clamped_shell.cc
Go to the documentation of this file.
1 //LIC// ====================================================================
2 //LIC// This file forms part of oomph-lib, the object-oriented,
3 //LIC// multi-physics finite-element library, available
4 //LIC// at http://www.oomph-lib.org.
5 //LIC//
6 //LIC// Copyright (C) 2006-2024 Matthias Heil and Andrew Hazel
7 //LIC//
8 //LIC// This library is free software; you can redistribute it and/or
9 //LIC// modify it under the terms of the GNU Lesser General Public
10 //LIC// License as published by the Free Software Foundation; either
11 //LIC// version 2.1 of the License, or (at your option) any later version.
12 //LIC//
13 //LIC// This library is distributed in the hope that it will be useful,
14 //LIC// but WITHOUT ANY WARRANTY; without even the implied warranty of
15 //LIC// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
16 //LIC// Lesser General Public License for more details.
17 //LIC//
18 //LIC// You should have received a copy of the GNU Lesser General Public
19 //LIC// License along with this library; if not, write to the Free Software
20 //LIC// Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
21 //LIC// 02110-1301 USA.
22 //LIC//
23 //LIC// The authors may be contacted at oomph-lib@maths.man.ac.uk.
24 //LIC//
25 //LIC//====================================================================
26 //Driver function for a simple test shell problem:
27 //Calculate the deformation of an elastic tube approximated
28 //using Kirchoff--Love shell theory
29 
30 //Standard system includes
31 #include <iostream>
32 #include <fstream>
33 #include <cmath>
34 #include <typeinfo>
35 #include <algorithm>
36 #include <cstdio>
37 
38 //Include files from the finite-element library
39 #include "generic.h"
40 #include "shell.h"
41 #include "meshes/rectangular_quadmesh.h"
42 
43 using namespace std;
44 
45 using namespace oomph;
46 
47 //========================================================================
48 /// Global variables that represent physical properties
49 //========================================================================
51 {
52 
53  /// Prescribed position of control point
54  double Prescribed_y = 1.0;
55 
56  /// Pointer to pressure load (stored in Data so it can
57  /// become an unknown in the problem when displacement control is used
58  Data* Pext_data_pt;
59 
60  /// Perturbation pressure
61  double Pcos=1.0;
62 
63 
64  /// Return a reference to the external pressure
65  /// load on the elastic tube.
67  {return (*Pext_data_pt->value_pt(0))*pow(0.05,3)/12.0;}
68 
69 
70  /// Load function, normal pressure loading
71  void press_load(const Vector<double> &xi,
72  const Vector<double> &x,
73  const Vector<double> &N,
74  Vector<double>& load)
75  {
76  //std::cout << N[0] << " " << N[1] << " " << N[2] << std::endl;
77  //std::cout << xi[0] << " " << xi[1] << std::endl;
78  for(unsigned i=0;i<3;i++)
79  {
80  load[i] = (external_pressure() -
81  Pcos*pow(0.05,3)/12.0*cos(2.0*xi[1]))*N[i];
82  }
83  }
84 
85 }
86 
87 //========================================================================
88 /// A 2D Mesh class. The tube wall is represented by two Lagrangian
89 /// coordinates that correspond to z and theta in cylindrical polars.
