fourier_decomposed_helmholtz_bc_elements.h
Go to the documentation of this file.
1 // LIC// ====================================================================
2 // LIC// This file forms part of oomph-lib, the object-oriented,
3 // LIC// multi-physics finite-element library, available
4 // LIC// at http://www.oomph-lib.org.
5 // LIC//
6 // LIC// Copyright (C) 2006-2023 Matthias Heil and Andrew Hazel
7 // LIC//
8 // LIC// This library is free software; you can redistribute it and/or
9 // LIC// modify it under the terms of the GNU Lesser General Public
10 // LIC// License as published by the Free Software Foundation; either
11 // LIC// version 2.1 of the License, or (at your option) any later version.
12 // LIC//
13 // LIC// This library is distributed in the hope that it will be useful,
14 // LIC// but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // LIC// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
16 // LIC// Lesser General Public License for more details.
17 // LIC//
18 // LIC// You should have received a copy of the GNU Lesser General Public
19 // LIC// License along with this library; if not, write to the Free Software
20 // LIC// Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
21 // LIC// 02110-1301 USA.
22 // LIC//
23 // LIC// The authors may be contacted at oomph-lib@maths.man.ac.uk.
24 // LIC//
25 // LIC//====================================================================
26 // Header file for elements that are used to apply Sommerfeld
27 // boundary conditions to the Fourier decomposed Helmholtz equations
28 #ifndef OOMPH_FOURIER_DECOMPOSED_HELMHOLTZ_BC_ELEMENTS_HEADER
29 #define OOMPH_FOURIER_DECOMPOSED_HELMHOLTZ_BC_ELEMENTS_HEADER
30 
31 
32 // Config header generated by autoconfig
33 #ifdef HAVE_CONFIG_H
34 #include <oomph-lib-config.h>
35 #endif
36 
37 #include "math.h"
38 #include <complex>
39 
40 // Get the Bessel functions
41 #include "oomph_crbond_bessel.h"
42 
44 
45 namespace oomph
46 {
47  /// //////////////////////////////////////////////////////////////////
48  /// //////////////////////////////////////////////////////////////////
49  /// //////////////////////////////////////////////////////////////////
50 
51 
52  //======================================================================
53  /// A class for elements that allow the approximation of the
54  /// Sommerfeld radiation BC for Fourier decomposed Helmholtz equations.
55  /// The element geometry is obtained from the FaceGeometry<ELEMENT>
56  /// policy class.
57  //======================================================================
58  template<class ELEMENT>
60  : public virtual FaceGeometry<ELEMENT>,
61  public virtual FaceElement
62  {
63  public:
64  /// Constructor, takes the pointer to the "bulk" element and the
65  /// index of the face to which the element is attached.
67  const int& face_index);
68 
69  /// Broken empty constructor
71  {
72  throw OomphLibError("Don't call empty constructor for "
73  "FourierDecomposedHelmholtzBCElementBase",
74  OOMPH_CURRENT_FUNCTION,
75  OOMPH_EXCEPTION_LOCATION);
76  }
77 
78  /// Broken copy constructor
80  const FourierDecomposedHelmholtzBCElementBase& dummy) = delete;
81 
82  /// Broken assignment operator
83  // Commented out broken assignment operator because this can lead to a
84  // conflict warning when used in the virtual inheritence hierarchy.
85  // Essentially the compiler doesn't realise that two separate
86  // implementations of the broken function are the same and so, quite
87  // rightly, it shouts.
88  /*void operator=(const FourierDecomposedHelmholtzBCElementBase&) = delete;*/
89 
90 
91  /// Specify the value of nodal zeta from the face geometry
92  /// The "global" intrinsic coordinate of the element when
93  /// viewed as part of a geometric object should be given by
94  /// the FaceElement representation, by default (needed to break
95  /// indeterminacy if bulk element is SolidElement)
96  double zeta_nodal(const unsigned& n,
97  const unsigned& k,
98  const unsigned& i) const
99  {
100  return FaceElement::zeta_nodal(n, k, i);
101  }
102 
103 
104  /// Output function -- forward to broken version in FiniteElement
105  /// until somebody decides what exactly they want to plot here...
106  void output(std::ostream& outfile)
107  {
108  FiniteElement::output(outfile);
109  }
110 
111  /// Output function -- forward to broken version in FiniteElement
112  /// until somebody decides what exactly they want to plot here...
113  void output(std::ostream& outfile, const unsigned& n_plot)
114  {
115  FiniteElement::output(outfile, n_plot);
116  }
117 
118  /// C-style output function -- forward to broken version in FiniteElement
119  /// until somebody decides what exactly they want to plot here...
120  void output(FILE* file_pt)
121  {
122  FiniteElement::output(file_pt);
123  }
124 
125  /// C-style output function -- forward to broken version in
126  /// FiniteElement until somebody decides what exactly they want to plot
127  /// here...
128  void output(FILE* file_pt, const unsigned& n_plot)
129  {
130  FiniteElement::output(file_pt, n_plot);
131  }
132 
133  /// Return the index at which the real/imag unknown value
134  /// is stored.
135  virtual inline std::complex<unsigned> u_index_fourier_decomposed_helmholtz()
136  const
137  {
138  return std::complex<unsigned>(
141  }
142 
143  /// Compute the element's contribution to the time-averaged
144  /// radiated power over the artificial boundary
146  {
147  // Dummy output file
148  std::ofstream outfile;
149  return global_power_contribution(outfile);
150  }
151 
152  /// Compute the element's contribution to the time-averaged
153  /// radiated power over the artificial boundary. Also output the
154  /// power density as a fct of the zenith angle in the specified
155  /// output file if it's open.
156  double global_power_contribution(std::ofstream& outfile)
157  {
158  // pointer to the corresponding bulk element
159  ELEMENT* bulk_elem_pt = dynamic_cast<ELEMENT*>(this->bulk_element_pt());
160 
161  // Number of nodes in bulk element
162  unsigned nnode_bulk = bulk_elem_pt->nnode();
163  const unsigned n_node_local = this->nnode();
164 
165  // get the dim of the bulk and local nodes
166  const unsigned bulk_dim = bulk_elem_pt->dim();
167  const unsigned local_dim = this->node_pt(0)->ndim();
168 
169  // Set up memory for the shape and test functions
170  Shape psi(n_node_local);
171 
172  // Set up memory for the shape functions
173  Shape psi_bulk(nnode_bulk);
174  DShape dpsi_bulk_dx(nnode_bulk, bulk_dim);
175 
176  // Set up memory for the outer unit normal
177  Vector<double> unit_normal(bulk_dim);
178 
179  // Set the value of n_intpt
180  const unsigned n_intpt = integral_pt()->nweight();
181 
182  // Set the Vector to hold local coordinates
183  Vector<double> s(local_dim - 1);
184  double power = 0.0;
185 
186  // Output?
