Qelements.cc
Go to the documentation of this file.
1 // LIC// ====================================================================
2 // LIC// This file forms part of oomph-lib, the object-oriented,
3 // LIC// multi-physics finite-element library, available
4 // LIC// at http://www.oomph-lib.org.
5 // LIC//
6 // LIC// Copyright (C) 2006-2024 Matthias Heil and Andrew Hazel
7 // LIC//
8 // LIC// This library is free software; you can redistribute it and/or
9 // LIC// modify it under the terms of the GNU Lesser General Public
10 // LIC// License as published by the Free Software Foundation; either
11 // LIC// version 2.1 of the License, or (at your option) any later version.
12 // LIC//
13 // LIC// This library is distributed in the hope that it will be useful,
14 // LIC// but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // LIC// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
16 // LIC// Lesser General Public License for more details.
17 // LIC//
18 // LIC// You should have received a copy of the GNU Lesser General Public
19 // LIC// License along with this library; if not, write to the Free Software
20 // LIC// Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
21 // LIC// 02110-1301 USA.
22 // LIC//
23 // LIC// The authors may be contacted at oomph-lib@maths.man.ac.uk.
24 // LIC//
25 // LIC//====================================================================
26 // Non-inline member functions for Qelements
27 
28 // Include the appropriate headers
29 #include "Qelements.h"
30 
31 namespace oomph
32 {
33  /// /////////////////////////////////////////////////////////////
34  // 1D Qelements
35  /// /////////////////////////////////////////////////////////////
36 
37  //=======================================================================
38  /// Assign the static Default_integration_scheme
39  //=======================================================================
40  template<unsigned NNODE_1D>
42 
43 
44  //==================================================================
45  /// Return the node at the specified local coordinate
46  //==================================================================
47  template<unsigned NNODE_1D>
49  const Vector<double>& s) const
50  {
51  // Load the tolerance into a local variable
53  // There is one possible index.
54  Vector<int> index(1);
55 
56  // Determine the index
57  // -------------------
58 
59  // If we are at the lower limit, the index is zero
60  if (std::fabs(s[0] + 1.0) < tol)
61  {
62  index[0] = 0;
63  }
64  // If we are at the upper limit, the index is the number of nodes minus 1
65  else if (std::fabs(s[0] - 1.0) < tol)
66  {
67  index[0] = NNODE_1D - 1;
68  }
69  // Otherwise, we have to calculate the index in general
70  else
71  {
72  // For uniformly spaced nodes the node number would be
73  double float_index = 0.5 * (1.0 + s[0]) * (NNODE_1D - 1);
74  // Convert to an integer by taking the floor (rounding down)
75  index[0] = static_cast<int>(std::floor(float_index));
76  // What is the excess. This should be safe because the
77  // we have rounded down
78  double excess = float_index - index[0];
79  // If the excess is bigger than our tolerance there is no node,
80  // return null
81  // Note that we test at both lower and upper ends.