90 /// The required mesh is therefore a 2D mesh and is therefore inherited
91 /// from the generic RectangularQuadMesh
92 //=======================================================================
93 template <class ELEMENT>
94 class ShellMesh : public virtual RectangularQuadMesh<ELEMENT>,
95  public virtual SolidMesh
96 {
97 public:
98 
99  /// Constructor for the mesh
100  ShellMesh(const unsigned &nx, const unsigned &ny,
101  const double &lx, const double &ly);
102 
103  /// In all elastic problems, the nodes must be assigned an undeformed,
104  /// or reference, position, corresponding to the stress-free state
105  /// of the elastic body. This function assigns the undeformed position
106  /// for the nodes on the elastic tube
107  void assign_undeformed_positions(GeomObject* const &undeformed_midplane_pt);
108 
109 };
110 
111 
112 
113 
114 
115 //=======================================================================
116 /// Mesh constructor
117 /// Argument list:
118 /// nx : number of elements in the axial direction
119 /// ny : number of elements in the azimuthal direction
120 /// lx : length in the axial direction
121 /// ly : length in theta direction
122 //=======================================================================
123 template <class ELEMENT>
124 ShellMesh<ELEMENT>::ShellMesh(const unsigned &nx,
125  const unsigned &ny,
126  const double &lx,
127  const double &ly) :
128  RectangularQuadMesh<ELEMENT>(nx,ny,lx,ly)
129 {
130  //Find out how many nodes there are
131  unsigned n_node = nnode();
132 
133  //Now in this case it is the Lagrangian coordinates that we want to set,
134  //so we have to loop over all nodes and set them to the Eulerian
135  //coordinates that are set by the generic mesh generator
136  for(unsigned i=0;i<n_node;i++)
137  {
138  node_pt(i)->xi(0) = node_pt(i)->x(0);
139  node_pt(i)->xi(1) = node_pt(i)->x(1);
140  }
141 
142 
143  //Assign gradients, etc for the Lagrangian coordinates of
144  //hermite-type elements
145 
146  //Read out number of position dofs
147  unsigned n_position_type = finite_element_pt(0)->nnodal_position_type();
148 
149  //If this is greater than 1 set the slopes, which are the distances between
150  //nodes. If the spacing were non-uniform, this part would be more difficult
151  if(n_position_type > 1)
152  {
153  double xstep = (this->Xmax - this->Xmin)/((this->Np-1)*this->Nx);
154  double ystep = (this->Ymax - this->Ymin)/((this->Np-1)*this->Ny);
155  for(unsigned n=0;n<n_node;n++)
156  {
157  //The factor 0.5 is because our reference element has length 2.0
158  node_pt(n)->xi_gen(1,0) = 0.5*xstep;
159  node_pt(n)->xi_gen(2,1) = 0.5*ystep;
160  }
161  }
162 }
163 
164 
165 //=======================================================================
166 /// Set the undeformed coordinates of the nodes
167 //=======================================================================
168 template <class ELEMENT>
170  GeomObject* const &undeformed_midplane_pt)
171 {
172  //Find out how many nodes there are
173  unsigned n_node = nnode();
174 
175  //Loop over all the nodes
176  for(unsigned n=0;n<n_node;n++)
177  {
178  //Get the Lagrangian coordinates
179  Vector<double> xi(2);
180  xi[0] = node_pt(n)->xi(0);
181  xi[1] = node_pt(n)->xi(1);
182 
183  //Assign memory for values of derivatives, etc
184  Vector<double> R(3);
185  DenseMatrix<double> a(2,3);
186  RankThreeTensor<double> dadxi(2,2,3);
187 
188  //Get the geometrical information from the geometric object
189  undeformed_midplane_pt->d2position(xi,R,a,dadxi);
190 
191  //Loop over coordinate directions
192  for(unsigned i=0;i<3;i++)
193  {
194  //Set the position
195  node_pt(n)->x_gen(0,i) = R[i];
196 
197  //Set the derivative wrt Lagrangian coordinates
198  //Note that we need to scale by the length of each element here!!
199  node_pt(n)->x_gen(1,i) = 0.5*a(0,i)*((this->Xmax - this->Xmin)/this->Nx);
200  node_pt(n)->x_gen(2,i) = 0.5*a(1,i)*((this->Ymax - this->Ymin)/this->Ny);
201 
202  //Set the mixed derivative
203  //(symmetric so doesn't matter which one we use)
204  node_pt(n)->x_gen(3,i) = 0.25*dadxi(0,1,i);
205  }
206  }
207 }
208 
209 
210 //======================================================================
211 //Problem class to solve the deformation of an elastic tube
212 //=====================================================================
213 template<class ELEMENT>
214 class ShellProblem : public Problem
215 {
216 
217 public:
218 
219  /// Constructor
220  ShellProblem(const unsigned &nx, const unsigned &ny,
221  const double &lx, const double &ly);
222 
223  /// Overload Access function for the mesh
225  {return dynamic_cast<ShellMesh<ELEMENT>*>(Problem::mesh_pt());}
226 
227  /// Actions after solve empty
229 
230  /// Actions before solve empty
232 
233  //A self_test function
234  void solve();
235 
236 private:
237 
238  /// Pointer to GeomObject that specifies the undeformed midplane
240 
241  /// First trace node
243 
244  /// Second trace node
246 
247 };
248 
249 
250 
251 //======================================================================
252 /// Constructor
253 //======================================================================
254 template<class ELEMENT>
255 ShellProblem<ELEMENT>::ShellProblem(const unsigned &nx, const unsigned &ny,
256  const double &lx, const double &ly)
257 {
258  //Create the undeformed midplane object
259  Undeformed_midplane_pt = new EllipticalTube(1.0,1.0);
260 
261  //Now create the mesh
262  Problem::mesh_pt() = new ShellMesh<ELEMENT>(nx,ny,lx,ly);
263 
264  //Set the undeformed positions in the mesh
265  mesh_pt()->assign_undeformed_positions(Undeformed_midplane_pt);
266 
267  //Reorder the elements, since I know what's best for them....