187  if (outfile.is_open())
188  {
189  outfile << "ZONE\n";
190  }
191 
192  // Loop over the integration points
193  //--------------------------------
194  for (unsigned ipt = 0; ipt < n_intpt; ipt++)
195  {
196  // Assign values of s
197  for (unsigned i = 0; i < (local_dim - 1); i++)
198  {
199  s[i] = integral_pt()->knot(ipt, i);
200  }
201  // get the outer_unit_ext vector
202  this->outer_unit_normal(s, unit_normal);
203 
204  // Get the integral weight
205  double w = integral_pt()->weight(ipt);
206 
207  // Get jacobian of mapping
208  double J = J_eulerian(s);
209 
210  // Premultiply the weights and the Jacobian
211  double W = w * J;
212 
213  // Get local coordinates in bulk element by copy construction
215 
216  // Call the derivatives of the shape functions
217  // in the bulk -- must do this via s because this point
218  // is not an integration point the bulk element!
219  (void)bulk_elem_pt->dshape_eulerian(s_bulk, psi_bulk, dpsi_bulk_dx);
220  this->shape(s, psi);
221 
222  // Derivs of Eulerian coordinates w.r.t. local coordinates
223  std::complex<double> dphi_dn(0.0, 0.0);
224  Vector<std::complex<double>> interpolated_dphidx(bulk_dim);
225  std::complex<double> interpolated_phi(0.0, 0.0);
226  Vector<double> x(bulk_dim);
227 
228  // Calculate function value and derivatives:
229  //-----------------------------------------
230  // Loop over nodes
231  for (unsigned l = 0; l < nnode_bulk; l++)
232  {
233  // Get the nodal value of the helmholtz unknown
234  const std::complex<double> phi_value(
235  bulk_elem_pt->nodal_value(
236  l, bulk_elem_pt->u_index_fourier_decomposed_helmholtz().real()),
237  bulk_elem_pt->nodal_value(
238  l, bulk_elem_pt->u_index_fourier_decomposed_helmholtz().imag()));
239 
240  // Loop over directions
241  for (unsigned i = 0; i < bulk_dim; i++)
242  {
243  interpolated_dphidx[i] += phi_value * dpsi_bulk_dx(l, i);
244  }
245  } // End of loop over the bulk_nodes
246 
247  for (unsigned l = 0; l < n_node_local; l++)
248  {
249  // Get the nodal value of the Helmholtz unknown
250  const std::complex<double> phi_value(
253 
254  interpolated_phi += phi_value * psi(l);
255  }
256 
257  // define dphi_dn
258  for (unsigned i = 0; i < bulk_dim; i++)
259  {
260  dphi_dn += interpolated_dphidx[i] * unit_normal[i];
261  }
262 
263  // Power density
264  double integrand = (interpolated_phi.real() * dphi_dn.imag() -
265  interpolated_phi.imag() * dphi_dn.real());
266 
267  interpolated_x(s, x);
268  double theta = atan2(x[0], x[1]);
269  // Output?
270  if (outfile.is_open())
271  {
272  outfile << x[0] << " " << x[1] << " " << theta << " " << integrand
273  << "\n";
274  }
275 
276  // ...add to integral
277  power += MathematicalConstants::Pi * x[0] * integrand * W;
278  }
279 
280  return power;
281  }
282 
283  protected:
284  /// Function to compute the test functions and to return
285  /// the Jacobian of mapping between local and global (Eulerian)
286  /// coordinates
287  inline double shape_and_test(const Vector<double>& s,
288  Shape& psi,
289  Shape& test) const
290  {
291  // Get the shape functions
292  shape(s, test);
293 
294  unsigned nnod = nnode();
295  for (unsigned i = 0; i < nnod; i++)
296  {
297  psi[i] = test[i];
298  }
299 
300  // Return the value of the jacobian
301  return J_eulerian(s);
302  }
303 
304  /// Function to compute the shape, test functions and derivates
305  /// and to return
306  /// the Jacobian of mapping between local and global (Eulerian)
307  /// coordinates
309  Shape& psi,
310  Shape& test,
311  DShape& dpsi_ds,
312  DShape& dtest_ds) const
313  {
314  // Find number of nodes
315  unsigned n_node = nnode();
316 
317  // Get the shape functions
318  dshape_local(s, psi, dpsi_ds);
319 
320  // Set the test functions to be the same as the shape functions
321  for (unsigned i = 0; i < n_node; i++)
322  {
323  for (unsigned j = 0; j < 1; j++)
324  {
325  test[i] = psi[i];
326  dtest_ds(i, j) = dpsi_ds(i, j);
327  }
328  }
329  // Return the value of the jacobian
330  return J_eulerian(s);
331  }
332 
333  /// The index at which the real and imag part of the unknown is
334  /// stored at the nodes
335  std::complex<unsigned> U_index_fourier_decomposed_helmholtz;
336  };
337 
338 
339  /// ///////////////////////////////////////////////////////////////////
340  /// ///////////////////////////////////////////////////////////////////
341  /// ///////////////////////////////////////////////////////////////////
342 
343 
344  /// =================================================================
345  /// Mesh for DtN boundary condition elements -- provides
346  /// functionality to apply Sommerfeld radiation condtion
347  /// via DtN BC.
348  /// =================================================================
349  template<class ELEMENT>
351  {
352  public:
353  /// Constructor: Specify radius of outer boundary and number of
354  /// terms used in the computation of the gamma integral
356  const unsigned& n_terms)
358  {
359  }
360 
361  /// Compute and store the gamma integral at all integration
362  /// points of the constituent elements.
