Tdarcy_elements.h
Go to the documentation of this file.
1 // LIC// ====================================================================
2 // LIC// This file forms part of oomph-lib, the object-oriented,
3 // LIC// multi-physics finite-element library, available
4 // LIC// at http://www.oomph-lib.org.
5 // LIC//
6 // LIC// Copyright (C) 2006-2024 Matthias Heil and Andrew Hazel
7 // LIC//
8 // LIC// This library is free software; you can redistribute it and/or
9 // LIC// modify it under the terms of the GNU Lesser General Public
10 // LIC// License as published by the Free Software Foundation; either
11 // LIC// version 2.1 of the License, or (at your option) any later version.
12 // LIC//
13 // LIC// This library is distributed in the hope that it will be useful,
14 // LIC// but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // LIC// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
16 // LIC// Lesser General Public License for more details.
17 // LIC//
18 // LIC// You should have received a copy of the GNU Lesser General Public
19 // LIC// License along with this library; if not, write to the Free Software
20 // LIC// Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
21 // LIC// 02110-1301 USA.
22 // LIC//
23 // LIC// The authors may be contacted at oomph-lib@maths.man.ac.uk.
24 // LIC//
25 // LIC//====================================================================
26 #ifndef OOMPH_TRAVIART_THOMAS_DARCY_HEADER
27 #define OOMPH_TRAVIART_THOMAS_DARCY_HEADER
28 
29 // Config header generated by autoconfig
30 #ifdef HAVE_CONFIG_H
31 #include <oomph-lib-config.h>
32 #endif
33 
34 #include "darcy_elements.h"
35 #include "../generic/Telements.h"
36 
37 namespace oomph
38 {
39  //================================================================
40  /// Element which solves the Darcy equations using TElements.
41  /// Geometrically the element is always a six noded triangle.
42  /// We use the mid-side nodes to store edge-based flux degrees of
43  /// freedom and internal data for the discontinuous pressure
44  /// and internal flux dofs.
45  //================================================================
46  template<unsigned ORDER>
47  class TRaviartThomasDarcyElement : public TElement<2, 3>,
48  public DarcyEquations<2>
49  {
50  private:
51  /// Face index associated with edge flux degree of freedom
52  static const unsigned Face_index_of_edge_flux[];
53 
54  /// Conversion scheme from an edge degree of freedom to the node it's
55  /// stored at
56  static const unsigned Q_edge_conv[];
57 
58  /// The points along each edge where the fluxes are interpolated
59  static const double Flux_interpolation_point[];
60 
61  /// The internal data index where the internal q degrees of freedom are
62  /// stored
64 
65  /// The internal data index where the p degrees of freedom are stored
67 
68  /// Unit normal signs associated with each edge to ensure
69  /// inter-element continuity of the flux
70  std::vector<short> Sign_edge;
71 
72  public:
73  /// Constructor
75 
76  /// Destructor
78 
79  /// Number of values required at node n
80  unsigned required_nvalue(const unsigned& n) const
81  {
82  return Initial_Nvalue[n];
83  }
84 
85  /// Return the face index associated with specified edge
86  unsigned face_index_of_edge(const unsigned& j) const
87  {
88  return (j + 2) % 3;
89  }
90 
91  /// Compute the face element coordinates of the nth flux
92  /// interpolation point along specified edge
94  const unsigned& edge, const unsigned& n, Vector<double>& s) const
95  {
96  // Get the location of the n-th flux interpolation point along
97  // the edge in terms of the distance along the edge itself
98  Vector<double> flux_interpolation_point =
100 
101  // Convert the edge number to the number of the mid-edge node along that
102  // edge
103  unsigned node_number = Q_edge_conv[edge];
104 
105  // The edge basis functions are defined in a clockwise manner, so we have