268  mesh_pt()->element_reorder();
269 
270  //Apply boundary conditions to the ends of the tube
271  unsigned n_ends = mesh_pt()->nboundary_node(1);
272  //Loop over the node
273  for(unsigned i=0;i<n_ends;i++)
274  {
275  //Pin in the axial direction (prevents rigid body motions)
276  mesh_pt()->boundary_node_pt(1,i)->pin_position(2);
277  mesh_pt()->boundary_node_pt(3,i)->pin_position(2);
278  //Derived conditions
279  mesh_pt()->boundary_node_pt(1,i)->pin_position(2,2);
280  mesh_pt()->boundary_node_pt(3,i)->pin_position(2,2);
281 
282  //------------------CLAMPING CONDITIONS----------------------
283  //------Pin positions in the transverse directions-----------
284  // Comment these out to get the ring case
285  mesh_pt()->boundary_node_pt(1,i)->pin_position(0);
286  mesh_pt()->boundary_node_pt(3,i)->pin_position(0);
287  //Derived conditions
288  mesh_pt()->boundary_node_pt(1,i)->pin_position(2,0);
289  mesh_pt()->boundary_node_pt(3,i)->pin_position(2,0);
290 
291  mesh_pt()->boundary_node_pt(1,i)->pin_position(1);
292  mesh_pt()->boundary_node_pt(3,i)->pin_position(1);
293  //Derived conditions
294  mesh_pt()->boundary_node_pt(1,i)->pin_position(2,1);
295  mesh_pt()->boundary_node_pt(3,i)->pin_position(2,1);
296  //----------------------------------------------------------
297 
298  // Set the axial gradients of the transverse coordinates to be
299  // zero --- need to be enforced for ring or tube buckling
300  //Pin dx/dz and dy/dz
301  mesh_pt()->boundary_node_pt(1,i)->pin_position(1,0);
302  mesh_pt()->boundary_node_pt(1,i)->pin_position(1,1);
303  mesh_pt()->boundary_node_pt(3,i)->pin_position(1,0);
304  mesh_pt()->boundary_node_pt(3,i)->pin_position(1,1);
305  //Derived conditions
306  mesh_pt()->boundary_node_pt(1,i)->pin_position(3,0);
307  mesh_pt()->boundary_node_pt(1,i)->pin_position(3,1);
308  mesh_pt()->boundary_node_pt(3,i)->pin_position(3,0);
309  mesh_pt()->boundary_node_pt(3,i)->pin_position(3,1);
310  }
311 
312  //Now loop over the sides and apply symmetry conditions
313  unsigned n_side = mesh_pt()->nboundary_node(0);
314  for(unsigned i=0;i<n_side;i++)
315  {
316  //At the side where theta is 0, pin in the y direction
317  mesh_pt()->boundary_node_pt(0,i)->pin_position(1);
318  //Derived condition
319  mesh_pt()->boundary_node_pt(0,i)->pin_position(1,1);
320  //Pin dx/dtheta and dz/dtheta
321  mesh_pt()->boundary_node_pt(0,i)->pin_position(2,0);
322  mesh_pt()->boundary_node_pt(0,i)->pin_position(2,2);
323  //Pin the mixed derivative
324  mesh_pt()->boundary_node_pt(0,i)->pin_position(3,0);
325  mesh_pt()->boundary_node_pt(0,i)->pin_position(3,2);
326 
327  //At the side when theta is 0.5pi pin in the x direction
328  mesh_pt()->boundary_node_pt(2,i)->pin_position(0);
329  //Derived condition
330  mesh_pt()->boundary_node_pt(2,i)->pin_position(1,0);
331  //Pin dy/dtheta and dz/dtheta
332  mesh_pt()->boundary_node_pt(2,i)->pin_position(2,1);
333  mesh_pt()->boundary_node_pt(2,i)->pin_position(2,2);
334  //Pin the mixed derivative
335  mesh_pt()->boundary_node_pt(2,i)->pin_position(3,1);
336  mesh_pt()->boundary_node_pt(2,i)->pin_position(3,2);
337 
338 // //Set an initial kick to make sure that we hop onto the
339 // //non-axisymmetric branch
340 // if((i>1) && (i<n_side-1))
341 // {
342 // mesh_pt()->boundary_node_pt(0,i)->x(0) += 0.05;
343 // mesh_pt()->boundary_node_pt(2,i)->x(1) -= 0.1;
344 // }
345  }
346 
347 
348  // Setup displacement control
349  //---------------------------
350 
351 
352 
353 // //Setup displacement control
354 // //Fix the displacement at the mid-point of the tube in the "vertical"
355 // //(y) direction.