363  void setup_gamma();
364 
365  /// Gamma integral evaluated at Gauss points
366  /// for specified element
368  {
369  return Gamma_at_gauss_point[el_pt];
370  }
371 
372  /// Derivative of Gamma integral w.r.t global unknown, evaluated
373  /// at Gauss points for specified element
375  FiniteElement* el_pt)
376  {
377  return D_Gamma_at_gauss_point[el_pt];
378  }
379 
380  /// The outer radius
381  double& outer_radius()
382  {
383  return Outer_radius;
384  }
385 
386  /// Number of terms used in the computation of the
387  /// gamma integral
388  unsigned& n_terms()
389  {
390  return N_terms;
391  }
392 
393  private:
394  /// Outer radius
395  double Outer_radius;
396 
397  /// Number of terms used in the Gamma computation
398  unsigned N_terms;
399 
400 
401  /// Container to store the gamma integral for given Gauss point
402  /// and element
403  std::map<FiniteElement*, Vector<std::complex<double>>> Gamma_at_gauss_point;
404 
405 
406  /// Container to store the derivate of Gamma integral w.r.t
407  /// global unknown evaluated at Gauss points for specified element
408  std::map<FiniteElement*, Vector<std::map<unsigned, std::complex<double>>>>
410  };
411 
412  /// //////////////////////////////////////////////////////////////////
413  /// //////////////////////////////////////////////////////////////////
414 
415  //=============================================================
416  /// FaceElement used to apply Sommerfeld radiation conditon
417  /// via Dirichlet to Neumann map.
418  //==============================================================
419  template<class ELEMENT>
422  {
423  public:
424  /// Construct element from specification of bulk element and
425  /// face index.
427  FiniteElement* const& bulk_el_pt, const int& face_index)
429  {
430  }
431 
432  /// Add the element's contribution to its residual vector
434  {
435  // Call the generic residuals function with flag set to 0
436  // using a dummy matrix argument
438  residuals, GeneralisedElement::Dummy_matrix, 0);
439  }
440 
441 
442  /// Add the element's contribution to its residual vector and its
443  /// Jacobian matrix
445  DenseMatrix<double>& jacobian)
446  {
447  // Call the generic routine with the flag set to 1
449  residuals, jacobian, 1);
450  }
451 
452  /// Compute the contribution of the element
453  /// to the Gamma integral and its derivates w.r.t
454  /// to global unknows; the function takes the wavenumber (for gamma
455  /// integral, not the one from the Fourier decomposition of the Helmholtz
456  /// equations!) and the polar angle theta as input.
458  const double& theta,
459  const unsigned& n,
460  std::complex<double>& gamma_con,
461  std::map<unsigned, std::complex<double>>& d_gamma_con);
462 
463 
464  /// Access function to mesh of all DtN boundary condition elements
465  /// (needed to get access to gamma values)
467  {
468  return Outer_boundary_mesh_pt;
469  }
470 
471  /// Set mesh of all DtN boundary condition elements
474  {
475  Outer_boundary_mesh_pt = mesh_pt;
476  }
477 
478 
479  /// Complete the setup of additional dependencies arising
480  /// through the far-away interaction with other nodes in
481  /// Outer_boundary_mesh_pt.
483  {
484  // Create a set of all nodes
485  std::set<Node*> node_set;
486  unsigned nel = Outer_boundary_mesh_pt->nelement();
487  for (unsigned e = 0; e < nel; e++)
488  {
489  FiniteElement* el_pt = Outer_boundary_mesh_pt->finite_element_pt(e);
490  unsigned nnod = el_pt->nnode();
491  for (unsigned j = 0; j < nnod; j++)
492  {
493  Node* nod_pt = el_pt->node_pt(j);
494 
495  // Don't add copied nodes
496  if (!(nod_pt->is_a_copy()))
497  {
498  node_set.insert(nod_pt);
499  }
500  }
501  }
502  // Now erase the current element's own nodes
503  unsigned nnod = this->nnode();
504  for (unsigned j = 0; j < nnod; j++)
505  {
506  Node* nod_pt = this->node_pt(j);
507  node_set.erase(nod_pt);
508 
509  // If the element's node is a copy then its "master" will
510  // already have been added in the set above -- remove the
511  // master to avoid double counting eqn numbers
512  if (nod_pt->is_a_copy())
513  {
514  node_set.erase(nod_pt->copied_node_pt());
515  }
516  }
517 
518  // Now declare these nodes to be the element's external Data
519  for (std::set<Node*>::iterator it = node_set.begin();
520  it != node_set.end();
521  it++)
522  {
523  this->add_external_data(*it);
524  }
525  }
526 
527 
528  private:
529  /// Compute the element's residual vector
530  /// Jacobian matrix.
531  /// Overloaded version, using the gamma computed in the mesh
533  Vector<double>& residuals,
534  DenseMatrix<double>& jacobian,
535  const unsigned& flag)
536  {
537  // Find out how many nodes there are
538  const unsigned n_node = this->nnode();
539 
540  // Set up memory for the shape and test functions
541  Shape test(n_node);
542  Shape psi(n_node);
543 
544  // Set the value of Nintpt
545  const unsigned n_intpt = this->integral_pt()->nweight();
546 
547  // Set the Vector to hold local coordinates
548  Vector<double> s(1);
549 
550  // Integers to hold the local equation and unknown numbers
551  int local_eqn_real = 0, local_unknown_real = 0, global_unk_real = 0,
552  local_eqn_imag = 0, local_unknown_imag = 0, global_unk_imag = 0;
553  int external_global_unk_real = 0, external_unknown_real = 0,
554  external_global_unk_imag = 0, external_unknown_imag = 0;
555 
556 
557  // Get the gamma value for the current integration point
558  // from the mesh
560  Outer_boundary_mesh_pt->gamma_at_gauss_point(this));
561 
563  Outer_boundary_mesh_pt->d_gamma_at_gauss_point(this));
564 
565  // Loop over the integration points
566  //--------------------------------
567  for (unsigned ipt = 0; ipt < n_intpt; ipt++)
568  {
569  // Assign values of s
570  for (unsigned i = 0; i < 1; i++)
571  {
572  s[i] = this->integral_pt()->knot(ipt, i);
573  }
574 
575  // Get the integral weight
576  double w = this->integral_pt()->weight(ipt);
577 
578  // Find the shape test functions and derivates; return the Jacobian
579  // of the mapping between local and global (Eulerian)
580  // coordinates
581  double J = this->shape_and_test(s, psi, test);
582 
583  // Premultiply the weights and the Jacobian
584  double W = w * J;
585 
586  // Build up radius
