double_multi_vector.cc
Go to the documentation of this file.
1 // LIC// ====================================================================
2 // LIC// This file forms part of oomph-lib, the object-oriented,
3 // LIC// multi-physics finite-element library, available
4 // LIC// at http://www.oomph-lib.org.
5 // LIC//
6 // LIC// Copyright (C) 2006-2024 Matthias Heil and Andrew Hazel
7 // LIC//
8 // LIC// This library is free software; you can redistribute it and/or
9 // LIC// modify it under the terms of the GNU Lesser General Public
10 // LIC// License as published by the Free Software Foundation; either
11 // LIC// version 2.1 of the License, or (at your option) any later version.
12 // LIC//
13 // LIC// This library is distributed in the hope that it will be useful,
14 // LIC// but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // LIC// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
16 // LIC// Lesser General Public License for more details.
17 // LIC//
18 // LIC// You should have received a copy of the GNU Lesser General Public
19 // LIC// License along with this library; if not, write to the Free Software
20 // LIC// Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
21 // LIC// 02110-1301 USA.
22 // LIC//
23 // LIC// The authors may be contacted at oomph-lib@maths.man.ac.uk.
24 // LIC//
25 // LIC//====================================================================
26 #include "double_multi_vector.h"
27 #include "matrices.h"
28 
29 namespace oomph
30 {
31  /// The contents of the vector are redistributed to match the new
32  /// distribution. In a non-MPI rebuild this method works, but does nothing.
33  /// \b NOTE 1: The current distribution and the new distribution must have
34  /// the same number of global rows.
35  /// \b NOTE 2: The current distribution and the new distribution must have
36  /// the same Communicator.
38  const LinearAlgebraDistribution* const& dist_pt)
39  {
40 #ifdef OOMPH_HAS_MPI
41 #ifdef PARANOID
42  if (!Internal_values)
43  {
44  // if this vector does not own the double* values then it cannot be
45  // distributed.
46  // note: this is not stictly necessary - would just need to be careful
47  // with delete[] below.
48  std::ostringstream error_message;
49  error_message
50  << "This multi vector does not own its data (i.e. data has been "
51  << "passed in via set_external_values() and therefore "
52  << "cannot be redistributed";
53  throw OomphLibError(
54  error_message.str(), OOMPH_CURRENT_FUNCTION, OOMPH_EXCEPTION_LOCATION);
55  }
56  // paranoid check that the nrows for both distributions is the
57  // same
58  if (dist_pt->nrow() != this->nrow())
59  {
60  std::ostringstream error_message;
61  error_message << "The number of global rows in the new distribution ("
62  << dist_pt->nrow() << ") is not equal to the number"
63  << " of global rows in the current distribution ("
64  << this->nrow() << ").\n";
65  throw OomphLibError(
66  error_message.str(), OOMPH_CURRENT_FUNCTION, OOMPH_EXCEPTION_LOCATION);
67  }
68  // paranoid check that the current distribution and the new distribution
69  // have the same Communicator
70  OomphCommunicator temp_comm(*dist_pt->communicator_pt());
71  if (!(temp_comm == *this->distribution_pt()->communicator_pt()))
72  {
73  std::ostringstream error_message;
74  error_message << "The new distribution and the current distribution must "
75  << "have the same communicator.";
76  throw OomphLibError(
77  error_message.str(), OOMPH_CURRENT_FUNCTION, OOMPH_EXCEPTION_LOCATION);
78  }
79 #endif
80 
81  // check the distributions are not the same
82  if (!((*this->distribution_pt()) == *dist_pt))
83  {
84  // Cache the number of vectors
85  const unsigned n_vector = this->Nvector;
86 
87  // get the rank and the number of processors
88  int my_rank = this->distribution_pt()->communicator_pt()->my_rank();
89  int nproc = this->distribution_pt()->communicator_pt()->nproc();
90 
91  // if both vectors are distributed
92  if (this->distributed() && dist_pt->distributed())
93  {
94  // new nrow_local and first_row data
95  Vector<unsigned> new_first_row_data(nproc);
96  Vector<unsigned> new_nrow_local_data(nproc);
97  Vector<unsigned> current_first_row_data(nproc);
98  Vector<unsigned> current_nrow_local_data(nproc);
99  for (int i = 0; i < nproc; i++)
100  {
