_work_components(double& rate_of_work_integral_p,
371  double& rate_of_work_integral_n,
372  double& rate_of_work_integral_t)
373  {
374  std::ofstream dummy_file;
376  rate_of_work_integral_p,
377  rate_of_work_integral_n,
378  rate_of_work_integral_t);
379  }
380 
381 
382  /// Get integral of instantaneous rate of work done by
383  /// the traction that's exerted onto the fluid, decomposed into pressure
384  /// and normal and tangential viscous components. Doc in outfile.
385  void get_rate_of_traction_work_components(std::ofstream& outfile,
386  double& rate_of_work_integral_p,
387  double& rate_of_work_integral_n,
388  double& rate_of_work_integral_t)
389  {
390  // Initialise
391  rate_of_work_integral_p = 0;
392  rate_of_work_integral_n = 0;
393  rate_of_work_integral_t = 0;
394 
395  // Spatial dimension of element
396  unsigned ndim = dim();
397 
398  // Vector of local coordinates in face element
400 
401  // Vector for global Eulerian coordinates
402  Vector<double> x(ndim + 1);
403 
404  // Vector for local coordinates in bulk element
405  Vector<double> s_bulk(ndim + 1);
406 
407  // Set the value of n_intpt
408  unsigned n_intpt = integral_pt()->nweight();
409 
410 
411  // Get pointer to assocated bulk element
412  ELEMENT* bulk_el_pt = dynamic_cast<ELEMENT*>(bulk_element_pt());
413 
414  // Hacky: This is only appropriate for 3x3 integration of
415  // 2D quad elements
416  if (outfile.is_open()) outfile << "ZONE I=3, J=3" << std::endl;
417 
418  // Loop over the integration points
419  for (unsigned ipt = 0; ipt < n_intpt; ipt++)
420  {
421  // Assign values of s in FaceElement and local coordinates in bulk
422  // element
423  for (unsigned i = 0; i < ndim; i++)
424  {
425  s[i] = integral_pt()->knot(ipt, i);
426  }
427 
428  // Get the bulk coordinates
429  this->get_local_coordinate_in_bulk(s, s_bulk);
430 
431  // Get the integral weight
432  double w = integral_pt()->weight(ipt);
433 
434  // Get jacobian of mapping
435  double J = J_eulerian(s);
436 
437  // Premultiply the weights and the Jacobian
438  double W = w * J;
439 
440  // Get x position as Vector
441  interpolated_x(s, x);
442 
443 #ifdef PARANOID
444 
445  // Get x position as Vector from bulk element
446  Vector<double> x_bulk(ndim + 1);
447  bulk_el_pt->interpolated_x(s_bulk, x_bulk);
448 
449  double max_legal_error = 1.0e-5;
450  double error = 0.0;
451  for (unsigned i = 0; i < ndim + 1; i++)
452  {
453  error += fabs(x[i] - x_bulk[i]);
454  }
455  if (error > max_legal_error)
456  {
457  std::ostringstream error_stream;
458  error_stream << "difference in Eulerian posn from bulk and face: "
459  << error << " exceeds threshold " << max_legal_error
460  << std::endl;
461  throw OomphLibError(error_stream.str(),
462  OOMPH_CURRENT_FUNCTION,
463  OOMPH_EXCEPTION_LOCATION);
464  }
465 #endif
466 
467  // Outer unit normal
468  Vector<double> normal(ndim + 1);
469  outer_unit_normal(s, normal);
470 
471 
472  // Get velocity from bulk element
473  Vector<double> veloc(ndim + 1);
474  bulk_el_pt->interpolated_u_nst(s_bulk, veloc);
475 
476  // Get traction from bulk element
477  Vector<double> traction_p(ndim + 1);
478  Vector<double> traction_n(ndim + 1);