106  // to effectively "flip" some coordinates
107  switch (node_number)
108  {
109  case 3:
110  s[0] = flux_interpolation_point[0];
111  break;
112  case 4:
113  s[0] = 1.0 - flux_interpolation_point[0];
114  break;
115  case 5:
116  s[0] = flux_interpolation_point[0];
117  break;
118  }
119  }
120 
121  /// Return the face index associated with edge flux degree of freedom
122  unsigned face_index_of_q_edge_basis_fct(const unsigned& j) const
123  {
124  return Face_index_of_edge_flux[j];
125  }
126 
127  /// Return the equation nunmber of the n-th edge (flux) degree of freedom
128  int q_edge_local_eqn(const unsigned& n) const
129  {
130  return this->nodal_local_eqn(q_edge_node_number(n), q_edge_index(n));
131  }
132 
133  /// Return the equation number of the n-th internal degree of freedom
134  int q_internal_local_eqn(const unsigned& n) const
135  {
137  }
138 
139  /// Return vector of pointers to the Data objects that store the
140  /// edge flux values
142  {
143  // It's the mid-side nodes:
144  Vector<Data*> data_pt(3);
145  data_pt[0] = node_pt(3);
146  data_pt[1] = node_pt(4);
147  data_pt[2] = node_pt(5);
148  return data_pt;
149  }
150 
151  /// Return pointer to the Data object that stores the internal flux values
153  {
154  return this->internal_data_pt(Q_internal_data_index);
155  }
156 
157  /// Return the index of the internal data where the q_internal
158  /// degrees of freedom are stored
159  unsigned q_internal_index() const
160  {
161  return Q_internal_data_index;
162  }
163 
164  /// Return the nodal index at which the nth edge unknown is stored
165  unsigned q_edge_index(const unsigned& n) const
166  {
167  return n % (ORDER + 1);
168  }
169 
170  /// Return the local node number of the node where the nth edge
171  /// unknown is stored
172  unsigned q_edge_node_number(const unsigned& n) const
173  {
174  return Q_edge_conv[n / (ORDER + 1)];
175  }
176 
177  /// Get pointer to node that stores the edge flux dofs for specified edge
178  Node* edge_flux_node_pt(const unsigned& edge)
179  {
180  return node_pt(Q_edge_conv[edge]);
181  }
182 
183  /// Return the values of the edge (flux) degree of freedom
184  double q_edge(const unsigned& n) const
185  {
187  }
188 
189  /// Return the values of the internal degree of freedom
190  double q_internal(const unsigned& n) const
191  {
192  return this->internal_data_pt(q_internal_index())->value(n);
193  }
194 
195  /// Set the values of the edge (flux) degree of freedom
196  void set_q_edge(const unsigned& n, const double& value)
197  {
199  }
200 
201  /// Set the values of the internal degree of freedom
202  void set_q_internal(const unsigned& n, const double& value)
203  {
204  this->internal_data_pt(q_internal_index())->set_value(n, value);
205  }
206 
207  /// Return the number of edge basis functions for q
208  unsigned nq_basis_edge() const;
209 
210  /// Return the number of internal basis functions for q
211  unsigned nq_basis_internal() const;
212 
213  /// Return the local form of the q basis at local coordinate s
214  void get_q_basis_local(const Vector<double>& s, Shape& q_basis) const;
215 
216  /// Return the local form of the q basis and dbasis/ds at local coordinate s
218  Shape& div_q_basis_ds) const;
219 
220  /// Return the number of flux interpolation points along each
221  /// edge of the element
223 
224  /// Return the local coordinate of the nth flux interpolation
225  /// point along an edge
227  const unsigned& n) const
228  {
229  Vector<double> coord(1);
230  coord[0] = (1.0 - sign_edge(edge)) / 2.0 +
232  return coord;
233  }
234 
235 
236  /// Compute the global coordinates of the flux interpolation
237  /// point associated with the j-th edge-based q basis fct
238  void edge_flux_interpolation_point_global(const unsigned& j,
239  Vector<double>& x) const
240  {
241  unsigned n = j % nedge_flux_interpolation_point();
