linear_elasticity_elements.cc
Go to the documentation of this file.
1 // LIC// ====================================================================
2 // LIC// This file forms part of oomph-lib, the object-oriented,
3 // LIC// multi-physics finite-element library, available
4 // LIC// at http://www.oomph-lib.org.
5 // LIC//
6 // LIC// Copyright (C) 2006-2023 Matthias Heil and Andrew Hazel
7 // LIC//
8 // LIC// This library is free software; you can redistribute it and/or
9 // LIC// modify it under the terms of the GNU Lesser General Public
10 // LIC// License as published by the Free Software Foundation; either
11 // LIC// version 2.1 of the License, or (at your option) any later version.
12 // LIC//
13 // LIC// This library is distributed in the hope that it will be useful,
14 // LIC// but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // LIC// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
16 // LIC// Lesser General Public License for more details.
17 // LIC//
18 // LIC// You should have received a copy of the GNU Lesser General Public
19 // LIC// License along with this library; if not, write to the Free Software
20 // LIC// Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
21 // LIC// 02110-1301 USA.
22 // LIC//
23 // LIC// The authors may be contacted at oomph-lib@maths.man.ac.uk.
24 // LIC//
25 // LIC//====================================================================
26 // Non-inline functions for elements that solve the equations of linear
27 // elasticity in cartesian coordinates
28 
30 
31 
32 namespace oomph
33 {
34  /// Static default value for timescale ratio (1.0 -- for natural scaling)
35  template<unsigned DIM>
37 
38 
39  /// ///////////////////////////////////////////////////////////////
40  /// ///////////////////////////////////////////////////////////////
41  /// ///////////////////////////////////////////////////////////////
42 
43  //======================================================================
44  /// Compute the strain tensor at local coordinate s
45  //======================================================================
46  template<unsigned DIM>
48  const Vector<double>& s, DenseMatrix<double>& strain) const
49  {
50 #ifdef PARANOID
51  if ((strain.ncol() != DIM) || (strain.nrow() != DIM))
52  {
53  std::ostringstream error_message;
54  error_message << "Strain matrix is " << strain.ncol() << " x "
55  << strain.nrow() << ", but dimension of the equations is "
56  << DIM << std::endl;
57  throw OomphLibError(
58  error_message.str(), OOMPH_CURRENT_FUNCTION, OOMPH_EXCEPTION_LOCATION);
59  }
60 
61  // Find out how many position types there are
62  unsigned n_position_type = this->nnodal_position_type();
63 
64  if (n_position_type != 1)
65  {
66  throw OomphLibError("LinearElasticity is not yet implemented for more "
67  "than one position type",
68  OOMPH_CURRENT_FUNCTION,
69  OOMPH_EXCEPTION_LOCATION);
70  }
71 #endif
72 
73 
74  // Find out how many nodes there are in the element
75  unsigned n_node = nnode();
76 
77  // Find the indices at which the local velocities are stored
78  unsigned u_nodal_index[DIM];
79  for (unsigned i = 0; i < DIM; i++)
80  {
81  u_nodal_index[i] = u_index_linear_elasticity(i);
82  }
83 
84  // Set up memory for the shape and derivative functions
85  Shape psi(n_node);
86  DShape dpsidx(n_node, DIM);
87 
88  // Call the derivatives of the shape functions
89  (void)dshape_eulerian(s, psi, dpsidx);
90 
91  // Calculate interpolated values of the derivative of global position
92  DenseMatrix<double> interpolated_dudx(DIM, DIM, 0.0);
93 
94  // Loop over nodes
95  for (unsigned l = 0; l < n_node; l++)
96  {
97  // Loop over velocity components
98  for (unsigned i = 0; i < DIM; i++)
99  {
100  // Get the nodal value
101  const double u_value = this->nodal_value(l, u_nodal_index[i]);
102 
103  // Loop over derivative directions
104  for (unsigned j = 0; j < DIM; j++)
105  {
106  interpolated_dudx(i, j) += u_value * dpsidx(l, j);
107  }
108  }
109  }
110 
111  /// Now fill in the entries of the strain tensor
112  for (unsigned i = 0; i < DIM; i++)
113  {
114  // Do upper half of matrix
115  // Note that j must be signed here for the comparison test to work
116  // Also i must be cast to an int
117  for (int j = (DIM - 1); j >= static_cast<int>(i); j--)
118  {
119  // Off diagonal terms
120  if (static_cast<int>(i) != j)
121  {
122  strain(i, j) =
123  0.5 * (interpolated_dudx(i, j) + interpolated_dudx(j, i));
124  }
125  // Diagonal terms will including growth factor when it comes back in
126  else
127  {
128  strain(i, i) = interpolated_dudx(i, i);
129  }
130  }
131  // Matrix is symmetric so just copy lower half
132  for (int j = (i - 1); j >= 0; j--)
133  {
134  strain(i, j) = strain(j, i);
135  }
136  }
137  }
138 
139 
140  //======================================================================
141  /// Compute the Cauchy stress tensor at local coordinate s for
142  /// displacement formulation.
