biharmonic_elements.cc
Go to the documentation of this file.
1 // LIC// ====================================================================
2 // LIC// This file forms part of oomph-lib, the object-oriented,
3 // LIC// multi-physics finite-element library, available
4 // LIC// at http://www.oomph-lib.org.
5 // LIC//
6 // LIC// Copyright (C) 2006-2024 Matthias Heil and Andrew Hazel
7 // LIC//
8 // LIC// This library is free software; you can redistribute it and/or
9 // LIC// modify it under the terms of the GNU Lesser General Public
10 // LIC// License as published by the Free Software Foundation; either
11 // LIC// version 2.1 of the License, or (at your option) any later version.
12 // LIC//
13 // LIC// This library is distributed in the hope that it will be useful,
14 // LIC// but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // LIC// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
16 // LIC// Lesser General Public License for more details.
17 // LIC//
18 // LIC// You should have received a copy of the GNU Lesser General Public
19 // LIC// License along with this library; if not, write to the Free Software
20 // LIC// Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
21 // LIC// 02110-1301 USA.
22 // LIC//
23 // LIC// The authors may be contacted at oomph-lib@maths.man.ac.uk.
24 // LIC//
25 // LIC//====================================================================
26 // Config header generated by autoconfig
27 #ifdef HAVE_CONFIG_H
28 #include <oomph-lib-config.h>
29 #endif
30 
31 // oomph-lib includes
32 #include "biharmonic_elements.h"
33 
34 
35 namespace oomph
36 {
37  /// Compute element residual Vector only (if JFLAG=and/or element
38  /// Jacobian matrix
39  template<unsigned DIM>
42  Vector<double>& residuals, DenseMatrix<double>& jacobian, unsigned JFLAG)
43  {
44  // Find out how many nodes there are
45  unsigned n_node = this->nnode();
46 
47  // Find out how many values there
48  unsigned n_value = this->node_pt(0)->nvalue();
49 
50  // Find out how many degrees of freedom are associated with 2nd derivative
51  unsigned d2_dof = this->get_d2_dof();
52 
53  // set up memory for shape and test functions
54  Shape psi(n_node, n_value);
55  DShape dpsidx(n_node, n_value, DIM);
56  DShape d2psidx(n_node, n_value, d2_dof);
57  // Shape psi(n_node,n_value);
58  DShape dpsids(n_node, n_value, DIM);
59  DShape d2psids(n_node, n_value, d2_dof);
60 
61  // storage of single local coordinate
62  Vector<double> s(DIM);
63 
64  // number of integration points
65  unsigned n_intpt = this->integral_pt()->nweight();
66 
67  // loop over integration points
68  for (unsigned ipt = 0; ipt < n_intpt; ipt++)
69  {
70  // set local coordinates to be intergration scheme knot
71  for (unsigned i = 0; i < DIM; i++)
72  s[i] = this->integral_pt()->knot(ipt, i);
73 
74  // find weight at knot
75  double w = this->integral_pt()->weight(ipt);
76 
77  // find shape fn and derivate fns at knot point,
78  // and Jacobian of local to global mapping
79  double J = this->d2shape_eulerian(s, psi, dpsidx, d2psidx);
80  this->d2shape_local(s, psi, dpsids, d2psids);
81 
82  // premultiply weight by jacobian
83  double W = w * J;
84 
85  // initialise storage for d2u_interpolated
86  Vector<double> d2u_interpolated(DIM);
87  for (unsigned i = 0; i < DIM; i++)
88  {
89  d2u_interpolated[i] = 0.0;
90  }
91 
92  // loop over nodes, degrees of freedom, and dimension to calculate
93  // interpolated_d2u
94  for (unsigned n = 0; n < n_node; n++)
95  {
96  for (unsigned k = 0; k < n_value; k++)
97  {
98  for (unsigned d = 0; d < DIM; d++)
99  {
100  d2u_interpolated[d] +=
101  this->node_pt(n)->value(k) * d2psidx(n, k, d);
102  }
103  }
104  }
105 
106  // create vector for interpolated position and calculate
107  Vector<double> interpolated_position(DIM);
108  this->interpolated_x(s, interpolated_position);
109 
110  // evaluate source function at knot position
111  double source = 0.0;
112  get_source(ipt, interpolated_position, source);
113 
114  // loop over nodes
115  for (unsigned n1 = 0; n1 < n_node; n1++)
116  {
117  // loop over types of degrees of freedom
118  for (unsigned k1 = 0; k1 < n_value; k1++)
119  {
120  // determine the local equation number
121  int local_eqn_number = this->nodal_local_eqn(n1, k1);
122 
123  // if local equation number equal to -1 then its a boundary
124  // node(pinned)
125  if (local_eqn_number >= 0)
126  {
127  // add source contribution to residual
128  residuals[local_eqn_number] -= source * psi(n1, k1) * W;
129 
130  // loop over dimension of d2u interpolated
131  for (unsigned d1 = 0; d1 < DIM; d1++)
132  {
133  // loop over derivatives of d2psidx
134  for (unsigned d2 = 0; d2 < DIM; d2++)
135  {
136  // add residual contribution
137  residuals[local_eqn_number] +=
138  d2u_interpolated[d1] * d2psidx(n1, k1, d2) * W;
139  }
140 
141  // calculate the jacobian
142  if (JFLAG)
143  {
144  // loop over nodes
145  for (unsigned n2 = 0; n2 < n_node; n2++)
146  {
147  // loop over types of degrees of freedom
148  for (unsigned k2 = 0; k2 < n_value; k2++)
149  {
150  // get local dof, -if -1 then node pinned
151  int local_dof_number = this->nodal_local_eqn(n2, k2);
152 
153  // if local dof # = -1, then its pinned
154  if (local_dof_number >= 0)
155  {
156  // loop over derivatives
157  for (unsigned d2 = 0; d2 < DIM; d2++)
158  {
159  // add contribution to jacobian
160  jacobian(local_eqn_number, local_dof_number) +=
161  d2psidx(n1, k1, d1) * d2psidx(n2, k2, d2) * W;
162  }
163  }
164  }
165  }
166  }
167  }
168  }
169  }
170  }
171  }
172  }
173 
174  template class BiharmonicElement<2>;
175  template class BiharmonicElement<1>;
176 
177 } // namespace oomph
static char t char * s
Definition: cfortran.h:568
cstr elem_len * i
Definition: cfortran.h:603
biharmonic element class
virtual void fill_in_generic_residual_contribution_biharmonic(Vector< double > &residuals, DenseMatrix< double > &jacobian, unsigned JFLAG)
Compute element residual Vector only (if JFLAG=and/or element Jacobian matrix.
A Class for the derivatives of shape functions The class design is essentially the same as Shape,...
Definition: shape.h:278
A Class for shape functions. In simple cases, the shape functions have only one index that can be tho...
Definition: shape.h:76
//////////////////////////////////////////////////////////////////// ////////////////////////////////...