82  if ((excess > tol) && ((1.0 - excess) > tol))
83  {
84  return 0;
85  }
86  // If we are at the upper end (i.e. the system has actually rounded up)
87  // we need to add one to the index
88  if ((1.0 - excess) <= tol)
89  {
90  index[0] += 1;
91  }
92  }
93  // If we've got here we have a node, so let's return a pointer to it
94  return node_pt(index[0]);
95  }
96 
97 
98  //=======================================================================
99  /// Shape function for specific QElement<1,..>
100  //=======================================================================
101  template<unsigned NNODE_1D>
103  {
104  // Local storage for the shape functions
105  double Psi[NNODE_1D];
106  // Call the OneDimensional Shape functions
107  OneDimLagrange::shape<NNODE_1D>(s[0], Psi);
108 
109  // Now let's loop over the nodal points in the element
110  // and copy the values back in
111  for (unsigned i = 0; i < NNODE_1D; i++)
112  {
113  psi[i] = Psi[i];
114  }
115  }
116 
117  //=======================================================================
118  /// Derivatives of shape functions for specific QElement<1,..>
119  //=======================================================================
120  template<unsigned NNODE_1D>
122  Shape& psi,
123  DShape& dpsids) const
124  {
125  // Local storage
126  double Psi[NNODE_1D];
127  double DPsi[NNODE_1D];
128  // Call the shape functions and derivatives
129  OneDimLagrange::shape<NNODE_1D>(s[0], Psi);
130  OneDimLagrange::dshape<NNODE_1D>(s[0], DPsi);
131 
132  // Loop over shape functions in element and assign to psi
133  for (unsigned l = 0; l < NNODE_1D; l++)
134  {
135  psi[l] = Psi[l];
136  dpsids(l, 0) = DPsi[l];
137  }
138  }
139 
140  //=======================================================================
141  /// Second derivatives of shape functions for specific QElement<1,..>:
142  /// d2psids(i,0) = \f$ d^2 \psi_j / d s^2 \f$
143  //=======================================================================
144  template<unsigned NNODE_1D>
146  Shape& psi,
147  DShape& dpsids,
148  DShape& d2psids) const
149  {
150  // Local storage for the shape functions
151  double Psi[NNODE_1D];
152  double DPsi[NNODE_1D];
153  double D2Psi[NNODE_1D];
154  // Call the shape functions and derivatives
155  OneDimLagrange::shape<NNODE_1D>(s[0], Psi);
156  OneDimLagrange::dshape<NNODE_1D>(s[0], DPsi);
157  OneDimLagrange::d2shape<NNODE_1D>(s[0], D2Psi);
158 
159  // Loop over shape functions in element and assign to psi
160  for (unsigned l = 0; l < NNODE_1D; l++)
161  {
162  psi[l] = Psi[l];
163  dpsids(l, 0) = DPsi[l];
164  d2psids(l, 0) = D2Psi[l];
165  }
166  }
167 
168  //=======================================================================
169  /// The output function for general 1D QElements
170  //=======================================================================
171  template<unsigned NNODE_1D>
172  void QElement<1, NNODE_1D>::output(std::ostream& outfile)
173  {
174  output(outfile, NNODE_1D);
175  }
176 
177  //=======================================================================
178  /// The output function for n_plot points in each coordinate direction
179  //=======================================================================
180  template<unsigned NNODE_1D>
181  void QElement<1, NNODE_1D>::output(std::ostream& outfile,
182  const unsigned& n_plot)
183  {
184  // Local variables
185  Vector<double> s(1);
186 
187  // Tecplot header info
188  outfile << "ZONE I=" << n_plot << std::endl;
189 
190  // Find the dimension of the nodes
191  unsigned n_dim = this->nodal_dimension();
192 
193  // Loop over plot points
194  for (unsigned l = 0; l < n_plot; l++)
195  {
196  s[0] = -1.0 + l * 2.0 / (n_plot - 1);
197  // Output the coordinates
198  for (unsigned i = 0; i < n_dim; i++)
199  {
200  outfile << interpolated_x(s, i) << " ";
201  }
202  outfile << std::endl;
203  }
204  outfile << std::endl;
205  }
206 
207 
208  //=======================================================================
209  /// C style output function for general 1D QElements
210  //=======================================================================
211  template<unsigned NNODE_1D>
212  void QElement<1, NNODE_1D>::output(FILE* file_pt)
213  {
214  output(file_pt, NNODE_1D);
215  }
216 
217  //=======================================================================
218  /// C style output function for n_plot points in each coordinate direction
219  //=======================================================================
220  template<unsigned NNODE_1D>
221  void QElement<1, NNODE_1D>::output(FILE* file_pt, const unsigned& n_plot)
222  {
223  // Local variables
224  Vector<double> s(1);
225 
226  // Tecplot header info
227  // outfile << "ZONE I=" << n_plot << std::endl;
228  fprintf(file_pt, "ZONE I=%i\n", n_plot);
229 
230  // Find the dimension of the first node
231  unsigned n_dim = this->nodal_dimension();
232 
233  // Loop over plot points
234  for (unsigned l = 0; l < n_plot; l++)
235  {
236  s[0] = -1.0 + l * 2.0 / (n_plot - 1);
237 
238  // Output the coordinates
239  for (unsigned i = 0; i < n_dim; i++)
240  {
241  // outfile << interpolated_x(s,i) << " " ;
242  fprintf(file_pt, "%g ", interpolated_x(s, i));
243  }
244  // outfile << std::endl;
245  fprintf(file_pt, "\n");
246  }
247  // outfile << std::endl;
248  fprintf(file_pt, "\n");
249  }
250 
251 
252  /// /////////////////////////////////////////////////////////////
253  // 2D Qelements
254  /// /////////////////////////////////////////////////////////////
255 
256  /// Assign the spatial integration scheme
257  template<unsigned NNODE_1D>
259 
260 
261  //==================================================================
262  /// Return the node at the specified local coordinate
263  //==================================================================
264  template<unsigned NNODE_1D>
266  const Vector<double>& s) const
267  {
268  // Load the tolerance into a local variable
270  // There are two possible indices.