143  //======================================================================
144  template<unsigned DIM>
146  const Vector<double>& s, DenseMatrix<double>& stress) const
147  {
148 #ifdef PARANOID
149  if ((stress.ncol() != DIM) || (stress.nrow() != DIM))
150  {
151  std::ostringstream error_message;
152  error_message << "Stress matrix is " << stress.ncol() << " x "
153  << stress.nrow() << ", but dimension of the equations is "
154  << DIM << std::endl;
155  throw OomphLibError(
156  error_message.str(), OOMPH_CURRENT_FUNCTION, OOMPH_EXCEPTION_LOCATION);
157  }
158 #endif
159 
160  // Get strain
161  DenseMatrix<double> strain(DIM, DIM);
162  this->get_strain(s, strain);
163 
164  // Now fill in the entries of the stress tensor without exploiting
165  // symmetry -- sorry too lazy. This fct is only used for
166  // postprocessing anyway...
167  for (unsigned i = 0; i < DIM; i++)
168  {
169  for (unsigned j = 0; j < DIM; j++)
170  {
171  stress(i, j) = 0.0;
172  for (unsigned k = 0; k < DIM; k++)
173  {
174  for (unsigned l = 0; l < DIM; l++)
175  {
176  stress(i, j) += this->E(i, j, k, l) * strain(k, l);
177  }
178  }
179  }
180  }
181  }
182 
183 
184  //=======================================================================
185  /// Compute the residuals for the linear elasticity equations in
186  /// cartesian coordinates. Flag indicates if we want Jacobian too.
187  //=======================================================================
188  template<unsigned DIM>
191  Vector<double>& residuals, DenseMatrix<double>& jacobian, unsigned flag)
192  {
193  // Find out how many nodes there are
194  unsigned n_node = this->nnode();
195 
196 #ifdef PARANOID
197  // Find out how many positional dofs there are
198  unsigned n_position_type = this->nnodal_position_type();
199 
200  if (n_position_type != 1)
201  {
202  throw OomphLibError("LinearElasticity is not yet implemented for more "
203  "than one position type",
204  OOMPH_CURRENT_FUNCTION,
205  OOMPH_EXCEPTION_LOCATION);
206  }
207 
208  // Throw and error if an elasticity tensor has not been set
209  if (this->Elasticity_tensor_pt == 0)
210  {
211  throw OomphLibError("No elasticity tensor set.",
212  OOMPH_CURRENT_FUNCTION,
213  OOMPH_EXCEPTION_LOCATION);
214  }
215 #endif
216 
217  // Find the indices at which the local displacements are stored
218  unsigned u_nodal_index[DIM];
219  for (unsigned i = 0; i < DIM; i++)
220  {
221  u_nodal_index[i] = this->u_index_linear_elasticity(i);
222  }
223 
224  // Timescale ratio (non-dim density)
225  double Lambda_sq = this->lambda_sq();
226 
227  // Set up memory for the shape functions
228  Shape psi(n_node);
229  DShape dpsidx(n_node, DIM);
230 
231  // Set the value of Nintpt -- the number of integration points
232  unsigned n_intpt = this->integral_pt()->nweight();
233 
234  // Set the vector to hold the local coordinates in the element
235  Vector<double> s(DIM);
236 
237  // Integer to store the local equation number
238  int local_eqn = 0, local_unknown = 0;
239 
240  // Loop over the integration points
241  for (unsigned ipt = 0; ipt < n_intpt; ipt++)
242  {
243  // Assign the values of s
244  for (unsigned i = 0; i < DIM; ++i)
245  {
246  s[i] = this->integral_pt()->knot(ipt, i);
247  }
248 
249  // Get the integral weight
250  double w = this->integral_pt()->weight(ipt);
251 
252  // Call the derivatives of the shape functions (and get Jacobian)
253  double J = this->dshape_eulerian_at_knot(ipt, psi, dpsidx);
254 
255  // Storage for Eulerian coordinates (initialised to zero)
256  Vector<double> interpolated_x(DIM, 0.0);
257 
258  // Calculate interpolated values of the derivative of global position
259  // wrt lagrangian coordinates
260  DenseMatrix<double> interpolated_dudx(DIM, DIM, 0.0);
261 
262  // Setup memory for accelerations (initialised to zero)
263  Vector<double> accel(DIM, 0.0);
264 
265  // Calculate displacements and derivatives and lagrangian coordinates