356 // //Set the displacement control element (located halfway along the tube)
357 // Disp_ctl_element_pt = dynamic_cast<ELEMENT*>(mesh_pt()->element_pt(3*Ny-1));
358 // //The midpoint of the tube is located exactly half-way along the element
359 // Vector<double> s(2); s[0] = 1.0; s[1] = 0.0; //s[1] = 0.5
360 // //Fix the displacement at this point in the y (1) direction
361 // Disp_ctl_element_pt->fix_displacement_for_displacement_control(s,1);
362 // //Set the pointer to the prescribed position
363 // Disp_ctl_element_pt->prescribed_position_pt() = &Prescribed_y;
364 
365 
366 
367  // Choose element in which displacement control is applied: This
368  // one is located about halfway along the tube -- remember that
369  // we've renumbered the elements!
370  unsigned nel_ctrl=0;
371  Vector<double> s_displ_control(2);
372 
373  // Even/odd number of elements in axial direction
374  if (nx%2==1)
375  {
376  nel_ctrl=unsigned(floor(0.5*double(nx))+1.0)*ny-1;
377  s_displ_control[0]=0.0;
378  s_displ_control[1]=1.0;
379  }
380  else
381  {
382  nel_ctrl=unsigned(floor(0.5*double(nx))+1.0)*ny-1;
383  s_displ_control[0]=-1.0;
384  s_displ_control[1]=1.0;
385  }
386 
387  // Controlled element
388  SolidFiniteElement* controlled_element_pt=
389  dynamic_cast<ELEMENT*>(mesh_pt()->element_pt(nel_ctrl));
390 
391 
392  // Fix the displacement in the y (1) direction...
393  unsigned controlled_direction=1;
394 
395  // Pointer to displacement control element
396  DisplacementControlElement* displ_control_el_pt;
397 
398  // Build displacement control element
399  displ_control_el_pt=
400  new DisplacementControlElement(controlled_element_pt,
401  s_displ_control,
402  controlled_direction,
404 
405 
406  // Doc control point
407  Vector<double> xi(2);
408  Vector<double> x(3);
409  controlled_element_pt->interpolated_xi(s_displ_control,xi);
410  controlled_element_pt->interpolated_x(s_displ_control,x);
411  std::cout << std::endl;
412  std::cout << "Controlled element: " << nel_ctrl << std::endl;
413  std::cout << "Displacement control applied at xi = ("
414  << xi[0] << ", " << xi[1] << ")" << std::endl;
415  std::cout << "Corresponding to x = ("
416  << x[0] << ", " << x[1] << ", " << x[2] << ")" << std::endl;
417 
418 
419  // The constructor of the DisplacementControlElement has created
420  // a new Data object whose one-and-only value contains the
421  // adjustable load: Use this Data object in the load function:
422  Global_Physical_Variables::Pext_data_pt=displ_control_el_pt->
423  displacement_control_load_pt();
424 
425  // Add the displacement-control element to the mesh
426  mesh_pt()->add_element_pt(displ_control_el_pt);
427 
428 
429 
430  // Complete build of shell elements
431  //---------------------------------
432 
433  //Find number of shell elements in mesh
434  unsigned n_element = nx*ny;
435 
436  //Explicit pointer to first element in the mesh
437  ELEMENT* first_el_pt = dynamic_cast<ELEMENT*>(mesh_pt()->element_pt(0));
438 
439  //Loop over the elements
440  for(unsigned e=0;e<n_element;e++)
441  {
442  //Cast to a shell element
443  ELEMENT *el_pt = dynamic_cast<ELEMENT*>(mesh_pt()->element_pt(e));
444 
445  //Set the load function
446  el_pt->load_vector_fct_pt() = & Global_Physical_Variables::press_load;
447 
448  //Set the undeformed surface
449  el_pt->undeformed_midplane_pt() = Undeformed_midplane_pt;
450 
451  //The external pressure is external data for all elements
452  el_pt->add_external_data(Global_Physical_Variables::Pext_data_pt);
453 
454  //Pre-compute the second derivatives wrt Lagrangian coordinates
455  //for the first element only
456  if(e==0)
457  {
458  el_pt->pre_compute_d2shape_lagrangian_at_knots();
459  }
460 
461  //Otherwise set the values to be the same as those in the first element
462  //this is OK because the Lagrangian mesh is uniform.