271  Vector<int> index(2);
272  // Loop over the coordinates and determine the indices
273  for (unsigned i = 0; i < 2; i++)
274  {
275  // If we are at the lower limit, the index is zero
276  if (std::fabs(s[i] + 1.0) < tol)
277  {
278  index[i] = 0;
279  }
280  // If we are at the upper limit, the index is the number of nodes minus 1
281  else if (std::fabs(s[i] - 1.0) < tol)
282  {
283  index[i] = NNODE_1D - 1;
284  }
285  // Otherwise, we have to calculate the index in general
286  else
287  {
288  // For uniformly spaced nodes the node number would be
289  double float_index = 0.5 * (1.0 + s[i]) * (NNODE_1D - 1);
290  // Convert to an integer by taking the floor (rounding down)
291  index[i] = static_cast<int>(std::floor(float_index));
292  // What is the excess. This should be safe because the
293  // we have rounded down
294  double excess = float_index - index[i];
295  // If the excess is bigger than our tolerance there is no node,
296  // return null
297  // Note that we test at both lower and upper ends.
298  if ((excess > tol) && ((1.0 - excess) > tol))
299  {
300  return 0;
301  }
302  // If we are at the upper end (i.e. the system has actually rounded up)
303  // we need to add one to the index
304  if ((1.0 - excess) <= tol)
305  {
306  index[i] += 1;
307  }
308  }
309  }
310  // If we've got here we have a node, so let's return a pointer to it
311  return node_pt(index[0] + NNODE_1D * index[1]);
312  }
313 
314 
315  //=======================================================================
316  /// Shape function for specific QElement<2,..>
317  ///
318  //=======================================================================
319  template<unsigned NNODE_1D>
321  {
322  // Local storage
323  double Psi[2][NNODE_1D];
324  // Call the OneDimensional Shape functions
325  OneDimLagrange::shape<NNODE_1D>(s[0], Psi[0]);
326  OneDimLagrange::shape<NNODE_1D>(s[1], Psi[1]);
327  // Index for the shape functions
328  unsigned index = 0;
329 
330  // Now let's loop over the nodal points in the element
331  // s1 is the "x" coordinate, s2 the "y"
332  for (unsigned i = 0; i < NNODE_1D; i++)
333  {
334  for (unsigned j = 0; j < NNODE_1D; j++)
335  {
336  // Multiply the two 1D functions together to get the 2D function
337  psi[index] = Psi[1][i] * Psi[0][j];
338  // Incremenet the index
339  ++index;
340  }
341  }
342  }
343 
344  //=======================================================================
345  /// Derivatives of shape functions for specific QElement<2,..>
346  //=======================================================================
347  template<unsigned NNODE_1D>
349  Shape& psi,
350  DShape& dpsids) const
351  {
352  // Local storage
353  double Psi[2][NNODE_1D];
354  double DPsi[2][NNODE_1D];
355  unsigned index = 0;
356 
357  // Call the shape functions and derivatives
358  OneDimLagrange::shape<NNODE_1D>(s[0], Psi[0]);
359  OneDimLagrange::shape<NNODE_1D>(s[1], Psi[1]);
360  OneDimLagrange::dshape<NNODE_1D>(s[0], DPsi[0]);
361  OneDimLagrange::dshape<NNODE_1D>(s[1], DPsi[1]);
362 
363  // Loop over shape functions in element
364  for (unsigned i = 0; i < NNODE_1D; i++)
365  {
366  for (unsigned j = 0; j < NNODE_1D; j++)
367  {
368  // Assign the values
369  dpsids(index, 0) = Psi[1][i] * DPsi[0][j];
370  dpsids(index, 1) = DPsi[1][i] * Psi[0][j];