266  for (unsigned l = 0; l < n_node; l++)
267  {
268  // Loop over displacement components (deformed position)
269  for (unsigned i = 0; i < DIM; i++)
270  {
271  // Calculate the Lagrangian coordinates and the accelerations
272  interpolated_x[i] += this->raw_nodal_position(l, i) * psi(l);
273 
274  // Only compute accelerations if inertia is switched on
275  if (this->Unsteady)
276  {
277  accel[i] += this->d2u_dt2_linear_elasticity(l, i) * psi(l);
278  }
279 
280  // Get the nodal displacements
281  const double u_value = this->raw_nodal_value(l, u_nodal_index[i]);
282 
283  // Loop over derivative directions
284  for (unsigned j = 0; j < DIM; j++)
285  {
286  interpolated_dudx(i, j) += u_value * dpsidx(l, j);
287  }
288  }
289  }
290 
291  // Get body force at current time
292  Vector<double> b(DIM);
293  this->body_force(interpolated_x, b);
294 
295  // Premultiply the weights and the Jacobian
296  double W = w * J;
297 
298  //=====EQUATIONS OF LINEAR ELASTICITY ========
299 
300  // Loop over the test functions, nodes of the element
301  for (unsigned l = 0; l < n_node; l++)
302  {
303  // Loop over the displacement components
304  for (unsigned a = 0; a < DIM; a++)
305  {
306  // Get the equation number
307  local_eqn = this->nodal_local_eqn(l, u_nodal_index[a]);
308  /*IF it's not a boundary condition*/
309  if (local_eqn >= 0)
310  {
311  // Acceleration and body force
312  residuals[local_eqn] += (Lambda_sq * accel[a] - b[a]) * psi(l) * W;
313 
314  // Stress term
315  for (unsigned b = 0; b < DIM; b++)
316  {
317  for (unsigned c = 0; c < DIM; c++)
318  {
319  for (unsigned d = 0; d < DIM; d++)
320  {
321  // Add the stress terms to the residuals
322  residuals[local_eqn] += this->E(a, b, c, d) *
323  interpolated_dudx(c, d) *
324  dpsidx(l, b) * W;
325  }
326  }
327  }
328 
329  // Jacobian entries
330  if (flag)
331  {
332  // Loop over the displacement basis functions again
333  for (unsigned l2 = 0; l2 < n_node; l2++)
334  {
335  // Loop over the displacement components again
336  for (unsigned c = 0; c < DIM; c++)
337  {
338  local_unknown = this->nodal_local_eqn(l2, u_nodal_index[c]);
339  // If it's not pinned
340  if (local_unknown >= 0)
341  {
342  // Inertial term
343  if (a == c)
344  {
345  jacobian(local_eqn, local_unknown) +=
346  Lambda_sq *
347  this->node_pt(l2)->time_stepper_pt()->weight(2, 0) *
348  psi(l) * psi(l2) * W;
349  }
350 
351  for (unsigned b = 0; b < DIM; b++)
352  {
353  for (unsigned d = 0; d < DIM; d++)
354  {
355  // Add the contribution to the Jacobian matrix
356  jacobian(local_eqn, local_unknown) +=
357  this->E(a, b, c, d) * dpsidx(l2, d) * dpsidx(l, b) *
358  W;
359  }
360  }
361  } // End of if not boundary condition
362  }
363  }
364  } // End of jacobian calculation
365 
366  } // End of if not boundary condition
367  } // End of loop over coordinate directions
368  } // End of loop over shape functions
369  } // End of loop over integration points
370  }
371 
372 
373  //=======================================================================
374  /// Output exact solution x,y,[z],u,v,[w]
375  //=======================================================================
376  template<unsigned DIM>
378  std::ostream& outfile,
379  const unsigned& nplot,
381  {
382  // Vector of local coordinates
383  Vector<double> s(DIM);
384 
385  // Vector for coordintes
386  Vector<double> x(DIM);
387 
388  // Tecplot header info
389  outfile << this->tecplot_zone_string(nplot);
390 
391  // Exact solution Vector
392  Vector<double> exact_soln(DIM);
393 
394  // Loop over plot points
395  unsigned num_plot_points = this->nplot_points(nplot);
396  for (unsigned iplot = 0; iplot < num_plot_points; iplot++)
397  {
398  // Get local coordinates of plot point
399  this->get_s_plot(iplot, nplot, s);
400 
401  // Get x position as Vector
402  this->interpolated_x(s, x);
403 
404  // Get exact solution at this point
405  (*exact_soln_pt)(x, exact_soln);
406 
407  // Output x,y,...,u_exact,...
