constrained_volume_elements.cc
Go to the documentation of this file.
1 // LIC// ====================================================================
2 // LIC// This file forms part of oomph-lib, the object-oriented,
3 // LIC// multi-physics finite-element library, available
4 // LIC// at http://www.oomph-lib.org.
5 // LIC//
6 // LIC// Copyright (C) 2006-2023 Matthias Heil and Andrew Hazel
7 // LIC//
8 // LIC// This library is free software; you can redistribute it and/or
9 // LIC// modify it under the terms of the GNU Lesser General Public
10 // LIC// License as published by the Free Software Foundation; either
11 // LIC// version 2.1 of the License, or (at your option) any later version.
12 // LIC//
13 // LIC// This library is distributed in the hope that it will be useful,
14 // LIC// but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // LIC// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
16 // LIC// Lesser General Public License for more details.
17 // LIC//
18 // LIC// You should have received a copy of the GNU Lesser General Public
19 // LIC// License along with this library; if not, write to the Free Software
20 // LIC// Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
21 // LIC// 02110-1301 USA.
22 // LIC//
23 // LIC// The authors may be contacted at oomph-lib@maths.man.ac.uk.
24 // LIC//
25 // LIC//====================================================================
26 // The element-independent guts for imposition of "constant volume"
27 // constraints in free surface/interface problems.
28 
29 
31 
32 namespace oomph
33 {
34  //=====================================================================
35  /// Fill in the residuals for the volume constraint
36  //====================================================================
39  Vector<double>& residuals)
40  {
41  // Note: This element can only be used with the associated
42  // VolumeConstraintBoundingElement elements which compute the actual
43  // enclosed volume; here we only add the contribution to the
44  // residual; everything else, incl. the derivatives of this
45  // residual w.r.t. the nodal positions of the
46  // VolumeConstraintBoundingElements
47  // is handled by them
48  const int local_eqn = this->ptraded_local_eqn();
49  if (local_eqn >= 0)
50  {
51  residuals[local_eqn] -= *Prescribed_volume_pt;
52  }
53  }
54 
55  //===========================================================================
56  /// Constructor: Pass pointer to target volume. "Pressure" value that
57  /// "traded" for the volume contraint is created internally (as a Data
58  /// item with a single pressure value)
59  //===========================================================================
61  {
62  // Store pointer to prescribed volume
63  Prescribed_volume_pt = prescribed_volume_pt;
64 
65  // Create data, add as internal data and record the index
66  // (gets deleted automatically in destructor of GeneralisedElement)
68  add_internal_data(new Data(1));
69 
70  // Record that we've created it as internal data
72 
73  // ...and stored the "traded pressure" value as first value
75  }
76 
77  //======================================================================
78  /// Constructor: Pass pointer to target volume, pointer to Data
79  /// item whose value specified by index_of_traded_pressure represents
80  /// the "Pressure" value that "traded" for the volume contraint.
81  /// The Data is stored as external Data for this element.
82  //======================================================================
84  double* prescribed_volume_pt,
85  Data* p_traded_data_pt,
86  const unsigned& index_of_traded_pressure)
87  {
88  // Store pointer to prescribed volume
89  Prescribed_volume_pt = prescribed_volume_pt;
90 
91  // Add as external data and record the index
94 
95  // Record that it is external data
97 
98  // Record index
100  }
101 
102 
103  /// //////////////////////////////////////////////////////////////////////
104  /// //////////////////////////////////////////////////////////////////////
105  /// //////////////////////////////////////////////////////////////////////
106 
107 
108  //====================================================================
109  /// Helper function to fill in contributions to residuals
110  /// (remember that part of the residual is added by the
111  /// the associated VolumeConstraintElement). This is specific for
112  /// 1D line elements that bound 2D cartesian fluid elements.