371  psi[index] = Psi[1][i] * Psi[0][j];
372  // Increment the index
373  ++index;
374  }
375  }
376  }
377 
378 
379  //=======================================================================
380  /// Second derivatives of shape functions for specific QElement<2,..>:
381  /// d2psids(i,0) = \f$ \partial^2 \psi_j / \partial s_0^2 \f$
382  /// d2psids(i,1) = \f$ \partial^2 \psi_j / \partial s_1^2 \f$
383  /// d2psids(i,2) = \f$ \partial^2 \psi_j / \partial s_0 \partial s_1 \f$
384  //=======================================================================
385  template<unsigned NNODE_1D>
387  Shape& psi,
388  DShape& dpsids,
389  DShape& d2psids) const
390  {
391  // Local storage
392  double Psi[2][NNODE_1D];
393  double DPsi[2][NNODE_1D];
394  double D2Psi[2][NNODE_1D];
395  // Index for the assembly process
396  unsigned index = 0;
397 
398  // Call the shape functions and derivatives
399  OneDimLagrange::shape<NNODE_1D>(s[0], Psi[0]);
400  OneDimLagrange::shape<NNODE_1D>(s[1], Psi[1]);
401  OneDimLagrange::dshape<NNODE_1D>(s[0], DPsi[0]);
402  OneDimLagrange::dshape<NNODE_1D>(s[1], DPsi[1]);
403  OneDimLagrange::d2shape<NNODE_1D>(s[0], D2Psi[0]);
404  OneDimLagrange::d2shape<NNODE_1D>(s[1], D2Psi[1]);
405 
406  // Loop over shape functions in element
407  for (unsigned i = 0; i < NNODE_1D; i++)
408  {
409  for (unsigned j = 0; j < NNODE_1D; j++)
410  {
411  // Assign the values
412  psi[index] = Psi[1][i] * Psi[0][j];
413  // First derivatives
414  dpsids(index, 0) = Psi[1][i] * DPsi[0][j];
415  dpsids(index, 1) = DPsi[1][i] * Psi[0][j];
416  // Second derivatives
417  // N.B. index 2 is the mixed derivative
418  d2psids(index, 0) = Psi[1][i] * D2Psi[0][j];
419  d2psids(index, 1) = D2Psi[1][i] * Psi[0][j];
420  d2psids(index, 2) = DPsi[1][i] * DPsi[0][j];
421  // Increment the index
422  ++index;
423  }
424  }
425  }
426 
427 
428  //===========================================================
429  /// The output function for QElement<2,NNODE_1D>
430  //===========================================================
431  template<unsigned NNODE_1D>
432  void QElement<2, NNODE_1D>::output(std::ostream& outfile)
433  {
434  output(outfile, NNODE_1D);
435  }
436 
437  //=======================================================================
438  /// The output function for n_plot points in each coordinate direction
439  //=======================================================================
440  template<unsigned NNODE_1D>
441  void QElement<2, NNODE_1D>::output(std::ostream& outfile,
442  const unsigned& n_plot)
443  {
444  // Local variables
445  Vector<double> s(2);
446 
447  // Tecplot header info
448  outfile << "ZONE I=" << n_plot << ", J=" << n_plot << std::endl;
449 
450  // Find the dimension of the nodes
451  unsigned n_dim = this->nodal_dimension();
452 
453  // Loop over plot points
454  for (unsigned l2 = 0; l2 < n_plot; l2++)
455  {
456  s[1] = -1.0 + l2 * 2.0 / (n_plot - 1);
457  for (unsigned l1 = 0; l1 < n_plot; l1++)
458  {
459  s[0] = -1.0 + l1 * 2.0 / (n_plot - 1);
460 
461  // Output the coordinates
462  for (unsigned i = 0; i < n_dim; i++)
463  {
464  outfile << interpolated_x(s, i) << " ";
465  }
466  outfile << std::endl;
467  }
468  }
469  outfile << std::endl;
470  }
471 
472 
473  //===========================================================