408  for (unsigned i = 0; i < DIM; i++)
409  {
410  outfile << x[i] << " ";
411  }
412  for (unsigned i = 0; i < DIM; i++)
413  {
414  outfile << exact_soln[i] << " ";
415  }
416  outfile << std::endl;
417  }
418 
419  // Write tecplot footer (e.g. FE connectivity lists)
420  this->write_tecplot_zone_footer(outfile, nplot);
421  }
422 
423 
424  //=======================================================================
425  /// Output exact solution x,y,[z],u,v,[w] (unsteady version)
426  //=======================================================================
427  template<unsigned DIM>
429  std::ostream& outfile,
430  const unsigned& nplot,
431  const double& time,
433  {
434  // Vector of local coordinates
435  Vector<double> s(DIM);
436 
437  // Vector for coordintes
438  Vector<double> x(DIM);
439 
440  // Tecplot header info
441  outfile << this->tecplot_zone_string(nplot);
442 
443  // Exact solution Vector
444  Vector<double> exact_soln(DIM);
445 
446  // Loop over plot points
447  unsigned num_plot_points = this->nplot_points(nplot);
448  for (unsigned iplot = 0; iplot < num_plot_points; iplot++)
449  {
450  // Get local coordinates of plot point
451  this->get_s_plot(iplot, nplot, s);
452 
453  // Get x position as Vector
454  this->interpolated_x(s, x);
455 
456  // Get exact solution at this point
457  (*exact_soln_pt)(time, x, exact_soln);
458 
459  // Output x,y,...,u_exact,...
460  for (unsigned i = 0; i < DIM; i++)
461  {
462  outfile << x[i] << " ";
463  }
464  for (unsigned i = 0; i < DIM; i++)
465  {
466  outfile << exact_soln[i] << " ";
467  }
468  outfile << std::endl;
469  }
470 
471  // Write tecplot footer (e.g. FE connectivity lists)
472  this->write_tecplot_zone_footer(outfile, nplot);
473  }
474 
475 
476  //=======================================================================
477  /// Output: x,y,[z],u,v,[w]
478  //=======================================================================
479  template<unsigned DIM>
480  void LinearElasticityEquations<DIM>::output(std::ostream& outfile,
481  const unsigned& nplot)
482  {
483  // Set output Vector
484  Vector<double> s(DIM);
485  Vector<double> x(DIM);
486  Vector<double> u(DIM);
487 
488  // Tecplot header info
489  outfile << this->tecplot_zone_string(nplot);
490 
491  // Loop over plot points
492  unsigned num_plot_points = this->nplot_points(nplot);
493  for (unsigned iplot = 0; iplot < num_plot_points; iplot++)
494  {
495  // Get local coordinates of plot point
496  this->get_s_plot(iplot, nplot, s);
497 
498  // Get Eulerian coordinates and displacements
499  this->interpolated_x(s, x);
500  this->interpolated_u_linear_elasticity(s, u);
501 
502  // Output the x,y,..
503  for (unsigned i = 0; i < DIM; i++)
504  {
505  outfile << x[i] << " ";
506  }
507 
508  // Output u,v,..