113  //====================================================================
116  Vector<double>& residuals)
117  {
118  // Add in the volume constraint term if required
119  const int local_eqn = this->ptraded_local_eqn();
120  if (local_eqn >= 0)
121  {
122  // Find out how many nodes there are
123  const unsigned n_node = this->nnode();
124 
125  // Set up memeory for the shape functions
126  Shape psif(n_node);
127  DShape dpsifds(n_node, 1);
128 
129  // Set the value of n_intpt
130  const unsigned n_intpt = this->integral_pt()->nweight();
131 
132  // Storage for the local coordinate
133  Vector<double> s(1);
134 
135  // Loop over the integration points
136  for (unsigned ipt = 0; ipt < n_intpt; ipt++)
137  {
138  // Get the local coordinate at the integration point
139  s[0] = this->integral_pt()->knot(ipt, 0);
140 
141  // Get the integral weight
142  double W = this->integral_pt()->weight(ipt);
143 
144  // Call the derivatives of the shape function at the knot point
145  this->dshape_local_at_knot(ipt, psif, dpsifds);
146 
147  // Get position and tangent vector
148  Vector<double> interpolated_t1(2, 0.0);
150  for (unsigned l = 0; l < n_node; l++)
151  {
152  // Loop over directional components
153  for (unsigned i = 0; i < 2; i++)
154  {
155  interpolated_x[i] += this->nodal_position(l, i) * psif(l);
156  interpolated_t1[i] += this->nodal_position(l, i) * dpsifds(l, 0);
157  }
158  }
159 
160  // Calculate the length of the tangent Vector
161  double tlength = interpolated_t1[0] * interpolated_t1[0] +
162  interpolated_t1[1] * interpolated_t1[1];
163 
164  // Set the Jacobian of the line element
165  double J = sqrt(tlength);
166 
167  // Now calculate the normal Vector
168  Vector<double> interpolated_n(2);
169  this->outer_unit_normal(ipt, interpolated_n);
170 
171  // Assemble dot product
172  double dot = 0.0;
173  for (unsigned k = 0; k < 2; k++)
174  {
175  dot += interpolated_x[k] * interpolated_n[k];
176  }
177 
178  // Add to residual with sign chosen so that the volume is
179  // positive when the elements bound the fluid
180  residuals[local_eqn] += 0.5 * dot * W * J;
181  }
182  }
183  }
184 
185 
186  //====================================================================
187  /// Return this element's contribution to the total volume enclosed
188  //====================================================================
190  {
191  // Initialise
192  double vol = 0.0;
193 
194  // Find out how many nodes there are
195  const unsigned n_node = this->nnode();
196 
197  // Set up memeory for the shape functions
198  Shape psif(n_node);
199  DShape dpsifds(n_node, 1);
200 
201  // Set the value of n_intpt
202  const unsigned n_intpt = this->integral_pt()->nweight();
203 
204  // Storage for the local cooridinate
205  Vector<double> s(1);
206 
207  // Loop over the integration points
208  for (unsigned ipt = 0; ipt < n_intpt; ipt++)
209  {
210  // Get the local coordinate at the integration point
211  s[0] = this->integral_pt()->knot(ipt, 0);
212 
213  // Get the integral weight
214  double W = this->integral_pt()->weight(ipt);
215 
216  // Call the derivatives of the shape function at the knot point
217  this->dshape_local_at_knot(ipt, psif, dpsifds);
218 
219  // Get position and tangent vector
220  Vector<double> interpolated_t1(2, 0.0);
222  for (unsigned l = 0; l < n_node; l++)
223  {
224  // Loop over directional components
225  for (unsigned i = 0; i < 2; i++)
226  {
227  interpolated_x[i] += this->nodal_position(l, i) * psif(l);
228  interpolated_t1[i] += this->nodal_position(l, i) * dpsifds(l, 0);
229  }
230  }
231 
232  // Calculate the length of the tangent Vector
233  double tlength = interpolated_t1[0] * interpolated_t1[0] +
234  interpolated_t1[1] * interpolated_t1[1];
235 
236  // Set the Jacobian of the line element
237  double J = sqrt(tlength);
238 
239  // Now calculate the normal Vector
240  Vector<double> interpolated_n(2);
241  this->outer_unit_normal(ipt, interpolated_n);
242 
243  // Assemble dot product
244  double dot = 0.0;
245  for (unsigned k = 0; k < 2; k++)
246  {
247  dot += interpolated_x[k] * interpolated_n[k];
248  }
249 
250  // Add to volume with sign chosen so that the volume is
251  // positive when the elements bound the fluid
252  vol += 0.5 * dot * W * J;
253  }
254 
255  return vol;
256  }
257 
258 
259  /// ///////////////////////////////////////////////////////////////////
260  /// ///////////////////////////////////////////////////////////////////
261  /// ///////////////////////////////////////////////////////////////////