474  /// C-style output function for QElement<2,NNODE_1D>
475  //===========================================================
476  template<unsigned NNODE_1D>
477  void QElement<2, NNODE_1D>::output(FILE* file_pt)
478  {
479  output(file_pt, NNODE_1D);
480  }
481 
482  //=======================================================================
483  /// C-style output function for n_plot points in each coordinate direction
484  //=======================================================================
485  template<unsigned NNODE_1D>
486  void QElement<2, NNODE_1D>::output(FILE* file_pt, const unsigned& n_plot)
487  {
488  // Local variables
489  Vector<double> s(2);
490 
491  // Find the dimension of the nodes
492  unsigned n_dim = this->nodal_dimension();
493 
494  // Tecplot header info
495  // outfile << "ZONE I=" << n_plot << ", J=" << n_plot << std::endl;
496  fprintf(file_pt, "ZONE I=%i, J=%i\n", n_plot, n_plot);
497 
498  // Loop over element nodes
499  for (unsigned l2 = 0; l2 < n_plot; l2++)
500  {
501  s[1] = -1.0 + l2 * 2.0 / (n_plot - 1);
502  for (unsigned l1 = 0; l1 < n_plot; l1++)
503  {
504  s[0] = -1.0 + l1 * 2.0 / (n_plot - 1);
505 
506  // Output the coordinates
507  for (unsigned i = 0; i < n_dim; i++)
508  {
509  // outfile << interpolated_x(s,i) << " " ;
510  fprintf(file_pt, "%g ", interpolated_x(s, i));
511  }
512  // outfile << std::endl;
513  fprintf(file_pt, "\n");
514  }
515  }
516  // outfile << std::endl;
517  fprintf(file_pt, "\n");
518  }
519 
520 
521  /// /////////////////////////////////////////////////////////////
522  // 3D Qelements
523  /// /////////////////////////////////////////////////////////////
524 
525  /// Assign the spatial integration scheme
526  template<unsigned NNODE_1D>
528 
529  //==================================================================
530  /// Return the node at the specified local coordinate
531  //==================================================================
532  template<unsigned NNODE_1D>
534  const Vector<double>& s) const
535  {
536  // Load the tolerance into a local variable
538  // There are now three possible indices
539  Vector<int> index(3);
540  // Loop over the coordinates
541  for (unsigned i = 0; i < 3; i++)
542  {
543  // If we are at the lower limit, the index is zero
544  if (std::fabs(s[i] + 1.0) < tol)
545  {
546  index[i] = 0;
547  }
548  // If we are at the upper limit, the index is the number of nodes minus 1
549  else if (std::fabs(s[i] - 1.0) < tol)
550  {
551  index[i] = NNODE_1D - 1;
552  }
553  // Otherwise, we have to calculate the index in general
554  else
555  {
556  // For uniformly spaced nodes the node number would be
557  double float_index = 0.5 * (1.0 + s[i]) * (NNODE_1D - 1);
558  // Conver to an integer by taking the floor (rounding down)
559  index[i] = static_cast<int>(std::floor(float_index));
560  // What is the excess. This should be safe because
561  // we have rounded down
562  double excess = float_index - index[i];
563  // If the excess is bigger than our tolerance there is no node,
564  // return null. Note that we test at both ends
565  if ((excess > tol) && ((1.0 - excess) > tol))
566  {
567  return 0;
568  }
569  // If we are at the upper end (i.e. the system has actually rounded up)
570  // we need to add one to the index
571  if ((1.0 - excess) <= tol)
572  {
573  index[i] += 1;