463  else
464  {
465  el_pt->set_dshape_lagrangian_stored_from_element(first_el_pt);
466  }
467  }
468 
469  //Set pointers to two trace nodes, used for output
470  Trace_node_pt = mesh_pt()->finite_element_pt(2*ny-1)->node_pt(3);
471  Trace_node2_pt = mesh_pt()->finite_element_pt(ny)->node_pt(1);
472 
473  // Do equation numbering
474  cout << std::endl;
475  cout << "# of dofs " << assign_eqn_numbers() << std::endl;
476  cout << std::endl;
477 
478 }
479 
480 
481 //================================================================
482 // /Define the solve function, disp ctl and then continuation
483 //================================================================
484 template<class ELEMENT>
486 {
487 
488  //Increase the maximum number of Newton iterations.
489  //Finding the first buckled solution requires a large(ish) number
490  //of Newton steps -- shells are just a bit twitchy
491  Max_newton_iterations = 40;
492  Max_residuals=1.0e6;
493 
494 
495  //Open an output trace file
496  ofstream trace("trace.dat");
497 
498 
499  //Gradually compress the tube by decreasing the value of the prescribed
500  //position
501  for(unsigned i=1;i<11;i++)
502  {
503 
505 
506  cout << std::endl << "Increasing displacement: Prescribed_y is "
508 
509  // Solve
510  newton_solve();
511 
512 
513  //Output the pressure (on the bending scale)
514  trace << Global_Physical_Variables::external_pressure()/(pow(0.05,3)/12.0)
515  << " "
516  //Position of first trace node
517  << Trace_node_pt->x(0) << " " << Trace_node_pt->x(1) << " "
518  //Position of second trace node
519  << Trace_node2_pt->x(0) << " " << Trace_node2_pt->x(1) << std::endl;
520 
521  // Reset perturbation
523  }
524 
525  //Close the trace file
526  trace.close();
527 
528  //Output the tube shape in the most strongly collapsed configuration
529  ofstream file("final_shape.dat");
530  mesh_pt()->output(file,5);
531  file.close();
532 
533 
534 }
535 
536 
537 //====================================================================
538 /// Driver
539 //====================================================================
540 int main()
541 {
542 
543  //Length of domain
544  double L = 10.0;
545  double L_phi=0.5*MathematicalConstants::Pi;
546 
547  //Set up the problem
549  problem(5,3,L,L_phi);
550 
551  //Solve the problem
552  problem.solve();
553 }
554 
555 
556 
557 
558 
559 
int main()
Driver.
A 2D Mesh class. The tube wall is represented by two Lagrangian coordinates that correspond to z and ...
void assign_undeformed_positions(GeomObject *const &undeformed_midplane_pt)
In all elastic problems, the nodes must be assigned an undeformed, or reference, position,...
ShellMesh(const unsigned &nx, const unsigned &ny, const double &lx, const double &ly)
Constructor for the mesh.
ShellMesh< ELEMENT > * mesh_pt()
Overload Access function for the mesh.
Node * Trace_node2_pt
Second trace node.
GeomObject * Undeformed_midplane_pt
Pointer to GeomObject that specifies the undeformed midplane.
ShellProblem(const unsigned &nx, const unsigned &ny, const double &lx, const double &ly)
Constructor.
void actions_before_newton_solve()
Actions before solve empty.
Node * Trace_node_pt
First trace node.
void actions_after_newton_solve()
Actions after solve empty.
Global variables that represent physical properties.
double external_pressure()
Return a reference to the external pressure load on the elastic tube.
void press_load(const Vector< double > &xi, const Vector< double > &x, const Vector< double > &N, Vector< double > &load)
Load function, normal pressure loading.
double Prescribed_y
Prescribed position of control point.
double Pcos
Perturbation pressure.
Data * Pext_data_pt
Pointer to pressure load (stored in Data so it can become an unknown in the problem when displacement...