262 
263  //====================================================================
264  /// Return this element's contribution to the total volume enclosed
265  //====================================================================
268  {
269  // Initialise
270  double vol = 0.0;
271 
272  // Find out how many nodes there are
273  const unsigned n_node = this->nnode();
274 
275  // Set up memeory for the shape functions
276  Shape psif(n_node);
277  DShape dpsifds(n_node, 1);
278 
279  // Set the value of n_intpt
280  const unsigned n_intpt = this->integral_pt()->nweight();
281 
282  // Storage for the local cooridinate
283  Vector<double> s(1);
284 
285  // Loop over the integration points
286  for (unsigned ipt = 0; ipt < n_intpt; ipt++)
287  {
288  // Get the local coordinate at the integration point
289  s[0] = this->integral_pt()->knot(ipt, 0);
290 
291  // Get the integral weight
292  double W = this->integral_pt()->weight(ipt);
293 
294  // Call the derivatives of the shape function at the knot point
295  this->dshape_local_at_knot(ipt, psif, dpsifds);
296 
297  // Get position and tangent vector
298  Vector<double> interpolated_t1(2, 0.0);
300  for (unsigned l = 0; l < n_node; l++)
301  {
302  // Loop over directional components
303  for (unsigned i = 0; i < 2; i++)
304  {
305  interpolated_x[i] += this->nodal_position(l, i) * psif(l);
306  interpolated_t1[i] += this->nodal_position(l, i) * dpsifds(l, 0);
307  }
308  }
309 
310  // Calculate the length of the tangent Vector
311  double tlength = interpolated_t1[0] * interpolated_t1[0] +
312  interpolated_t1[1] * interpolated_t1[1];
313 
314  // Set the Jacobian of the line element
315  double J = sqrt(tlength) * interpolated_x[0];
316 
317  // Now calculate the normal Vector
318  Vector<double> interpolated_n(2);
319  this->outer_unit_normal(ipt, interpolated_n);
320 
321  // Assemble dot product
322  double dot = 0.0;
323  for (unsigned k = 0; k < 2; k++)
324  {
325  dot += interpolated_x[k] * interpolated_n[k];
326  }
327 
328  // Add to volume with sign chosen so that the volume is
329  // positive when the elements bound the fluid
330  vol += dot * W * J / 3.0;
331  }
332 
333  return vol;
334  }
335 
336 
337  /// ///////////////////////////////////////////////////////////////////
338  /// ///////////////////////////////////////////////////////////////////
339  /// ///////////////////////////////////////////////////////////////////
340 
341 
342  //====================================================================
343  /// Helper function to fill in contributions to residuals
344  /// (remember that part of the residual is added by the
345  /// the associated VolumeConstraintElement). This is specific for
346  /// axisymmetric line elements that bound 2D axisymmetric fluid elements.
347  /// The only difference from the 1D case is the addition of the
348  /// weighting factor in the integrand and division of the dot product
349  /// by three.
350  //====================================================================
353  Vector<double>& residuals)
354  {
355  // Add in the volume constraint term if required
356  const int local_eqn = this->ptraded_local_eqn();
357  if (local_eqn >= 0)
358  {
359  // Find out how many nodes there are
360  const unsigned n_node = this->nnode();
361 
362  // Set up memeory for the shape functions
363  Shape psif(n_node);
364  DShape dpsifds(n_node, 1);
365 
366  // Set the value of n_intpt
367  const unsigned n_intpt = this->integral_pt()->nweight();
368 
369  // Storage for the local cooridinate
370  Vector<double> s(1);
371 
372  // Loop over the integration points
373  for (unsigned ipt = 0; ipt < n_intpt; ipt++)
374  {
375  // Get the local coordinate at the integration point
376  s[0] = this->integral_pt()->knot(ipt, 0);
377 
378  // Get the integral weight
379  double W = this->integral_pt()->weight(ipt);
380 
381  // Call the derivatives of the shape function at the knot point
382  this->dshape_local_at_knot(ipt, psif, dpsifds);
383 
384  // Get position and tangent vector
385  Vector<double> interpolated_t1(2, 0.0);
387  for (unsigned l = 0; l < n_node; l++)
388  {
389  // Loop over directional components
390  for (unsigned i = 0; i < 2; i++)
391  {
392  interpolated_x[i] += this->nodal_position(l, i) * psif(l);
393  interpolated_t1[i] += this->nodal_position(l, i) * dpsifds(l, 0);
394  }
395  }
396 
397  // Calculate the length of the tangent Vector
398  double tlength = interpolated_t1[0] * interpolated_t1[0] +
399  interpolated_t1[1] * interpolated_t1[1];
400 