242  unsigned edge = (j - n) / nedge_flux_interpolation_point();
244  }
245 
246 
247  /// Compute the global coordinates of the nth flux interpolation
248  /// point along an edge
249  void edge_flux_interpolation_point_global(const unsigned& edge,
250  const unsigned& n,
251  Vector<double>& x) const
252  {
253  // Get the location of the n-th flux interpolation point along
254  // the edge in terms of the distance along the edge itself
255  Vector<double> flux_interpolation_point =
257 
258  // Convert the edge number to the number of the mid-edge node along that
259  // edge
260  unsigned node_number = Q_edge_conv[edge];
261 
262  // Storage for the local coords of the flux_interpolation point
263  Vector<double> s_flux_interpolation(2, 0.0);
264 
265  // The edge basis functions are defined in a clockwise manner, so we have
266  // to effectively "flip" the coordinates along edges 0 and 1 to match this
267  switch (node_number)
268  {
269  case 3:
270  s_flux_interpolation[0] = 1.0 - flux_interpolation_point[0];
271  s_flux_interpolation[1] = flux_interpolation_point[0];
272  break;
273  case 4:
274  s_flux_interpolation[0] = 0.0;
275  s_flux_interpolation[1] = 1.0 - flux_interpolation_point[0];
276  break;
277  case 5:
278  s_flux_interpolation[0] = flux_interpolation_point[0];
279  s_flux_interpolation[1] = 0.0;
280  break;
281  }
282 
283  // Calculate the global coordinates from the local ones
284  interpolated_x(s_flux_interpolation, x);
285  }
286 
287  /// Pin the nth internal q value
288  void pin_q_internal_value(const unsigned& n)
289  {
291  }
292 
293  /// Return the equation number of the n-th pressure degree of freedom
294  int p_local_eqn(const unsigned& n) const;
295 
296  /// Return the nth pressure value
297  double p_value(const unsigned& n) const;
298 
299  /// Return the total number of pressure basis functions
300  unsigned np_basis() const;
301 
302  /// Compute the pressure basis
303  void get_p_basis(const Vector<double>& s, Shape& p_basis) const;
304 
305  /// Pin the nth pressure value
306  void pin_p_value(const unsigned& n)
307  {
308  this->internal_data_pt(P_internal_data_index)->pin(n);
309  }
310 
311  /// Return pointer to the Data object that stores the pressure values
312  Data* p_data_pt() const
313  {
314  return this->internal_data_pt(P_internal_data_index);
315  }
316 
317  /// Set the nth pressure value
318  void set_p_value(const unsigned& n, const double& value)
319  {
320  this->internal_data_pt(P_internal_data_index)->set_value(n, value);
321  }
322 
323  /// Scale the edge basis to allow arbitrary edge mappings
324  // hierher explain please
325  void scale_basis(Shape& basis) const
326  {
327  // Storage for the lengths of the edges of the element
328  Vector<double> length(3, 0.0);
329 
330  // Temporary storage for the vertex positions
331  double x0, y0, x1, y1;
332 
333  // loop over the edges of the element and calculate their lengths (in x-y
334  // space)
335  for (unsigned i = 0; i < 3; i++)
336  {
337  x0 = this->node_pt(i)->x(0);
338  y0 = this->node_pt(i)->x(1);
339  x1 = this->node_pt((i + 1) % 3)->x(0);
340  y1 = this->node_pt((i + 1) % 3)->x(1);
341 
342  length[i] = std::sqrt(std::pow(y1 - y0, 2) + std::pow(x1 - x0, 2));
343  }
344 
345  // lengths of the sides of the reference element (in the same order as the
346  // basis functions)
347  const double ref_length[3] = {std::sqrt(2.0), 1, 1};
348 
349  // get the number of basis functions associated with the edges
350  unsigned n_q_basis_edge = nq_basis_edge();
351 
352  // rescale the edge basis functions to allow arbitrary edge mappings from
353  // element to ref. element
354  const unsigned n_index2 = basis.nindex2();
355  for (unsigned i = 0; i < n_index2; i++)
356  {
357  for (unsigned l = 0; l < n_q_basis_edge; l++)
358  {
359  basis(l, i) *=
360  (length[l / (ORDER + 1)] / ref_length[l / (ORDER + 1)]);