479  Vector<double> traction_t(ndim + 1);
480  bulk_el_pt->get_traction(
481  s_bulk, normal, traction_p, traction_n, traction_t);
482 
483 
484  // Local rate of work:
485  double rate_of_work_p = 0.0;
486  double rate_of_work_n = 0.0;
487  double rate_of_work_t = 0.0;
488  for (unsigned i = 0; i < ndim + 1; i++)
489  {
490  rate_of_work_p += traction_p[i] * veloc[i];
491  rate_of_work_n += traction_n[i] * veloc[i];
492  rate_of_work_t += traction_t[i] * veloc[i];
493  }
494 
495  // Add rate of work
496  rate_of_work_integral_p += rate_of_work_p * W;
497  rate_of_work_integral_n += rate_of_work_n * W;
498  rate_of_work_integral_t += rate_of_work_t * W;
499 
500  if (outfile.is_open())
501  {
502  // Output x,y,...,
503  for (unsigned i = 0; i < ndim + 1; i++)
504  {
505  outfile << x[i] << " ";
506  }
507 
508  // Output traction due to pressure
509  for (unsigned i = 0; i < ndim + 1; i++)
510  {
511  outfile << traction_p[i] << " ";
512  }
513 
514  // Output traction due to viscous normal stress
515  for (unsigned i = 0; i < ndim + 1; i++)
516  {
517  outfile << traction_n[i] << " ";
518  }
519 
520  // Output traction due to viscous tangential stress
521  for (unsigned i = 0; i < ndim + 1; i++)
522  {
523  outfile << traction_t[i] << " ";
524  }
525 
526  // Output veloc
527  for (unsigned i = 0; i < ndim + 1; i++)
528  {
529  outfile << veloc[i] << " ";
530  }
531 
532  // Output normal
533  for (unsigned i = 0; i < ndim + 1; i++)
534  {
535  outfile << normal[i] << " ";
536  }
537 
538  // Output local rate of work due to pressure
539  for (unsigned i = 0; i < ndim + 1; i++)
540  {
541  outfile << rate_of_work_p << " ";
542  }
543 
544  // Output local rate of work due to viscous normal stress
545  for (unsigned i = 0; i < ndim + 1; i++)
546  {
547  outfile << rate_of_work_n << " ";
548  }
549 
550  // Output local rate of work due to viscous tangential stress
551  for (unsigned i = 0; i < ndim + 1; i++)
552  {
553  outfile << rate_of_work_t << " ";
554  }
555 
556  outfile << std::endl;
557  }
558  }
559  }
560 
561 
562  /// Get integral of kinetic energy flux
564  {
565  std::ofstream dummy_file;
566  return get_kinetic_energy_flux(dummy_file);
567  }
568 
569 
570  /// Get integral of kinetic energy flux and doc
571  double get_kinetic_energy_flux(std::ofstream& outfile)
572  {
573  // Initialise
574  double kinetic_energy_flux_integral = 0.0;
575 
576  // Spatial dimension of element
577  unsigned ndim = dim();
578 
579  // Vector of local coordinates in face element
581 
582  // Vector for global Eulerian coordinates
583  Vector<double> x(ndim + 1);
584 
585  // Vector for local coordinates in bulk element
586  Vector<double> s_bulk(ndim + 1);
587 
588  // Set the value of n_intpt
589  unsigned n_intpt = integral_pt()->nweight();
590 
591  // Get pointer to assocated bulk element
592  ELEMENT* bulk_el_pt = dynamic_cast<ELEMENT*>(bulk_element_pt());
593 
594  // Hacky: This is only appropriate for 3x3 integration of
595  // 2D quad elements
596  if (outfile.is_open()) outfile << "ZONE I=3, J=3" << std::endl;
597 
598  // Loop over the integration points
599  for (unsigned ipt = 0; ipt < n_intpt; ipt++)
600  {
601  // Assign values of s in FaceElement and local coordinates in bulk