587  double r = 0.0;
588  for (unsigned j = 0; j < n_node; j++)
589  {
590  r += this->node_pt(j)->x(0) * psi(j);
591  }
592 
593  // Now add to the appropriate equations
594  // Loop over the test functions:loop over the nodes
595  for (unsigned l = 0; l < n_node; l++)
596  {
597  local_eqn_real = this->nodal_local_eqn(
598  l, this->U_index_fourier_decomposed_helmholtz.real());
599 
600  local_eqn_imag = this->nodal_local_eqn(
601  l, this->U_index_fourier_decomposed_helmholtz.imag());
602 
603  // IF it's not a boundary condition
604  if (local_eqn_real >= 0)
605  {
606  // Add the gamma contribution in this int_point to the res
607  residuals[local_eqn_real] += gamma[ipt].real() * test[l] * r * W;
608 
609  // Calculate the jacobian
610  //-----------------------
611  if (flag)
612  {
613  // Loop over the shape functions again
614  for (unsigned l2 = 0; l2 < n_node; l2++)
615  {
616  // Add the contribution of the local data
617  local_unknown_real = this->nodal_local_eqn(
618  l2, this->U_index_fourier_decomposed_helmholtz.real());
619 
620  local_unknown_imag = this->nodal_local_eqn(
621  l2, this->U_index_fourier_decomposed_helmholtz.imag());
622 
623  // If at a non-zero degree of freedom add in the entry
624  if (local_unknown_real >= 0)
625  {
626  // Add the contribution
627  global_unk_real = this->eqn_number(local_unknown_real);
628  jacobian(local_eqn_real, local_unknown_real) +=
629  d_gamma[ipt][global_unk_real].real() * test[l] * r * W;
630  }
631  if (local_unknown_imag >= 0)
632  {
633  // Add the contribution
634  global_unk_imag = this->eqn_number(local_unknown_imag);
635  jacobian(local_eqn_real, local_unknown_imag) +=
636  d_gamma[ipt][global_unk_imag].real() * test[l] * r * W;
637  }
638  } // End of loop over nodes l2
639 
640  // Add the contribution of the external data
641  unsigned n_ext_data = this->nexternal_data();
642  // Loop over the shape functions again
643  for (unsigned l2 = 0; l2 < n_ext_data; l2++)
644  {
645  // Add the contribution of the local data
646  external_unknown_real = this->external_local_eqn(
647  l2, this->U_index_fourier_decomposed_helmholtz.real());
648 
649  external_unknown_imag = this->external_local_eqn(
650  l2, this->U_index_fourier_decomposed_helmholtz.imag());
651 
652  // If at a non-zero degree of freedom add in the entry
653  if (external_unknown_real >= 0)
654  {
655  // Add the contribution
656  external_global_unk_real =
657  this->eqn_number(external_unknown_real);
658  jacobian(local_eqn_real, external_unknown_real) +=
659  d_gamma[ipt][external_global_unk_real].real() * test[l] *
660  r * W;
661  }
662  if (external_unknown_imag >= 0)
663  {
664  // Add the contribution
665  external_global_unk_imag =
666  this->eqn_number(external_unknown_imag);
667  jacobian(local_eqn_real, external_unknown_imag) +=
668  d_gamma[ipt][external_global_unk_imag].real() * test[l] *
669  r * W;
670  }
671  } // End of loop over external data
672  } // End of flag
673  } // end of local_eqn_real
674 
675  if (local_eqn_imag >= 0)
676  {
677  // Add the gamma contribution in this int_point to the res
678  residuals[local_eqn_imag] += gamma[ipt].imag() * test[l] * r * W;
679 
680  // Calculate the jacobian
681  //-----------------------
682  if (flag)
683  {
684  // Loop over the shape functions again
685  for (unsigned l2 = 0; l2 < n_node; l2++)
686  {
687  // Add the contribution of the local data
688  local_unknown_real = this->nodal_local_eqn(
689  l2, this->U_index_fourier_decomposed_helmholtz.real());
690 
691  local_unknown_imag = this->nodal_local_eqn(
692  l2, this->U_index_fourier_decomposed_helmholtz.imag());
693 
694  // If at a non-zero degree of freedom add in the entry
695  if (local_unknown_real >= 0)
696  {
697  // Add the contribution
698  global_unk_real = this->eqn_number(local_unknown_real);
699  jacobian(local_eqn_imag, local_unknown_real) +=
700  d_gamma[ipt][global_unk_real].imag() * test[l] * r * W;
701  }
702  if (local_unknown_imag >= 0)
703  {
704  // Add the contribution
705  global_unk_imag = this->eqn_number(local_unknown_imag);
706  jacobian(local_eqn_imag, local_unknown_imag) +=
707  d_gamma[ipt][global_unk_imag].imag() * test[l] * r * W;
708  }
709  } // End of loop over nodes l2
710 
711  // Add the contribution of the external data
712  unsigned n_ext_data = this->nexternal_data();
713 
714  // Loop over the shape functions again
715  for (unsigned l2 = 0; l2 < n_ext_data; l2++)
716  {
717  // Add the contribution of the local data
718  external_unknown_real = this->external_local_eqn(
719  l2, this->U_index_fourier_decomposed_helmholtz.real());
720 
721  external_unknown_imag = this->external_local_eqn(
722  l2, this->U_index_fourier_decomposed_helmholtz.imag());
723 
724  // If at a non-zero degree of freedom add in the entry
725  if (external_unknown_real >= 0)
726  {
727  // Add the contribution
728  external_global_unk_real =
729  this->eqn_number(external_unknown_real);
730  jacobian(local_eqn_imag, external_unknown_real) +=
731  d_gamma[ipt][external_global_unk_real].imag() * test[l] *
732  r * W;
733  }
734  if (external_unknown_imag >= 0)
735  {
736  // Add the contribution
737  external_global_unk_imag =
738  this->eqn_number(external_unknown_imag);
739  jacobian(local_eqn_imag, external_unknown_imag) +=
740  d_gamma[ipt][external_global_unk_imag].imag() * test[l] *
741  r * W;
742  }
743  } // End of loop over external data
744  } // End of flag
745  } // end of local_eqn_imag
746  } // end of loop over the nodes
747  } // End of loop over int_pt
748  }
749 
750 
751  /// Pointer to mesh of all DtN boundary condition elements
752  /// (needed to get access to gamma values)
754  };
755 
756 
757  /// /////////////////////////////////////////////////////////////
758  /// /////////////////////////////////////////////////////////////
759  /// /////////////////////////////////////////////////////////////
760 
761 
762  //===========start_compute_gamma_contribution==================
763  /// compute the contribution of the element
764  /// to the Gamma integral and its derivates w.r.t
765  /// to global unknows; the function takes wavenumber n
766  /// (from the computation of the gamma integral, not the one
767  /// from the Fourier decomposition of the Helmholtz equations!)