509  for (unsigned i = 0; i < DIM; i++)
510  {
511  outfile << u[i] << " ";
512  }
513 
514  outfile << std::endl;
515  }
516 
517  // Write tecplot footer (e.g. FE connectivity lists)
518  this->write_tecplot_zone_footer(outfile, nplot);
519  }
520 
521 
522  //=======================================================================
523  /// C-style output: x,y,[z],u,v,[w]
524  //=======================================================================
525  template<unsigned DIM>
527  const unsigned& nplot)
528  {
529  // Vector of local coordinates
530  Vector<double> s(DIM);
531 
532  // Tecplot header info
533  fprintf(file_pt, "%s", this->tecplot_zone_string(nplot).c_str());
534 
535  // Loop over plot points
536  unsigned num_plot_points = this->nplot_points(nplot);
537  for (unsigned iplot = 0; iplot < num_plot_points; iplot++)
538  {
539  // Get local coordinates of plot point
540  this->get_s_plot(iplot, nplot, s);
541 
542  // Coordinates
543  for (unsigned i = 0; i < DIM; i++)
544  {
545  fprintf(file_pt, "%g ", this->interpolated_x(s, i));
546  }
547 
548  // Displacement
549  for (unsigned i = 0; i < DIM; i++)
550  {
551  fprintf(file_pt, "%g ", this->interpolated_u_linear_elasticity(s, i));
552  }
553  }
554  fprintf(file_pt, "\n");
555 
556  // Write tecplot footer (e.g. FE connectivity lists)
557  this->write_tecplot_zone_footer(file_pt, nplot);
558  }
559 
560 
561  //======================================================================
562  /// Validate against exact velocity solution
563  /// Solution is provided via function pointer.
564  /// Plot at a given number of plot points and compute L2 error
565  /// and L2 norm of velocity solution over element.
566  //=======================================================================
567  template<unsigned DIM>
569  std::ostream& outfile,
571  double& error,
572  double& norm)
573  {
574  error = 0.0;
575  norm = 0.0;
576 
577  // Vector of local coordinates
578  Vector<double> s(DIM);
579 
580  // Vector for coordinates
581  Vector<double> x(DIM);
582 
583  // Set the value of n_intpt
584  unsigned n_intpt = this->integral_pt()->nweight();
585 
586  outfile << "ZONE" << std::endl;
587 
588  // Exact solution Vector (u,v,[w])
589  Vector<double> exact_soln(DIM);
590 
591  // Loop over the integration points
592  for (unsigned ipt = 0; ipt < n_intpt; ipt++)
593  {
594  // Assign values of s
595  for (unsigned i = 0; i < DIM; i++)
596  {
597  s[i] = this->integral_pt()->knot(ipt, i);
598  }
599 
600  // Get the integral weight
601  double w = this->integral_pt()->weight(ipt);
602 
603  // Get jacobian of mapping
604  double J = this->J_eulerian(s);
605 
606  // Premultiply the weights and the Jacobian
607  double W = w * J;
608 
609  // Get x position as Vector
610  this->interpolated_x(s, x);
611 
612  // Get exact solution at this point
613  (*exact_soln_pt)(x, exact_soln);
614 
615  // Displacement error
616  for (unsigned i = 0; i < DIM; i++)
617  {
618  norm += exact_soln[i] * exact_soln[i] * W;
619  error +=
620  (exact_soln[i] - this->interpolated_u_linear_elasticity(s, i)) *
621  (exact_soln[i] - this->interpolated_u_linear_elasticity(s, i)) * W;
622  }
623 
624  // Output x,y,[z]
625  for (unsigned i = 0; i < DIM; i++)
626  {
627  outfile << x[i] << " ";
628  }
629 
630  // Output u_error,v_error,[w_error]
631  for (unsigned i = 0; i < DIM; i++)
632  {
633  outfile << exact_soln[i] - this->interpolated_u_linear_elasticity(s, i)
634  << " ";
635  }
636  outfile << std::endl;
637  }
638  }
639 
640  //======================================================================
641  /// Validate against exact velocity solution
642  /// Solution is provided via function pointer.