602  // element
603  for (unsigned i = 0; i < ndim; i++)
604  {
605  s[i] = integral_pt()->knot(ipt, i);
606  }
607 
608  // Get the bulk coordinates
609  this->get_local_coordinate_in_bulk(s, s_bulk);
610 
611  // Get the integral weight
612  double w = integral_pt()->weight(ipt);
613 
614  // Get jacobian of mapping
615  double J = J_eulerian(s);
616 
617  // Premultiply the weights and the Jacobian
618  double W = w * J;
619 
620  // Get x position as Vector
621  interpolated_x(s, x);
622 
623 #ifdef PARANOID
624 
625  // Get x position as Vector from bulk element
626  Vector<double> x_bulk(ndim + 1);
627  bulk_el_pt->interpolated_x(s_bulk, x_bulk);
628 
629  double max_legal_error = 1.0e-5;
630  double error = 0.0;
631  for (unsigned i = 0; i < ndim + 1; i++)
632  {
633  error += fabs(x[i] - x_bulk[i]);
634  }
635  if (error > max_legal_error)
636  {
637  std::ostringstream error_stream;
638  error_stream << "difference in Eulerian posn from bulk and face: "
639  << error << " exceeds threshold " << max_legal_error
640  << std::endl;
641  throw OomphLibError(error_stream.str(),
642  OOMPH_CURRENT_FUNCTION,
643  OOMPH_EXCEPTION_LOCATION);
644  }
645 #endif
646 
647  // Outer unit normal
648  Vector<double> normal(ndim + 1);
649  outer_unit_normal(s, normal);
650 
651  // Get velocity from bulk element
652  Vector<double> veloc(ndim + 1);
653  bulk_el_pt->interpolated_u_nst(s_bulk, veloc);
654 
655  double kin_energy = 0.0;
656  for (unsigned i = 0; i < ndim + 1; i++)
657  {
658  kin_energy += veloc[i] * veloc[i];
659  }
660  kin_energy *= 0.5;
661 
662  // Kinetic energy flux
663  double kin_energy_flux = 0.0;
664  for (unsigned i = 0; i < ndim + 1; i++)
665  {
666  kin_energy_flux += kin_energy * normal[i] * veloc[i];
667  }
668 
669  // Add to integral
670  kinetic_energy_flux_integral += kin_energy_flux * W;
671 
672  if (outfile.is_open())
673  {
674  // Output x,y,...,
675  for (unsigned i = 0; i < ndim + 1; i++)
676  {
677  outfile << x[i] << " ";
678  }
679 
680  // Output veloc
681  for (unsigned i = 0; i < ndim + 1; i++)
682  {
683  outfile << veloc[i] << " ";
684  }
685 
686  // Output normal
687  for (unsigned i = 0; i < ndim + 1; i++)
688  {
689  outfile << normal[i] << " ";
690  }
691 
692  // Output local kin energy flux
693  outfile << kin_energy_flux << " ";
694 
695  outfile << std::endl;
696  }
697  }
698 
699  return kinetic_energy_flux_integral;
700  }
701 
702 
703  /// Get integral of volume flux
705  {
706  std::ofstream dummy_file;
707  return get_volume_flux(dummy_file);
708  }
709 
710 
711  /// Get integral of volume flux and doc
712  double get_volume_flux(std::ofstream& outfile)
713  {
714  // Initialise
715  double volume_flux_integral = 0.0;
716 
717  // Spatial dimension of element
718  unsigned ndim = dim();
719 
720  // Vector of local coordinates in face element
722 
723  // Vector for global Eulerian coordinates
724  Vector<double> x(ndim + 1);
725 
726  // Vector for local coordinates in bulk element
727  Vector<double> s_bulk(ndim + 1);
728 
729  // Set the value of n_intpt
730  unsigned n_intpt = integral_pt()->nweight();
731 
732  // Get pointer to assocated bulk element
733  ELEMENT* bulk_el_pt = dynamic_cast<ELEMENT*>(bulk_element_pt());