768  /// and polar angle theta as input.
769  //==============================================================
770  template<class ELEMENT>
773  const double& theta,
774  const unsigned& n,
775  std::complex<double>& gamma_con,
776  std::map<unsigned, std::complex<double>>& d_gamma_con)
777  {
778  // Parameters
779  int n_fourier_helmholtz =
780  dynamic_cast<ELEMENT*>(this->bulk_element_pt())->fourier_wavenumber();
781 
782  // define the imaginary number
783  const std::complex<double> I(0.0, 1.0);
784 
785  // Find out how many nodes there are
786  const unsigned n_node = this->nnode();
787 
788  // Set up memory for the shape functions
789  Shape psi(n_node);
790  DShape dpsi(n_node, 1);
791 
792  // initialise the variable
793  int local_unknown_real = 0, local_unknown_imag = 0;
794  int global_eqn_real = 0, global_eqn_imag = 0;
795 
796  // Set the value of n_intpt
797  const unsigned n_intpt = this->integral_pt()->nweight();
798 
799  // Set the Vector to hold local coordinates
800  Vector<double> s(1);
801 
802  // Initialise
803  gamma_con = std::complex<double>(0.0, 0.0);
804  d_gamma_con.clear();
805 
806  // Loop over the integration points
807  //--------------------------------
808  for (unsigned ipt = 0; ipt < n_intpt; ipt++)
809  {
810  // Assign values of s
811  for (unsigned i = 0; i < 1; i++)
812  {
813  s[i] = this->integral_pt()->knot(ipt, i);
814  }
815 
816  // Get the integral weight
817  double w = this->integral_pt()->weight(ipt);
818 
819  // Get the shape functions
820  this->dshape_local(s, psi, dpsi);
821 
822  // Eulerian coordinates at Gauss point
823  Vector<double> interpolated_x(2, 0.0);
824 
825  // Derivs of Eulerian coordinates w.r.t. local coordinates
826  Vector<double> interpolated_dxds(2);
827  std::complex<double> interpolated_u(0.0, 0.0);
828 
829  // Assemble x and its derivs
830  for (unsigned l = 0; l < n_node; l++)
831  {
832  // Loop over directions
833  for (unsigned i = 0; i < 2; i++)
834  {
835  interpolated_x[i] += this->nodal_position(l, i) * psi[l];
836  interpolated_dxds[i] += this->nodal_position(l, i) * dpsi(l, 0);
837  }
838 
839  // Get the nodal value of the helmholtz unknown
840  std::complex<double> u_value(
841  this->nodal_value(l,
842  this->U_index_fourier_decomposed_helmholtz.real()),
843  this->nodal_value(l,
844  this->U_index_fourier_decomposed_helmholtz.imag()));
845 
846  interpolated_u += u_value * psi(l);
847 
848  } // End of loop over the nodes
849 
850 
851  // calculate the integral
852  //-----------------------
853  // define the variable theta
854  double phi = atan2(interpolated_x[0], interpolated_x[1]);
855 
856  // define dphi_ds=-z'/r
857  double dphi_ds = -std::fabs(-interpolated_dxds[1] / interpolated_x[0]);
858 
859  // define the associated legendre functions
860  double p_theta =
861  Legendre_functions_helper::plgndr2(n, n_fourier_helmholtz, cos(theta));
862 
863  double p_phi =
864  Legendre_functions_helper::plgndr2(n, n_fourier_helmholtz, cos(phi));
865 
866  gamma_con += interpolated_u * p_phi * p_theta * sin(phi) * w * dphi_ds;
867 
868  // compute the contribution to each node to the map
869  for (unsigned l = 0; l < n_node; l++)
870  {
871  // Add the contribution of the real local data
872  local_unknown_real = this->nodal_local_eqn(
873  l, this->U_index_fourier_decomposed_helmholtz.real());
874  if (local_unknown_real >= 0)
875  {
876  global_eqn_real = this->eqn_number(local_unknown_real);
877  d_gamma_con[global_eqn_real] +=
878  psi(l) * p_phi * p_theta * sin(phi) * w * dphi_ds;
879  }
880 
881  // Add the contribution of the imag local data
882  local_unknown_imag = this->nodal_local_eqn(
883  l, this->U_index_fourier_decomposed_helmholtz.imag());
884  if (local_unknown_imag >= 0)
885  {
886  global_eqn_imag = this->eqn_number(local_unknown_imag);
887  d_gamma_con[global_eqn_imag] +=
888  I * psi(l) * p_phi * p_theta * sin(phi) * w * dphi_ds;
889  }
890  } // end of loop over the node
891  } // End of loop over integration points
892  }
893 
894 
895  /// //////////////////////////////////////////////////////////////////
896  /// //////////////////////////////////////////////////////////////////
897  /// //////////////////////////////////////////////////////////////////
898 
899 
900  //===========================================================================
901  /// Namespace for checking radius of nodes on (assumed to be circular)
902  /// DtN boundary
903  //===========================================================================
904  namespace ToleranceForFourierDecomposedHelmholtzOuterBoundary
905  {
906  /// Relative tolerance to within radius of points on DtN boundary
907  /// are allowed to deviate from specified value
908  extern double Tol;
909 
910  } // namespace ToleranceForFourierDecomposedHelmholtzOuterBoundary
911 
912 
913  //===========================================================================
914  /// Namespace for checking radius of nodes on (assumed to be circular)
915  /// DtN boundary
916  //===========================================================================
917  namespace ToleranceForFourierDecomposedHelmholtzOuterBoundary
918  {
919  /// Relative tolerance to within radius of points on DtN boundary
920  /// are allowed to deviate from specified value
921  double Tol = 1.0e-3;
922 
923  } // namespace ToleranceForFourierDecomposedHelmholtzOuterBoundary
924 
925  /// //////////////////////////////////////////////////////////////////
926  /// //////////////////////////////////////////////////////////////////
927  /// //////////////////////////////////////////////////////////////////
928 
929 
930  /// ================================================================
931  /// Compute and store the gamma integral and derivates
932  // /w.r.t global unknows at all integration points
933  /// of the mesh's constituent elements
934  //================================================================
935  template<class ELEMENT>
937  {
938 #ifdef PARANOID
939  {
940  // Loop over elements e
941  unsigned nel = this->nelement();