361  }
362  }
363  }
364 
365  /// Accessor for the unit normal sign of edge n (const version)
366  const short& sign_edge(const unsigned& n) const
367  {
368  return Sign_edge[n];
369  }
370 
371  /// Accessor for the unit normal sign of edge n
372  short& sign_edge(const unsigned& n)
373  {
374  return Sign_edge[n];
375  }
376 
377  /// Output with default number of plot points
378  void output(std::ostream& outfile)
379  {
380  DarcyEquations<2>::output(outfile);
381  }
382 
383  /// Output FE representation of soln: x,y,u1,u2,div_q,p at
384  /// Nplot^DIM plot points
385  void output(std::ostream& outfile, const unsigned& Nplot)
386  {
387  DarcyEquations<2>::output(outfile, Nplot);
388  }
389 
390  /// Number of vertex nodes in the element
391  unsigned nvertex_node() const
392  {
394  }
395 
396  /// Pointer to the j-th vertex node in the element
397  Node* vertex_node_pt(const unsigned& j) const
398  {
400  }
401 
402 
403  /// Recovery order for Z2 error estimator
404  unsigned nrecovery_order();
405 
406  protected:
407  /// Return the geometric basis, and the q, p and divergence basis
408  /// functions and test functions at local coordinate s
410  Shape& psi,
411  Shape& q_basis,
412  Shape& q_test,
413  Shape& p_basis,
414  Shape& p_test,
415  Shape& div_q_basis_ds,
416  Shape& div_q_test_ds) const
417  {
418  const unsigned n_q_basis = this->nq_basis();
419 
420  Shape q_basis_local(n_q_basis, 2);
421  this->get_q_basis_local(s, q_basis_local);
422  this->get_p_basis(s, p_basis);
423  this->get_div_q_basis_local(s, div_q_basis_ds);
424 
425  double J = this->transform_basis(s, q_basis_local, psi, q_basis);
426 
427  q_test = q_basis;
428  p_test = p_basis;
429  div_q_test_ds = div_q_basis_ds;
430 
431  return J;
432  }
433 
434  /// Return the geometric basis, and the q, p and divergence basis
435  /// functions and test functions at integration point ipt
436  double shape_basis_test_local_at_knot(const unsigned& ipt,
437  Shape& psi,
438  Shape& q_basis,
439  Shape& q_test,
440  Shape& p_basis,
441  Shape& p_test,
442  Shape& div_q_basis_ds,
443  Shape& div_q_test_ds) const
444  {
445  Vector<double> s(2);
446  for (unsigned i = 0; i < 2; i++)
447  {
448  s[i] = this->integral_pt()->knot(ipt, i);
449  }
450 
451  return shape_basis_test_local(s,
452  psi,
453  q_basis,
454  q_test,
455  p_basis,
456  p_test,
457  div_q_basis_ds,
458  div_q_test_ds);
459  }
460 
461  /// The number of values stored at each node
462  static const unsigned Initial_Nvalue[];
463  };
464 
465 
466  //============================================================
467  /// Face geometry for TRaviartThomasDarcyElement<0>
468  //============================================================
469  template<>
471  : public virtual TElement<1, 3>
472  {
473  public:
474  /// Constructor: Call constructor of base
475  FaceGeometry() : TElement<1, 3>() {}
476  };
477 
478 
479  //============================================================
480  /// Face geometry for TRaviartThomasDarcyElement<1>
481  //============================================================
482  template<>
484  : public virtual TElement<1, 3>
485  {
486  public:
487  /// Constructor: Call constructor of base class
488  FaceGeometry() : TElement<1, 3>() {}
489  };
490 
491 
492 } // namespace oomph
493 
494 #endif
static char t char * s
Definition: cfortran.h:568
cstr elem_len * i
Definition: cfortran.h:603
Class implementing the generic maths of the Darcy equations using Raviart-Thomas elements with both e...
double transform_basis(const Vector< double > &s, const Shape &q_basis_local, Shape &psi, Shape &q_basis) const
Performs a div-conserving transformation of the vector basis functions from the reference element to ...
unsigned nq_basis() const
Return the total number of computational basis functions for q.
void output(std::ostream &outfile)
Output with default number of plot points.