643  /// Plot at a given number of plot points and compute L2 error
644  /// and L2 norm of velocity solution over element. Unsteady version
645  //=======================================================================
646  template<unsigned DIM>
648  std::ostream& outfile,
650  const double& time,
651  double& error,
652  double& norm)
653  {
654  error = 0.0;
655  norm = 0.0;
656 
657  // Vector of local coordinates
658  Vector<double> s(DIM);
659 
660  // Vector for coordinates
661  Vector<double> x(DIM);
662 
663  // Set the value of n_intpt
664  unsigned n_intpt = this->integral_pt()->nweight();
665 
666  outfile << "ZONE" << std::endl;
667 
668  // Exact solution Vector (u,v,[w])
669  Vector<double> exact_soln(DIM);
670 
671  // Loop over the integration points
672  for (unsigned ipt = 0; ipt < n_intpt; ipt++)
673  {
674  // Assign values of s
675  for (unsigned i = 0; i < DIM; i++)
676  {
677  s[i] = this->integral_pt()->knot(ipt, i);
678  }
679 
680  // Get the integral weight
681  double w = this->integral_pt()->weight(ipt);
682 
683  // Get jacobian of mapping
684  double J = this->J_eulerian(s);
685 
686  // Premultiply the weights and the Jacobian
687  double W = w * J;
688 
689  // Get x position as Vector
690  this->interpolated_x(s, x);
691 
692  // Get exact solution at this point
693  (*exact_soln_pt)(time, x, exact_soln);
694 
695  // Displacement error
696  for (unsigned i = 0; i < DIM; i++)
697  {
698  norm += exact_soln[i] * exact_soln[i] * W;
699  error +=
700  (exact_soln[i] - this->interpolated_u_linear_elasticity(s, i)) *
701  (exact_soln[i] - this->interpolated_u_linear_elasticity(s, i)) * W;
702  }
703 
704  // Output x,y,[z]
705  for (unsigned i = 0; i < DIM; i++)
706  {
707  outfile << x[i] << " ";
708  }
709 
710  // Output u_error,v_error,[w_error]
711  for (unsigned i = 0; i < DIM; i++)
712  {
713  outfile << exact_soln[i] - this->interpolated_u_linear_elasticity(s, i)
714  << " ";
715  }
716  outfile << std::endl;
717  }
718  }
719 
720 
721  // Instantiate the required elements
722  template class LinearElasticityEquationsBase<2>;
723  template class LinearElasticityEquations<2>;
724 
725  template class QLinearElasticityElement<3, 3>;
726  template class LinearElasticityEquationsBase<3>;
727  template class LinearElasticityEquations<3>;
728 
729 
730 } // namespace oomph
static char t char * s
Definition: cfortran.h:568
cstr elem_len * i
Definition: cfortran.h:603
A Class for the derivatives of shape functions The class design is essentially the same as Shape,...
Definition: shape.h:278
unsigned long nrow() const
Return the number of rows of the matrix.
Definition: matrices.h:485
unsigned long ncol() const
Return the number of columns of the matrix.
Definition: matrices.h:491
void(* SteadyExactSolutionFctPt)(const Vector< double > &, Vector< double > &)
Function pointer for function that computes vector-valued steady "exact solution" as .
Definition: elements.h:1759
void(* UnsteadyExactSolutionFctPt)(const double &, const Vector< double > &, Vector< double > &)
Function pointer for function that computes Vector-valued time-dependent function as .
Definition: elements.h:1765
A base class for elements that solve the equations of linear elasticity in Cartesian coordinates....
static double Default_lambda_sq_value
Static default value for timescale ratio (1.0 – for natural scaling)
void get_strain(const Vector< double > &s, DenseMatrix< double > &strain) const
Return the strain tensor.
//////////////////////////////////////////////////////////////////// ////////////////////////////////...
void output_fct(std::ostream &outfile, const unsigned &nplot, FiniteElement::SteadyExactSolutionFctPt exact_soln_pt)
Output exact solution x,y,[z],u,v,[w].
void compute_error(std::ostream &outfile, FiniteElement::SteadyExactSolutionFctPt exact_soln_pt, double &error, double &norm)
Validate against exact solution. Solution is provided via function pointer. Plot at a given number of...
void output(std::ostream &outfile)
Output: x,y,[z],u,v,[w].
void get_stress(const Vector< double > &s, DenseMatrix< double > &sigma) const
Return the Cauchy stress tensor, as calculated from the elasticity tensor at specified local coordina...
virtual void fill_in_generic_contribution_to_residuals_linear_elasticity(Vector< double > &residuals, DenseMatrix< double > &jacobian, unsigned flag)
Private helper function to compute residuals and (if requested via flag) also the Jacobian matrix.
An OomphLibError object which should be thrown when an run-time error is encountered....
///////////////////////////////////////////////////////////////////// ///////////////////////////////...
A Class for shape functions. In simple cases, the shape functions have only one index that can be tho...
Definition: shape.h:76
//////////////////////////////////////////////////////////////////// ////////////////////////////////...