942  for (unsigned e = 0; e < nel; e++)
943  {
944  FiniteElement* fe_pt = finite_element_pt(e);
945  unsigned nnod = fe_pt->nnode();
946  for (unsigned j = 0; j < nnod; j++)
947  {
948  Node* nod_pt = fe_pt->node_pt(j);
949 
950  // Extract nodal coordinates from node:
951  Vector<double> x(2);
952  x[0] = nod_pt->x(0);
953  x[1] = nod_pt->x(1);
954 
955  // Evaluate the radial distance
956  double r = sqrt(x[0] * x[0] + x[1] * x[1]);
957 
958  // Check
959  if (Outer_radius == 0.0)
960  {
961  throw OomphLibError("Outer radius for DtN BC must not be zero!",
962  OOMPH_CURRENT_FUNCTION,
963  OOMPH_EXCEPTION_LOCATION);
964  }
965 
966  if (std::fabs((r - this->Outer_radius) / Outer_radius) >
968  {
969  std::ostringstream error_stream;
970  error_stream
971  << "Node at " << x[0] << " " << x[1] << " has radius " << r
972  << " which does not "
973  << " agree with \nspecified outer radius " << this->Outer_radius
974  << " within relative tolerance "
976  << ".\nYou can adjust the tolerance via\n"
977  << "ToleranceForFourierDecomposedHelmholtzOuterBoundary::Tol\n"
978  << "or recompile without PARANOID.\n";
979  throw OomphLibError(error_stream.str(),
980  OOMPH_CURRENT_FUNCTION,
981  OOMPH_EXCEPTION_LOCATION);
982  }
983  }
984  }
985  }
986 #endif
987 
988 
989  // Get parameters from first element
992  this->element_pt(0));
993  double k =
994  sqrt(dynamic_cast<ELEMENT*>(el_pt->bulk_element_pt())->k_squared());
995  int n_fourier_decomposed =
996  dynamic_cast<ELEMENT*>(el_pt->bulk_element_pt())->fourier_wavenumber();
997  double n_hankel_order_max = double(N_terms) + 0.5;
998  double n_hankel_order_tmp = 0.0;
999 
1000  /// Imaginary unit
1001  std::complex<double> I(0.0, 1.0);
1002 
1003  // Precompute factors in sum
1004  Vector<std::complex<double>> h_a(N_terms + 1), hp_a(N_terms + 1),
1005  q(N_terms + 1, std::complex<double>(0.0, 0.0));
1006  Vector<double> jv(N_terms + 1), yv(N_terms + 1), djv(N_terms + 1),
1007  dyv(N_terms + 1);
1008 
1009  // Get Bessel functions
1010  CRBond_Bessel::bessjyv(n_hankel_order_max,
1011  Outer_radius * k,
1012  n_hankel_order_tmp,
1013  &jv[0],
1014  &yv[0],
1015  &djv[0],
1016  &dyv[0]);
1017 
1018  // Assemble Hankel functions and their derivatives
1019  for (unsigned j = 0; j < N_terms + 1; j++)
1020  {
1021  h_a[j] = jv[j] + I * yv[j];
1022  hp_a[j] = djv[j] + I * dyv[j];
1023  }
1024 
1025  // Precompute relevant terms in sum
1026  for (unsigned i = n_fourier_decomposed; i < N_terms; i++)
1027  {
1028  double n_1 =
1029  Legendre_functions_helper::factorial(i - n_fourier_decomposed);
1030  double n_2 =
1031  Legendre_functions_helper::factorial(i + n_fourier_decomposed);
1032 
1033  q[i] = k * sqrt(MathematicalConstants::Pi / (2.0 * k * Outer_radius)) *
1034  (hp_a[i] - h_a[i] / (2.0 * k * Outer_radius)) *
1035  (2.0 * double(i) + 1.0) /
1036  (2.0 * sqrt(MathematicalConstants::Pi / (2.0 * k * Outer_radius)) *
1037  h_a[i]) *
1038  (n_1 / n_2);
1039  }
1040 
1041  // first loop over elements e
1042  unsigned nel = this->nelement();
1043  for (unsigned e = 0; e < nel; e++)
1044  {
1045  // Get a pointer to element
1048  this->element_pt(e));
1049 
1050  // Set the value of n_intpt
1051  const unsigned n_intpt = el_pt->integral_pt()->nweight();
1052 
1053  // initialise gamma integral and its derivatives
1054  Vector<std::complex<double>> gamma_vector(n_intpt,
1055  std::complex<double>(0.0, 0.0));
1056  Vector<std::map<unsigned, std::complex<double>>> d_gamma_vector(n_intpt);
1057 
1058  // Loop over the integration points
1059  for (unsigned ipt = 0; ipt < n_intpt; ipt++)
1060  {
1061  // Allocate and initialise coordinate
1062  Vector<double> x(el_pt->dim() + 1, 0.0);
1063 
1064  // Set the Vector to hold local coordinates
1065  Vector<double> s(el_pt->dim(), 0.0);
1066  for (unsigned i = 0; i < el_pt->dim(); i++)
1067  {
1068  s[i] = el_pt->integral_pt()->knot(ipt, i);
1069  }
1070 
1071  // Get the coordinates of the integration point
1072  el_pt->interpolated_x(s, x);
1073 
1074  // Polar angle
1075  double theta = atan2(x[0], x[1]);
1076 
1077  // Elemental contribution to gamma integral and its derivative
1078  std::complex<double> gamma_con(0.0, 0.0);
1079  std::map<unsigned, std::complex<double>> d_gamma_con;
1080 
1081  // loop over the Fourier terms
1082  for (unsigned nn = n_fourier_decomposed; nn < N_terms; nn++)
1083  {
1084  // Second loop over the elements
1085  // to evaluate the complete integral
1086  for (unsigned ee = 0; ee < nel; ee++)
1087  {
1089  dynamic_cast<
1091  this->element_pt(ee));
1092 
1093  // contribution of the positive term in the sum
1095  theta, nn, gamma_con, d_gamma_con);
1096 
1097  unsigned n_node = eel_pt->nnode();
1098 
1099  gamma_vector[ipt] += q[nn] * gamma_con;
1100  for (unsigned l = 0; l < n_node; l++)
1101  {
1102  // Add the contribution of the real local data
1103  int local_unknown_real = eel_pt->nodal_local_eqn(
1104  l, eel_pt->u_index_fourier_decomposed_helmholtz().real());
1105 
1106  if (local_unknown_real >= 0)
1107  {
1108  int global_eqn_real = eel_pt->eqn_number(local_unknown_real);
1109  d_gamma_vector[ipt][global_eqn_real] +=
1110  q[nn] * d_gamma_con[global_eqn_real];
1111  }
1112 
1113  // Add the contribution of the imag local data
1114  int local_unknown_imag = eel_pt->nodal_local_eqn(
1115  l, eel_pt->u_index_fourier_decomposed_helmholtz().imag());
1116 
1117  if (local_unknown_imag >= 0)
1118  {
1119  int global_eqn_imag = eel_pt->eqn_number(local_unknown_imag);
1120  d_gamma_vector[ipt][global_eqn_imag] +=
1121  q[nn] * d_gamma_con[global_eqn_imag];
1122  }
1123  } // end of loop over the node
1124  } // End of second loop over the elements
1125  } // End of loop over Fourier terms
1126  } // end of loop over integration point
1127 
1128  // Store it in map
1129  Gamma_at_gauss_point[el_pt] = gamma_vector;
1130  D_Gamma_at_gauss_point[el_pt] = d_gamma_vector;
1131 
1132  } // end of first loop over element
1133  }
1134 
1135  //===========================================================================
1136  /// Constructor, takes the pointer to the "bulk" element and the face index.