101  new_first_row_data[i] = dist_pt->first_row(i);
102  new_nrow_local_data[i] = dist_pt->nrow_local(i);
103  current_first_row_data[i] = this->first_row(i);
104  current_nrow_local_data[i] = this->nrow_local(i);
105  }
106 
107  // compute which local rows are expected to be received from each
108  // processor / sent to each processor
109  Vector<unsigned> new_first_row_for_proc(nproc);
110  Vector<unsigned> new_nrow_local_for_proc(nproc);
111  Vector<unsigned> new_first_row_from_proc(nproc);
112  Vector<unsigned> new_nrow_local_from_proc(nproc);
113 
114  // for every processor compute first_row and nrow_local that will
115  // will sent and received by this processor
116  for (int p = 0; p < nproc; p++)
117  {
118  // start with data to be sent
119  if ((new_first_row_data[p] < (current_first_row_data[my_rank] +
120  current_nrow_local_data[my_rank])) &&
121  (current_first_row_data[my_rank] <
122  (new_first_row_data[p] + new_nrow_local_data[p])))
123  {
124  new_first_row_for_proc[p] =
125  std::max(current_first_row_data[my_rank], new_first_row_data[p]);
126  new_nrow_local_for_proc[p] =
127  std::min((current_first_row_data[my_rank] +
128  current_nrow_local_data[my_rank]),
129  (new_first_row_data[p] + new_nrow_local_data[p])) -
130  new_first_row_for_proc[p];
131  }
132 
133  // and data to be received
134  if ((new_first_row_data[my_rank] <
135  (current_first_row_data[p] + current_nrow_local_data[p])) &&
136  (current_first_row_data[p] <
137  (new_first_row_data[my_rank] + new_nrow_local_data[my_rank])))
138  {
139  new_first_row_from_proc[p] =
140  std::max(current_first_row_data[p], new_first_row_data[my_rank]);
141  new_nrow_local_from_proc[p] =
142  std::min(
143  (current_first_row_data[p] + current_nrow_local_data[p]),
144  (new_first_row_data[my_rank] + new_nrow_local_data[my_rank])) -
145  new_first_row_from_proc[p];
146  }
147  }
148 
149  // Storage for the new data
150  double** temp_data = new double*[n_vector];
151  double* contiguous_temp_data =
152  new double[n_vector * new_nrow_local_data[my_rank]];
153  for (unsigned v = 0; v < n_vector; ++v)
154  {
155  temp_data[v] =
156  &contiguous_temp_data[v * new_nrow_local_data[my_rank]];
157  }
158 
159  // "send to self" or copy Data that does not need to be sent else where
160  // to temp_data
161  if (new_nrow_local_for_proc[my_rank] != 0)
162  {
163  unsigned j =
164  new_first_row_for_proc[my_rank] - current_first_row_data[my_rank];
165  unsigned k =
166  new_first_row_for_proc[my_rank] - new_first_row_data[my_rank];
167  for (unsigned i = 0; i < new_nrow_local_for_proc[my_rank]; i++)
168  {
169  for (unsigned v = 0; v < n_vector; ++v)
170  {
171  temp_data[v][k + i] = Values[v][j + i];
172  }
173  }
174  }
175 
176  // send and receive circularly
177  for (int p = 1; p < nproc; p++)
178  {
179  // next processor to send to
180  unsigned dest_p = (my_rank + p) % nproc;
181 
182  // next processor to receive from
183  unsigned source_p = (nproc + my_rank - p) % nproc;
184 
185  // send and receive the value
186  MPI_Status status;
187  for (unsigned v = 0; v < n_vector; v++)
188  {
189  MPI_Sendrecv(Values[v] + new_first_row_for_proc[dest_p] -
190  current_first_row_data[my_rank],
191  new_nrow_local_for_proc[dest_p],
192  MPI_DOUBLE,
193  dest_p,
194  1,
195  temp_data[v] + new_first_row_from_proc[source_p] -
196  new_first_row_data[my_rank],
197  new_nrow_local_from_proc[source_p],
198  MPI_DOUBLE,
199  source_p,
200  1,
201  this->distribution_pt()->communicator_pt()->mpi_comm(),
202  &status);
203  }
204  }
205 
206  // copy from temp data to Values_pt
207  delete[] Values[0];
208  delete[] Values;
209  Values = temp_data;
210  }
211  // if this vector is distributed but the new distributed is global
212  else if (this->distributed() && !dist_pt->distributed())
213  {
214  // copy existing Values_pt to temp_data
215  unsigned n_local_data = this->nrow_local();
216  double** temp_data = new double*[n_vector];
217  // New continguous data
218  double* contiguous_temp_data = new double[n_vector * n_local_data];
219  for (unsigned v = 0; v < n_vector; ++v)
220  {
221  temp_data[v] = &contiguous_temp_data[v * n_local_data];
222  for (unsigned i = 0; i < n_local_data; i++)
223  {
224  temp_data[v][i] = Values[v][i];
225  }
226  }
227 
228  // clear and resize Values_pt
229  delete[] Values[0];