A class that represents a collection of data; each Data object may contain many different individual ...
Definition: nodes.h:86
void pin(const unsigned &i)
Pin the i-th stored variable.
Definition: nodes.h:385
void set_value(const unsigned &i, const double &value_)
Set the i-th stored data value to specified value. The only reason that we require an explicit set fu...
Definition: nodes.h:271
double value(const unsigned &i) const
Return i-th stored value. This function is not virtual so that it can be inlined. This means that if ...
Definition: nodes.h:293
FaceGeometry()
Constructor: Call constructor of base.
FaceGeometry()
Constructor: Call constructor of base class.
//////////////////////////////////////////////////////////////////// ////////////////////////////////...
Definition: elements.h:5002
Node *& node_pt(const unsigned &n)
Return a pointer to the local node n.
Definition: elements.h:2179
double nodal_value(const unsigned &n, const unsigned &i) const
Return the i-th value stored at local node n. Produces suitably interpolated values for hanging nodes...
Definition: elements.h:2597
virtual double interpolated_x(const Vector< double > &s, const unsigned &i) const
Return FE interpolated coordinate x[i] at local coordinate s.
Definition: elements.cc:3992
int nodal_local_eqn(const unsigned &n, const unsigned &i) const
Return the local equation number corresponding to the i-th value at the n-th local node.
Definition: elements.h:1436
Integral *const & integral_pt() const
Return the pointer to the integration scheme (const version)
Definition: elements.h:1967
Data *& internal_data_pt(const unsigned &i)
Return a pointer to i-th internal data object.
Definition: elements.h:622
int internal_local_eqn(const unsigned &i, const unsigned &j) const
Return the local equation number corresponding to the j-th value stored at the i-th internal data.
Definition: elements.h:267
virtual double knot(const unsigned &i, const unsigned &j) const =0
Return local coordinate s[j] of i-th integration point.
Nodes are derived from Data, but, in addition, have a definite (Eulerian) position in a space of a gi...
Definition: nodes.h:906
double & x(const unsigned &i)
Return the i-th nodal coordinate.
Definition: nodes.h:1060
A Class for shape functions. In simple cases, the shape functions have only one index that can be tho...
Definition: shape.h:76
unsigned nindex2() const
Return the range of index 2 of the shape function object.
Definition: shape.h:265
General TElement class.
Definition: Telements.h:1208
Element which solves the Darcy equations using TElements. Geometrically the element is always a six n...
Node * edge_flux_node_pt(const unsigned &edge)
Get pointer to node that stores the edge flux dofs for specified edge.
void edge_flux_interpolation_point_global(const unsigned &j, Vector< double > &x) const
Compute the global coordinates of the flux interpolation point associated with the j-th edge-based q ...
void get_q_basis_local(const Vector< double > &s, Shape &q_basis) const
Return the local form of the q basis at local coordinate s.
unsigned face_index_of_edge(const unsigned &j) const
Return the face index associated with specified edge.
const short & sign_edge(const unsigned &n) const
Accessor for the unit normal sign of edge n (const version)
void face_local_coordinate_of_flux_interpolation_point(const unsigned &edge, const unsigned &n, Vector< double > &s) const
Compute the face element coordinates of the nth flux interpolation point along specified edge.
void pin_q_internal_value(const unsigned &n)
Pin the nth internal q value.
Data * p_data_pt() const
Return pointer to the Data object that stores the pressure values.
int p_local_eqn(const unsigned &n) const
Return the equation number of the n-th pressure degree of freedom.
unsigned required_nvalue(const unsigned &n) const
Number of values required at node n.
unsigned nvertex_node() const
Number of vertex nodes in the element.
void edge_flux_interpolation_point_global(const unsigned &edge, const unsigned &n, Vector< double > &x) const
Compute the global coordinates of the nth flux interpolation point along an edge.