1137  //===========================================================================
1138  template<class ELEMENT>
1141  const int& face_index)
1142  : FaceGeometry<ELEMENT>(), FaceElement()
1143  {
1144  // Let the bulk element build the FaceElement, i.e. setup the pointers
1145  // to its nodes (by referring to the appropriate nodes in the bulk
1146  // element), etc.
1147  bulk_el_pt->build_face_element(face_index, this);
1148 
1149  // Set up U_index_fourier_decomposedhelmholtz.
1150  U_index_fourier_decomposed_helmholtz = std::complex<unsigned>(0, 1);
1151 
1152  // Cast to the appropriate FourierDecomposedHelmholtzEquation so that we can
1153  // find the index at which the variable is stored
1154  // We assume that the dimension of the full problem is the same
1155  // as the dimension of the node, if this is not the case you will have
1156  // to write custom elements, sorry
1158  dynamic_cast<FourierDecomposedHelmholtzEquations*>(bulk_el_pt);
1159  if (eqn_pt == 0)
1160  {
1161  std::string error_string =
1162  "Bulk element must inherit from FourierDecomposedHelmholtzEquations.";
1163  throw OomphLibError(
1164  error_string, OOMPH_CURRENT_FUNCTION, OOMPH_EXCEPTION_LOCATION);
1165  }
1166  // Otherwise read out the value
1167  else
1168  {
1169  // Read the index from the (cast) bulk element
1172  }
1173  }
1174 } // namespace oomph
1175 
1176 #endif
e
Definition: cfortran.h:571
static char t char * s
Definition: cfortran.h:568
cstr elem_len * i
Definition: cfortran.h:603
A Class for the derivatives of shape functions The class design is essentially the same as Shape,...
Definition: shape.h:278
virtual bool is_a_copy() const
Return a boolean to indicate whether the Data objact contains any copied values. A base Data object c...
Definition: nodes.h:253
FaceElements are elements that coincide with the faces of higher-dimensional "bulk" elements....
Definition: elements.h:4338
int & face_index()
Index of the face (a number that uniquely identifies the face in the element)
Definition: elements.h:4626
void outer_unit_normal(const Vector< double > &s, Vector< double > &unit_normal) const
Compute outer unit normal at the specified local coordinate.
Definition: elements.cc:6006
double zeta_nodal(const unsigned &n, const unsigned &k, const unsigned &i) const
In a FaceElement, the "global" intrinsic coordinate of the element along the boundary,...
Definition: elements.h:4497
Vector< double > local_coordinate_in_bulk(const Vector< double > &s) const
Return vector of local coordinates in bulk element, given the local coordinates in this FaceElement.
Definition: elements.cc:6353
FiniteElement *& bulk_element_pt()
Pointer to higher-dimensional "bulk" element.
Definition: elements.h:4735
double interpolated_x(const Vector< double > &s, const unsigned &i) const
Return FE interpolated coordinate x[i] at local coordinate s. Overloaded to get information from bulk...
Definition: elements.h:4528
double J_eulerian(const Vector< double > &s) const
Return the Jacobian of mapping from local to global coordinates at local position s....
Definition: elements.cc:5242
//////////////////////////////////////////////////////////////////// ////////////////////////////////...
Definition: elements.h:4998
A general Finite Element class.
Definition: elements.h:1313
Node *& node_pt(const unsigned &n)
Return a pointer to the local node n.
Definition: elements.h:2175
double nodal_value(const unsigned &n, const unsigned &i) const
Return the i-th value stored at local node n. Produces suitably interpolated values for hanging nodes...
Definition: elements.h:2593
virtual void output(std::ostream &outfile)
Output the element data — typically the values at the nodes in a format suitable for post-processing.
Definition: elements.h:3050
virtual void shape(const Vector< double > &s, Shape &psi) const =0
Calculate the geometric shape functions at local coordinate s. This function must be overloaded for e...
int nodal_local_eqn(const unsigned &n, const unsigned &i) const
Return the local equation number corresponding to the i-th value at the n-th local node.
Definition: elements.h:1432
unsigned dim() const
Return the spatial dimension of the element, i.e. the number of local coordinates required to paramet...
Definition: elements.h:2611
unsigned nnode() const
Return the number of nodes.
Definition: elements.h:2210
Integral *const & integral_pt() const
Return the pointer to the integration scheme (const version)
Definition: elements.h:1963
virtual void dshape_local(const Vector< double > &s, Shape &psi, DShape &dpsids) const
Function to compute the geometric shape functions and derivatives w.r.t. local coordinates at local c...
Definition: elements.h:1981
virtual void build_face_element(const int &face_index, FaceElement *face_element_pt)
Function for building a lower dimensional FaceElement on the specified face of the FiniteElement....
Definition: elements.cc:5132
////////////////////////////////////////////////////////////////// //////////////////////////////////...
void output(FILE *file_pt)
C-style output function – forward to broken version in FiniteElement until somebody decides what exac...
void output(std::ostream &outfile)
Output function – forward to broken version in FiniteElement until somebody decides what exactly they...
double d_shape_and_test_local(const Vector< double > &s, Shape &psi, Shape &test, DShape &dpsi_ds, DShape &dtest_ds) const
Function to compute the shape, test functions and derivates and to return the Jacobian of mapping bet...
double global_power_contribution(std::ofstream &outfile)
Compute the element's contribution to the time-averaged radiated power over the artificial boundary....
void output(std::ostream &outfile, const unsigned &n_plot)
Output function – forward to broken version in FiniteElement until somebody decides what exactly they...
void output(FILE *file_pt, const unsigned &n_plot)
C-style output function – forward to broken version in FiniteElement until somebody decides what exac...
double shape_and_test(const Vector< double > &s, Shape &psi, Shape &test) const
Function to compute the test functions and to return the Jacobian of mapping between local and global...