574  }
575  }
576  }
577  // If we've got here we have a node, so let's return a pointer to it
578  return node_pt(index[0] + NNODE_1D * index[1] +
579  NNODE_1D * NNODE_1D * index[2]);
580  }
581 
582 
583  //=======================================================================
584  /// Shape function for specific QElement<3,..>
585  //=======================================================================
586  template<unsigned NNODE_1D>
588  {
589  // Local storage
590  double Psi[3][NNODE_1D];
591 
592  // Call the OneDimensional Shape functions
593  OneDimLagrange::shape<NNODE_1D>(s[0], Psi[0]);
594  OneDimLagrange::shape<NNODE_1D>(s[1], Psi[1]);
595  OneDimLagrange::shape<NNODE_1D>(s[2], Psi[2]);
596 
597  // Index for the shape functions
598  unsigned index = 0;
599 
600  // Now let's loop over the nodal points in the element
601  // s1 is the "x" coordinate, s2 the "y"
602  for (unsigned i = 0; i < NNODE_1D; i++)
603  {
604  for (unsigned j = 0; j < NNODE_1D; j++)
605  {
606  for (unsigned k = 0; k < NNODE_1D; k++)
607  {
608  /*Multiply the three 1D functions together to get the 3D function*/
609  psi[index] = Psi[2][i] * Psi[1][j] * Psi[0][k];
610  // Increment the index
611  ++index;
612  }
613  }
614  }
615  }
616 
617  //=======================================================================
618  /// Derivatives of shape functions for specific QElement<3,..>
619  //=======================================================================
620  template<unsigned NNODE_1D>
622  Shape& psi,
623  DShape& dpsids) const
624  {
625  // Local storage
626  double Psi[3][NNODE_1D];
627  double DPsi[3][NNODE_1D];
628  // Index of the total shape function
629  unsigned index = 0;
630 
631  // Call the OneDimensional Shape functions and derivatives
632  OneDimLagrange::shape<NNODE_1D>(s[0], Psi[0]);
633  OneDimLagrange::shape<NNODE_1D>(s[1], Psi[1]);
634  OneDimLagrange::shape<NNODE_1D>(s[2], Psi[2]);
635  OneDimLagrange::dshape<NNODE_1D>(s[0], DPsi[0]);
636  OneDimLagrange::dshape<NNODE_1D>(s[1], DPsi[1]);
637  OneDimLagrange::dshape<NNODE_1D>(s[2], DPsi[2]);
638 
639 
640  // Loop over shape functions in element
641  for (unsigned i = 0; i < NNODE_1D; i++)
642  {
643  for (unsigned j = 0; j < NNODE_1D; j++)
644  {
645  for (unsigned k = 0; k < NNODE_1D; k++)
646  {
647  // Assign the values
648  dpsids(index, 0) = Psi[2][i] * Psi[1][j] * DPsi[0][k];
649  dpsids(index, 1) = Psi[2][i] * DPsi[1][j] * Psi[0][k];
650  dpsids(index, 2) = DPsi[2][i] * Psi[1][j] * Psi[0][k];
651 
652  psi[index] = Psi[2][i] * Psi[1][j] * Psi[0][k];
653  // Increment the index
654  ++index;
655  }
656  }
657  }
658  }
659 
660  //=======================================================================
661  /// Second derivatives of shape functions for specific QElement<3,..>:
662  /// d2psids(i,0) = \f$ \partial^2 \psi_j / \partial s_0^2 \f$
663  /// d2psids(i,1) = \f$ \partial^2 \psi_j / \partial s_1^2 \f$
664  /// d2psids(i,2) = \f$ \partial^2 \psi_j / \partial s_2^2 \f$
665  /// d2psids(i,3) = \f$ \partial^2 \psi_j / \partial s_0 \partial s_1 \f$
666  /// d2psids(i,4) = \f$ \partial^2 \psi_j / \partial s_0 \partial s_2 \f$
667  /// d2psids(i,5) = \f$ \partial^2 \psi_j / \partial s_1 \partial s_2 \f$
668  //=======================================================================
669  template<unsigned NNODE_1D>