230  double* values = new double[this->nrow() * n_vector];
231  for (unsigned v = 0; v < n_vector; v++)
232  {
233  Values[v] = &values[v * this->nrow()];
234  }
235 
236  // create a int vector of first rows
237  int* dist_first_row = new int[nproc];
238  int* dist_nrow_local = new int[nproc];
239  for (int p = 0; p < nproc; p++)
240  {
241  dist_first_row[p] = this->first_row(p);
242  dist_nrow_local[p] = this->nrow_local(p);
243  }
244 
245  // gather the local vectors from all processors on all processors
246  int my_local_data(this->nrow_local());
247 
248  // Loop over all vectors
249  for (unsigned v = 0; v < n_vector; v++)
250  {
251  MPI_Allgatherv(
252  temp_data[v],
253  my_local_data,
254  MPI_DOUBLE,
255  Values[v],
256  dist_nrow_local,
257  dist_first_row,
258  MPI_DOUBLE,
259  this->distribution_pt()->communicator_pt()->mpi_comm());
260  }
261 
262  // update the distribution
263  this->build_distribution(dist_pt);
264 
265  // delete the temp_data
266  delete[] temp_data[0];
267  delete[] temp_data;
268 
269  // clean up
270  delete[] dist_first_row;
271  delete[] dist_nrow_local;
272  }
273 
274  // if this vector is not distrubted but the target vector is
275  else if (!this->distributed() && dist_pt->distributed())
276  {
277  // cache the new nrow_local
278  unsigned nrow_local = dist_pt->nrow_local();
279 
280  // and first_row
281  unsigned first_row = dist_pt->first_row();
282 
283  const unsigned n_local_data = nrow_local;
284  double** temp_data = new double*[n_vector];
285  double* contiguous_temp_data = new double[n_vector * n_local_data];
286 
287  // copy the data
288  for (unsigned v = 0; v < n_vector; v++)
289  {
290  temp_data[v] = &contiguous_temp_data[v * n_local_data];
291  for (unsigned i = 0; i < n_local_data; i++)
292  {
293  temp_data[v][i] = Values[v][first_row + i];
294  }
295  }
296 
297  // copy to Values_pt
298  delete[] Values[0];
299  delete[] Values;
300  Values = temp_data;
301 
302  // update the distribution
303  this->build_distribution(dist_pt);
304  }
305 
306  // copy the Distribution
307  this->build_distribution(dist_pt);
308  }
309 #endif
310 
311  // Update the doublevector representation
313  }
314 
315 
316 } // namespace oomph
cstr elem_len * i
Definition: cfortran.h:603
bool distributed() const
distribution is serial or distributed
LinearAlgebraDistribution * distribution_pt() const
access to the LinearAlgebraDistribution
unsigned nrow() const
access function to the number of global rows.
unsigned nrow_local() const
access function for the num of local rows on this processor.
unsigned first_row() const
access function for the first row on this processor
void build_distribution(const LinearAlgebraDistribution *const dist_pt)
setup the distribution of this distributable linear algebra object
void setup_doublevector_representation()
compute the A-norm using the matrix at matrix_pt
void redistribute(const LinearAlgebraDistribution *const &dist_pt)
Allows are external data to be used by this vector. WARNING: The size of the external data must corre...
unsigned Nvector
The number of vectors.
double ** Values
the local data, need a pointer to a pointer so that the individual vectors can be extracted
double ** values()
access function to the underlying values
bool Internal_values
Boolean flag to indicate whether the vector's data (values_pt) is owned by this vector.
Describes the distribution of a distributable linear algebra type object. Typically this is a contain...
bool distributed() const
access function to the distributed - indicates whether the distribution is serial or distributed
unsigned first_row() const
access function for the first row on this processor. If not distributed then this is just zero.
OomphCommunicator * communicator_pt() const
const access to the communicator pointer
unsigned nrow() const
access function to the number of global rows.
unsigned nrow_local() const
access function for the num of local rows on this processor. If no MPI then Nrow is returned.
An oomph-lib wrapper to the MPI_Comm communicator object. Just contains an MPI_Comm object (which is ...
Definition: communicator.h:54
An OomphLibError object which should be thrown when an run-time error is encountered....
//////////////////////////////////////////////////////////////////// ////////////////////////////////...