734 
735  // Hacky: This is only appropriate for 3x3 integration of
736  // 2D quad elements
737  if (outfile.is_open()) outfile << "ZONE I=3, J=3" << std::endl;
738 
739  // Loop over the integration points
740  for (unsigned ipt = 0; ipt < n_intpt; ipt++)
741  {
742  // Assign values of s in FaceElement and local coordinates in bulk
743  // element
744  for (unsigned i = 0; i < ndim; i++)
745  {
746  s[i] = integral_pt()->knot(ipt, i);
747  }
748 
749 
750  // Get the bulk coordinates
751  this->get_local_coordinate_in_bulk(s, s_bulk);
752 
753  // Get the integral weight
754  double w = integral_pt()->weight(ipt);
755 
756  // Get jacobian of mapping
757  double J = J_eulerian(s);
758 
759  // Premultiply the weights and the Jacobian
760  double W = w * J;
761 
762  // Get x position as Vector
763  interpolated_x(s, x);
764 
765 #ifdef PARANOID
766 
767  // Get x position as Vector from bulk element
768  Vector<double> x_bulk(ndim + 1);
769  bulk_el_pt->interpolated_x(s_bulk, x_bulk);
770 
771  double max_legal_error = 1.0e-5;
772  double error = 0.0;
773  for (unsigned i = 0; i < ndim + 1; i++)
774  {
775  error += fabs(x[i] - x_bulk[i]);
776  }
777  if (error > max_legal_error)
778  {
779  std::ostringstream error_stream;
780  error_stream << "difference in Eulerian posn from bulk and face: "
781  << error << " exceeds threshold " << max_legal_error
782  << std::endl;
783  throw OomphLibError(error_stream.str(),
784  OOMPH_CURRENT_FUNCTION,
785  OOMPH_EXCEPTION_LOCATION);
786  }
787 #endif
788 
789  // Outer unit normal
790  Vector<double> normal(ndim + 1);
791  outer_unit_normal(s, normal);
792 
793  // Get velocity from bulk element
794  Vector<double> veloc(ndim + 1);
795  bulk_el_pt->interpolated_u_nst(s_bulk, veloc);
796 
797  // Volume flux
798  double volume_flux = 0.0;
799  for (unsigned i = 0; i < ndim + 1; i++)
800  {
801  volume_flux += normal[i] * veloc[i];
802  }
803 
804  // Add to integral
805  volume_flux_integral += volume_flux * W;
806 
807  if (outfile.is_open())
808  {
809  // Output x,y,...,
810  for (unsigned i = 0; i < ndim + 1; i++)
811  {
812  outfile << x[i] << " ";
813  }
814 
815  // Output veloc
816  for (unsigned i = 0; i < ndim + 1; i++)
817  {
818  outfile << veloc[i] << " ";
819  }
820 
821  // Output normal
822  for (unsigned i = 0; i < ndim + 1; i++)
823  {
824  outfile << normal[i] << " ";
825  }
826 
827  // Output local volume flux
828  outfile << volume_flux << " ";
829 
830  outfile << std::endl;
831  }
832  }
833 
834  return volume_flux_integral;
835  }
836 
837 
838  private:
839  /// The highest dimension of the problem
840  unsigned Dim;
841  };
842 
843 
844 } // namespace oomph
845 
846 #endif
static char t char * s
Definition: cfortran.h:568
cstr elem_len * i
Definition: cfortran.h:603
FaceElements are elements that coincide with the faces of higher-dimensional "bulk" elements....
Definition: elements.h:4342
int & face_index()
Index of the face (a number that uniquely identifies the face in the element)
Definition: elements.h:4630
void outer_unit_normal(const Vector< double > &s, Vector< double > &unit_normal) const
Compute outer unit normal at the specified local coordinate.