671  Shape& psi,
672  DShape& dpsids,
673  DShape& d2psids) const
674  {
675  // Local storage
676  double Psi[3][NNODE_1D];
677  double DPsi[3][NNODE_1D];
678  double D2Psi[3][NNODE_1D];
679  // Index of the shape function
680  unsigned index = 0;
681 
682  // Call the OneDimensional Shape functions and derivatives
683  OneDimLagrange::shape<NNODE_1D>(s[0], Psi[0]);
684  OneDimLagrange::shape<NNODE_1D>(s[1], Psi[1]);
685  OneDimLagrange::shape<NNODE_1D>(s[2], Psi[2]);
686  OneDimLagrange::dshape<NNODE_1D>(s[0], DPsi[0]);
687  OneDimLagrange::dshape<NNODE_1D>(s[1], DPsi[1]);
688  OneDimLagrange::dshape<NNODE_1D>(s[2], DPsi[2]);
689  OneDimLagrange::d2shape<NNODE_1D>(s[0], D2Psi[0]);
690  OneDimLagrange::d2shape<NNODE_1D>(s[1], D2Psi[1]);
691  OneDimLagrange::d2shape<NNODE_1D>(s[2], D2Psi[2]);
692 
693  // Loop over shape functions in element
694  for (unsigned i = 0; i < NNODE_1D; i++)
695  {
696  for (unsigned j = 0; j < NNODE_1D; j++)
697  {
698  for (unsigned k = 0; k < NNODE_1D; k++)
699  {
700  // Assign the values
701  psi[index] = Psi[2][i] * Psi[1][j] * Psi[0][k];
702 
703  dpsids(index, 0) = Psi[2][i] * Psi[1][j] * DPsi[0][k];
704  dpsids(index, 1) = Psi[2][i] * DPsi[1][j] * Psi[0][k];
705  dpsids(index, 2) = DPsi[2][i] * Psi[1][j] * Psi[0][k];
706 
707  // Second derivative values
708  d2psids(index, 0) = Psi[2][i] * Psi[1][j] * D2Psi[0][k];
709  d2psids(index, 1) = Psi[2][i] * D2Psi[1][j] * Psi[0][k];
710  d2psids(index, 2) = D2Psi[2][i] * Psi[1][j] * Psi[0][k];
711  // Convention for higher indices
712  // 3: mixed 12, 4: mixed 13, 5: mixed 23
713  d2psids(index, 3) = Psi[2][i] * DPsi[1][j] * DPsi[0][k];
714  d2psids(index, 4) = DPsi[2][i] * Psi[1][j] * DPsi[0][k];
715  d2psids(index, 5) = DPsi[2][i] * DPsi[1][j] * Psi[0][k];
716  // Increment the index
717  ++index;
718  }
719  }
720  }
721  }
722 
723  //===========================================================
724  /// The output function for QElement<3,NNODE_1D>
725  //===========================================================
726  template<unsigned NNODE_1D>
727  void QElement<3, NNODE_1D>::output(std::ostream& outfile)
728  {
729  output(outfile, NNODE_1D);
730  }
731 
732  //=======================================================================
733  /// The output function for n_plot points in each coordinate direction
734  //=======================================================================
735  template<unsigned NNODE_1D>
736  void QElement<3, NNODE_1D>::output(std::ostream& outfile,
737  const unsigned& n_plot)
738  {
739  // Local variables
740  Vector<double> s(3);
741 
742  // Tecplot header info
743  outfile << "ZONE I=" << n_plot << ", J=" << n_plot << ", K=" << n_plot
744  << std::endl;
745 
746  // Find the dimension of the nodes
747  unsigned n_dim = this->nodal_dimension();
748 
749  // Loop over element nodes
750  for (unsigned l3 = 0; l3 < n_plot; l3++)
751  {
752  s[2] = -1.0 + l3 * 2.0 / (n_plot - 1);
753  for (unsigned l2 = 0; l2 < n_plot; l2++)
754  {
755  s[1] = -1.0 + l2 * 2.0 / (n_plot - 1);
756  for (unsigned l1 = 0; l1 < n_plot; l1++)
757  {
758  s[0] = -1.0 + l1 * 2.0 / (n_plot - 1);
759 
760  // Output the coordinates
761  for (unsigned i = 0; i < n_dim; i++)
762  {
763  outfile << interpolated_x(s, i) << " ";
764  }
765  outfile << std::endl;
766  }
767  }
768  }