Data * q_internal_data_pt() const
Return pointer to the Data object that stores the internal flux values.
double p_value(const unsigned &n) const
Return the nth pressure value.
unsigned q_edge_index(const unsigned &n) const
Return the nodal index at which the nth edge unknown is stored.
void output(std::ostream &outfile)
Output with default number of plot points.
short & sign_edge(const unsigned &n)
Accessor for the unit normal sign of edge n.
double q_internal(const unsigned &n) const
Return the values of the internal degree of freedom.
void set_q_internal(const unsigned &n, const double &value)
Set the values of the internal degree of freedom.
void get_div_q_basis_local(const Vector< double > &s, Shape &div_q_basis_ds) const
Return the local form of the q basis and dbasis/ds at local coordinate s.
static const unsigned Initial_Nvalue[]
The number of values stored at each node.
unsigned np_basis() const
Return the total number of pressure basis functions.
static const unsigned Q_edge_conv[]
Conversion scheme from an edge degree of freedom to the node it's stored at.
unsigned face_index_of_q_edge_basis_fct(const unsigned &j) const
Return the face index associated with edge flux degree of freedom.
unsigned q_edge_node_number(const unsigned &n) const
Return the local node number of the node where the nth edge unknown is stored.
double q_edge(const unsigned &n) const
Return the values of the edge (flux) degree of freedom.
Node * vertex_node_pt(const unsigned &j) const
Pointer to the j-th vertex node in the element.
static const unsigned Face_index_of_edge_flux[]
Face index associated with edge flux degree of freedom.
std::vector< short > Sign_edge
Unit normal signs associated with each edge to ensure inter-element continuity of the flux.
void set_p_value(const unsigned &n, const double &value)
Set the nth pressure value.
void output(std::ostream &outfile, const unsigned &Nplot)
Output FE representation of soln: x,y,u1,u2,div_q,p at Nplot^DIM plot points.
int q_internal_local_eqn(const unsigned &n) const
Return the equation number of the n-th internal degree of freedom.
static const double Flux_interpolation_point[]
The points along each edge where the fluxes are interpolated.
unsigned q_internal_index() const
Return the index of the internal data where the q_internal degrees of freedom are stored.
void scale_basis(Shape &basis) const
Scale the edge basis to allow arbitrary edge mappings.
void get_p_basis(const Vector< double > &s, Shape &p_basis) const
Compute the pressure basis.
unsigned P_internal_data_index
The internal data index where the p degrees of freedom are stored.
double shape_basis_test_local(const Vector< double > &s, Shape &psi, Shape &q_basis, Shape &q_test, Shape &p_basis, Shape &p_test, Shape &div_q_basis_ds, Shape &div_q_test_ds) const
Return the geometric basis, and the q, p and divergence basis functions and test functions at local c...
int q_edge_local_eqn(const unsigned &n) const
Return the equation nunmber of the n-th edge (flux) degree of freedom.
Vector< Data * > q_edge_data_pt() const
Return vector of pointers to the Data objects that store the edge flux values.
void set_q_edge(const unsigned &n, const double &value)
Set the values of the edge (flux) degree of freedom.
unsigned nrecovery_order()
Recovery order for Z2 error estimator.
Vector< double > edge_flux_interpolation_point(const unsigned &edge, const unsigned &n) const
Return the local coordinate of the nth flux interpolation point along an edge.
void pin_p_value(const unsigned &n)
Pin the nth pressure value.
unsigned Q_internal_data_index
The internal data index where the internal q degrees of freedom are stored.
unsigned nedge_flux_interpolation_point() const
Return the number of flux interpolation points along each edge of the element.
unsigned nq_basis_internal() const
Return the number of internal basis functions for q.
unsigned nq_basis_edge() const
Return the number of edge basis functions for q.
double shape_basis_test_local_at_knot(const unsigned &ipt, Shape &psi, Shape &q_basis, Shape &q_test, Shape &p_basis, Shape &p_test, Shape &div_q_basis_ds, Shape &div_q_test_ds) const
Return the geometric basis, and the q, p and divergence basis functions and test functions at integra...
//////////////////////////////////////////////////////////////////// ////////////////////////////////...