401  // Set the Jacobian of the line element
402  // multiplied by r (x[0])
403  double J = sqrt(tlength) * interpolated_x[0];
404 
405  // Now calculate the normal Vector
406  Vector<double> interpolated_n(2);
407  this->outer_unit_normal(ipt, interpolated_n);
408 
409  // Assemble dot product
410  double dot = 0.0;
411  for (unsigned k = 0; k < 2; k++)
412  {
413  dot += interpolated_x[k] * interpolated_n[k];
414  }
415 
416  // Add to residual with sign chosen so that the volume is
417  // positive when the elements bound the fluid
418  residuals[local_eqn] += dot * W * J / 3.0;
419  }
420  }
421  }
422 
423  /// ///////////////////////////////////////////////////////////////////
424  /// ///////////////////////////////////////////////////////////////////
425  /// ///////////////////////////////////////////////////////////////////
426 
427 
428  //=================================================================
429  /// Helper function to fill in contributions to residuals
430  /// (remember that part of the residual is added by the
431  /// the associated VolumeConstraintElement). This is specific for
432  /// 2D surface elements that bound 3D cartesian fluid elements.
433  //=================================================================
436  Vector<double>& residuals)
437  {
438  // Add in the volume constraint term if required
439  const int local_eqn = this->ptraded_local_eqn();
440  if (local_eqn >= 0)
441  {
442  // Find out how many nodes there are
443  const unsigned n_node = this->nnode();
444 
445  // Set up memeory for the shape functions
446  Shape psif(n_node);
447  DShape dpsifds(n_node, 2);
448 
449  // Set the value of n_intpt
450  const unsigned n_intpt = this->integral_pt()->nweight();
451 
452  // Storage for the local coordinate
453  Vector<double> s(2);
454 
455  // Loop over the integration points
456  for (unsigned ipt = 0; ipt < n_intpt; ipt++)
457  {
458  // Get the local coordinate at the integration point
459  for (unsigned i = 0; i < 2; i++)
460  {
461  s[i] = this->integral_pt()->knot(ipt, i);
462  }
463 
464  // Get the integral weight
465  double W = this->integral_pt()->weight(ipt);
466 
467  // Call the derivatives of the shape function at the knot point
468  this->dshape_local_at_knot(ipt, psif, dpsifds);
469 
470  // Get position and tangent vector
471  DenseMatrix<double> interpolated_g(2, 3, 0.0);
473  for (unsigned l = 0; l < n_node; l++)
474  {
475  // Loop over directional components
476  for (unsigned i = 0; i < 3; i++)
477  {
478  // Cache the nodal position
479  const double x_ = this->nodal_position(l, i);
480  // Calculate the position
481  interpolated_x[i] += x_ * psif(l);
482  // Calculate the two tangent vecors
483  for (unsigned j = 0; j < 2; j++)
484  {
485  interpolated_g(j, i) += x_ * dpsifds(l, j);
486  }
487  }
488  }
489 
490  // Define the (non-unit) normal vector (cross product of tangent
491  // vectors)
492  Vector<double> interpolated_n(3);
493  interpolated_n[0] = interpolated_g(0, 1) * interpolated_g(1, 2) -
494  interpolated_g(0, 2) * interpolated_g(1, 1);
495  interpolated_n[1] = interpolated_g(0, 2) * interpolated_g(1, 0) -
496  interpolated_g(0, 0) * interpolated_g(1, 2);
497  interpolated_n[2] = interpolated_g(0, 0) * interpolated_g(1, 1) -
498  interpolated_g(0, 1) * interpolated_g(1, 0);
499 
500  // The determinant of the local metric tensor is
501  // equal to the length of the normal vector, so
502  // rather than dividing and multipling, we just leave it out
503  // completely, which is why there is no J in the sum below
504 
505  // We can now find the sign to get the OUTER UNIT normal
506  for (unsigned i = 0; i < 3; i++)
507  {
508  interpolated_n[i] *= this->normal_sign();
509  }
510 
511  // Assemble dot product
512  double dot = 0.0;
513  for (unsigned k = 0; k < 3; k++)
514  {
515  dot += interpolated_x[k] * interpolated_n[k];
516  }
517 
518  // Add to residual with the sign chosen such that the volume is
519  // positive when the faces are assembled such that the outer unit
520  // normal is directed out of the bulk fluid
521  residuals[local_eqn] += dot * W / 3.0;
522  }
523  }
524  }
525 
526 
527 } // namespace oomph
static char t char * s
Definition: cfortran.h:568
cstr elem_len * i
Definition: cfortran.h:603
void fill_in_generic_residual_contribution_volume_constraint(Vector< double > &residuals)
Helper function to fill in contributions to residuals (remember that part of the residual is added by...
double contribution_to_enclosed_volume()
Return this element's contribution to the total volume enclosed.