769  outfile << std::endl;
770  }
771 
772 
773  //===========================================================
774  /// C-style output function for QElement<3,NNODE_1D>
775  //===========================================================
776  template<unsigned NNODE_1D>
777  void QElement<3, NNODE_1D>::output(FILE* file_pt)
778  {
779  output(file_pt, NNODE_1D);
780  }
781 
782  //=======================================================================
783  /// C-style output function for n_plot points in each coordinate direction
784  //=======================================================================
785  template<unsigned NNODE_1D>
786  void QElement<3, NNODE_1D>::output(FILE* file_pt, const unsigned& n_plot)
787  {
788  // Local variables
789  Vector<double> s(3);
790 
791  // Tecplot header info
792  fprintf(file_pt, "ZONE I=%i, J=%i, K=%i\n", n_plot, n_plot, n_plot);
793 
794  // Find the dimension of the nodes
795  unsigned n_dim = this->nodal_dimension();
796 
797  // Loop over element nodes
798  for (unsigned l3 = 0; l3 < n_plot; l3++)
799  {
800  s[2] = -1.0 + l3 * 2.0 / (n_plot - 1);
801  for (unsigned l2 = 0; l2 < n_plot; l2++)
802  {
803  s[1] = -1.0 + l2 * 2.0 / (n_plot - 1);
804  for (unsigned l1 = 0; l1 < n_plot; l1++)
805  {
806  s[0] = -1.0 + l1 * 2.0 / (n_plot - 1);
807 
808  // Output the coordinates
809  for (unsigned i = 0; i < n_dim; i++)
810  {
811  fprintf(file_pt, "%g ", interpolated_x(s, i));
812  }
813  fprintf(file_pt, "\n");
814  }
815  }
816  }
817  fprintf(file_pt, "\n");
818  }
819 
820 
821  //===================================================================
822  // Build required templates
823  //===================================================================
824  template class QElement<1, 2>;
825  template class QElement<1, 3>;
826  template class QElement<1, 4>;
827 
828  template class QElement<2, 2>;
829  template class QElement<2, 3>;
830  template class QElement<2, 4>;
831 
832  template class QElement<3, 2>;
833  template class QElement<3, 3>;
834  template class QElement<3, 4>;
835 
836 } // namespace oomph
static char t char * s
Definition: cfortran.h:568
cstr elem_len * i
Definition: cfortran.h:603
A Class for the derivatives of shape functions The class design is essentially the same as Shape,...
Definition: shape.h:278
static const double Node_location_tolerance
Default value for the tolerance to be used when locating nodes via local coordinates.
Definition: elements.h:1378
Nodes are derived from Data, but, in addition, have a definite (Eulerian) position in a space of a gi...
Definition: nodes.h:906
static Gauss< 1, NNODE_1D > Default_integration_scheme
Default integration rule: Gaussian integration of same 'order' as the element.
Definition: Qelements.h:490
/////////////////////////////////////////////////////////////////////// /////////////////////////////...
Definition: Qelements.h:459
A Class for shape functions. In simple cases, the shape functions have only one index that can be tho...
Definition: shape.h:76
void output()
Doc the command line arguments.
void shape(const double &s, double *Psi)
Definition for 1D Lagrange shape functions. The value of all the shape functions at the local coordin...
Definition: shape.h:564
//////////////////////////////////////////////////////////////////// ////////////////////////////////...