Definition: elements.cc:6036
double zeta_nodal(const unsigned &n, const unsigned &k, const unsigned &i) const
In a FaceElement, the "global" intrinsic coordinate of the element along the boundary,...
Definition: elements.h:4501
FiniteElement *& bulk_element_pt()
Pointer to higher-dimensional "bulk" element.
Definition: elements.h:4739
double interpolated_x(const Vector< double > &s, const unsigned &i) const
Return FE interpolated coordinate x[i] at local coordinate s. Overloaded to get information from bulk...
Definition: elements.h:4532
double J_eulerian(const Vector< double > &s) const
Return the Jacobian of mapping from local to global coordinates at local position s....
Definition: elements.cc:5272
void get_local_coordinate_in_bulk(const Vector< double > &s, Vector< double > &s_bulk) const
Calculate the vector of local coordinate in the bulk element given the local coordinates in this Face...
Definition: elements.cc:6414
//////////////////////////////////////////////////////////////////// ////////////////////////////////...
Definition: elements.h:5002
A general Finite Element class.
Definition: elements.h:1317
Node *& node_pt(const unsigned &n)
Return a pointer to the local node n.
Definition: elements.h:2179
unsigned dim() const
Return the spatial dimension of the element, i.e. the number of local coordinates required to paramet...
Definition: elements.h:2615
Integral *const & integral_pt() const
Return the pointer to the integration scheme (const version)
Definition: elements.h:1967
virtual void build_face_element(const int &face_index, FaceElement *face_element_pt)
Function for building a lower dimensional FaceElement on the specified face of the FiniteElement....
Definition: elements.cc:5162
unsigned ndim() const
Access function to # of Eulerian coordinates.
Definition: geom_objects.h:177
virtual double knot(const unsigned &i, const unsigned &j) const =0
Return local coordinate s[j] of i-th integration point.
virtual unsigned nweight() const =0
Return the number of integration points of the scheme.
virtual double weight(const unsigned &i) const =0
Return weight of i-th integration point.
A class of elements that allow the determination of the power input and various other fluxes over the...
Vector< double > drag_force(std::ofstream &outfile)
Get drag force (traction acting on fluid) Doc in outfile.
double get_kinetic_energy_flux(std::ofstream &outfile)
Get integral of kinetic energy flux and doc.
unsigned Dim
The highest dimension of the problem.
void get_rate_of_traction_work_components(double &rate_of_work_integral_p, double &rate_of_work_integral_n, double &rate_of_work_integral_t)
Get integral of instantaneous rate of work done by the traction that's exerted onto the fluid,...
NavierStokesSurfacePowerElement(FiniteElement *const &element_pt, const int &face_index)
Constructor, which takes a "bulk" element and the value of the index and its limit.
double get_rate_of_traction_work()
Get integral of instantaneous rate of work done by the traction that's exerted onto the fluid.
double get_kinetic_energy_flux()
Get integral of kinetic energy flux.
Vector< double > drag_force()
Get drag force (traction acting on fluid)
double get_volume_flux(std::ofstream &outfile)
Get integral of volume flux and doc.
double get_rate_of_traction_work(std::ofstream &outfile)
Get integral of instantaneous rate of work done by the traction that's exerted onto the fluid....
void get_rate_of_traction_work_components(std::ofstream &outfile, double &rate_of_work_integral_p, double &rate_of_work_integral_n, double &rate_of_work_integral_t)
Get integral of instantaneous rate of work done by the traction that's exerted onto the fluid,...
double zeta_nodal(const unsigned &n, const unsigned &k, const unsigned &i) const
The "global" intrinsic coordinate of the element when viewed as part of a geometric object should be ...
unsigned ndim() const
Return (Eulerian) spatial dimension of the node.
Definition: nodes.h:1054
An OomphLibError object which should be thrown when an run-time error is encountered....
//////////////////////////////////////////////////////////////////// ////////////////////////////////...