A Class for the derivatives of shape functions The class design is essentially the same as Shape,...
Definition: shape.h:278
A class that represents a collection of data; each Data object may contain many different individual ...
Definition: nodes.h:86
void outer_unit_normal(const Vector< double > &s, Vector< double > &unit_normal) const
Compute outer unit normal at the specified local coordinate.
Definition: elements.cc:6006
double interpolated_x(const Vector< double > &s, const unsigned &i) const
Return FE interpolated coordinate x[i] at local coordinate s. Overloaded to get information from bulk...
Definition: elements.h:4528
int & normal_sign()
Sign of outer unit normal (relative to cross-products of tangent vectors in the corresponding "bulk" ...
Definition: elements.h:4612
virtual void dshape_local_at_knot(const unsigned &ipt, Shape &psi, DShape &dpsids) const
Return the geometric shape function and its derivative w.r.t. the local coordinates at the ipt-th int...
Definition: elements.cc:3239
unsigned nnode() const
Return the number of nodes.
Definition: elements.h:2210
Integral *const & integral_pt() const
Return the pointer to the integration scheme (const version)
Definition: elements.h:1963
double nodal_position(const unsigned &n, const unsigned &i) const
Return the i-th coordinate at local node n. If the node is hanging, the appropriate interpolation is ...
Definition: elements.h:2317
unsigned add_internal_data(Data *const &data_pt, const bool &fd=true)
Add a (pointer to an) internal data object to the element and return the index required to obtain it ...
Definition: elements.cc:62
unsigned add_external_data(Data *const &data_pt, const bool &fd=true)
Add a (pointer to an) external data object to the element and return its index (i....
Definition: elements.cc:307
virtual double knot(const unsigned &i, const unsigned &j) const =0
Return local coordinate s[j] of i-th integration point.
virtual unsigned nweight() const =0
Return the number of integration points of the scheme.
virtual double weight(const unsigned &i) const =0
Return weight of i-th integration point.
void fill_in_generic_residual_contribution_volume_constraint(Vector< double > &residuals)
Helper function to fill in contributions to residuals (remember that part of the residual is added by...
double contribution_to_enclosed_volume()
Return this element's contribution to the total volume enclosed.
A Class for shape functions. In simple cases, the shape functions have only one index that can be tho...
Definition: shape.h:76
void fill_in_generic_residual_contribution_volume_constraint(Vector< double > &residuals)
Helper function to fill in contributions to residuals (remember that part of the residual is added by...
int ptraded_local_eqn()
The local eqn number for the traded pressure.
void fill_in_generic_contribution_to_residuals_volume_constraint(Vector< double > &residuals)
Fill in the residuals for the volume constraint.
unsigned Index_of_traded_pressure_value
Index of the value in traded pressure data that corresponds to the traded pressure.
unsigned External_or_internal_data_index_of_traded_pressure
The Data that contains the traded pressure is stored as external or internal Data for the element....
Data * p_traded_data_pt()
Access to Data that contains the traded pressure.
VolumeConstraintElement(double *prescribed_volume_pt)
Constructor: Pass pointer to target volume. "Pressure" value that "traded" for the volume contraint i...
bool Traded_pressure_stored_as_internal_data
The Data that contains the traded pressure is stored as external or internal Data for the element....
int ptraded_local_eqn()
The local eqn number for the traded pressure.
unsigned index_of_traded_pressure()
Return the index of Data object at which the traded pressure is stored.
double * Prescribed_volume_pt
Pointer to the desired value of the volume.
double dot(const Vector< double > &a, const Vector< double > &b)
Probably not always best/fastest because not optimised for dimension but useful...
Definition: Vector.h:291
//////////////////////////////////////////////////////////////////// ////////////////////////////////...