FourierDecomposedHelmholtzBCElementBase(const FourierDecomposedHelmholtzBCElementBase &dummy)=delete
Broken copy constructor.
double zeta_nodal(const unsigned &n, const unsigned &k, const unsigned &i) const
Broken assignment operator.
std::complex< unsigned > U_index_fourier_decomposed_helmholtz
The index at which the real and imag part of the unknown is stored at the nodes.
double global_power_contribution()
Compute the element's contribution to the time-averaged radiated power over the artificial boundary.
virtual std::complex< unsigned > u_index_fourier_decomposed_helmholtz() const
Return the index at which the real/imag unknown value is stored.
//////////////////////////////////////////////////////////////////
void fill_in_generic_residual_contribution_fourier_decomposed_helmholtz_DtN_bc(Vector< double > &residuals, DenseMatrix< double > &jacobian, const unsigned &flag)
Compute the element's residual vector Jacobian matrix. Overloaded version, using the gamma computed i...
void fill_in_contribution_to_jacobian(Vector< double > &residuals, DenseMatrix< double > &jacobian)
Add the element's contribution to its residual vector and its Jacobian matrix.
FourierDecomposedHelmholtzDtNBoundaryElement(FiniteElement *const &bulk_el_pt, const int &face_index)
Construct element from specification of bulk element and face index.
void fill_in_contribution_to_residuals(Vector< double > &residuals)
Add the element's contribution to its residual vector.
void complete_setup_of_dependencies()
Complete the setup of additional dependencies arising through the far-away interaction with other nod...
void compute_gamma_contribution(const double &theta, const unsigned &n, std::complex< double > &gamma_con, std::map< unsigned, std::complex< double >> &d_gamma_con)
Compute the contribution of the element to the Gamma integral and its derivates w....
FourierDecomposedHelmholtzDtNMesh< ELEMENT > * Outer_boundary_mesh_pt
Pointer to mesh of all DtN boundary condition elements (needed to get access to gamma values)
void set_outer_boundary_mesh_pt(FourierDecomposedHelmholtzDtNMesh< ELEMENT > *mesh_pt)
Set mesh of all DtN boundary condition elements.
FourierDecomposedHelmholtzDtNMesh< ELEMENT > * outer_boundary_mesh_pt() const
Access function to mesh of all DtN boundary condition elements (needed to get access to gamma values)
/////////////////////////////////////////////////////////////////// /////////////////////////////////...
Vector< std::complex< double > > & gamma_at_gauss_point(FiniteElement *el_pt)
Gamma integral evaluated at Gauss points for specified element.
std::map< FiniteElement *, Vector< std::complex< double > > > Gamma_at_gauss_point
Container to store the gamma integral for given Gauss point and element.
Vector< std::map< unsigned, std::complex< double > > > & d_gamma_at_gauss_point(FiniteElement *el_pt)
Derivative of Gamma integral w.r.t global unknown, evaluated at Gauss points for specified element.
FourierDecomposedHelmholtzDtNMesh(const double &outer_radius, const unsigned &n_terms)
Constructor: Specify radius of outer boundary and number of terms used in the computation of the gamm...
void setup_gamma()
Compute and store the gamma integral at all integration points of the constituent elements.
unsigned N_terms
Number of terms used in the Gamma computation.
std::map< FiniteElement *, Vector< std::map< unsigned, std::complex< double > > > > D_Gamma_at_gauss_point
Container to store the derivate of Gamma integral w.r.t global unknown evaluated at Gauss points for ...
unsigned & n_terms()
Number of terms used in the computation of the gamma integral.
//////////////////////////////////////////////////////////////////// ////////////////////////////////...
virtual std::complex< unsigned > u_index_fourier_decomposed_helmholtz() const
Broken assignment operator.
unsigned nexternal_data() const
Return the number of external data objects.
Definition: elements.h:829
unsigned long eqn_number(const unsigned &ieqn_local) const
Return the global equation number corresponding to the ieqn_local-th local equation number.
Definition: elements.h:704
static DenseMatrix< double > Dummy_matrix
Empty dense matrix used as a dummy argument to combined residual and jacobian functions in the case w...
Definition: elements.h:227
int external_local_eqn(const unsigned &i, const unsigned &j)
Return the local equation number corresponding to the j-th value stored at the i-th external data.
Definition: elements.h:311
unsigned add_external_data(Data *const &data_pt, const bool &fd=true)
Add a (pointer to an) external data object to the element and return its index (i....
Definition: elements.cc:307
virtual double knot(const unsigned &i, const unsigned &j) const =0
Return local coordinate s[j] of i-th integration point.
virtual unsigned nweight() const =0
Return the number of integration points of the scheme.
virtual double weight(const unsigned &i) const =0
Return weight of i-th integration point.
A general mesh class.
Definition: mesh.h:67
Nodes are derived from Data, but, in addition, have a definite (Eulerian) position in a space of a gi...
Definition: nodes.h:906
double & x(const unsigned &i)
Return the i-th nodal coordinate.
Definition: nodes.h:1060
unsigned ndim() const
Return (Eulerian) spatial dimension of the node.
Definition: nodes.h:1054
virtual Node * copied_node_pt() const
Return pointer to copied node (null if the current node is not a copy – always the case here; it's ov...
Definition: nodes.h:1107
An OomphLibError object which should be thrown when an run-time error is encountered....
A Class for shape functions. In simple cases, the shape functions have only one index that can be tho...
Definition: shape.h:76
std::string string(const unsigned &i)
Return the i-th string or "" if the relevant string hasn't been defined.
double plgndr2(const unsigned &l, const unsigned &m, const double &x)
Legendre polynomials depending on two parameters.
const double Pi
50 digits from maple
const std::complex< double > I(0.0, 1.0)
The imaginary unit.
double Tol
Relative tolerance to within radius of points on DtN boundary are allowed to deviate from specified v...
//////////////////////////////////////////////////////////////////// ////////////////////////////////...