fish_poisson_no_adapt.cc
Go to the documentation of this file.
1 //LIC// ====================================================================
2 //LIC// This file forms part of oomph-lib, the object-oriented,
3 //LIC// multi-physics finite-element library, available
4 //LIC// at http://www.oomph-lib.org.
5 //LIC//
6 //LIC// Copyright (C) 2006-2024 Matthias Heil and Andrew Hazel
7 //LIC//
8 //LIC// This library is free software; you can redistribute it and/or
9 //LIC// modify it under the terms of the GNU Lesser General Public
10 //LIC// License as published by the Free Software Foundation; either
11 //LIC// version 2.1 of the License, or (at your option) any later version.
12 //LIC//
13 //LIC// This library is distributed in the hope that it will be useful,
14 //LIC// but WITHOUT ANY WARRANTY; without even the implied warranty of
15 //LIC// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
16 //LIC// Lesser General Public License for more details.
17 //LIC//
18 //LIC// You should have received a copy of the GNU Lesser General Public
19 //LIC// License along with this library; if not, write to the Free Software
20 //LIC// Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
21 //LIC// 02110-1301 USA.
22 //LIC//
23 //LIC// The authors may be contacted at oomph-lib@maths.man.ac.uk.
24 //LIC//
25 //LIC//====================================================================
26 // Driver for solution of 2D Poisson equation in fish-shaped domain
27 
28 // Generic oomph-lib headers
29 #include "generic.h"
30 
31 // The Poisson equations
32 #include "poisson.h"
33 
34 // The fish mesh
35 #include "meshes/fish_mesh.h"
36 
37 using namespace std;
38 
39 using namespace oomph;
40 
41 
42 //============ start_of_namespace=====================================
43 /// Namespace for const source term in Poisson equation
44 //====================================================================
45 namespace ConstSourceForPoisson
46 {
47 
48  /// Strength of source function: default value -1.0
49  double Strength=-1.0;
50 
51 /// Const source function
52  void source_function(const Vector<double>& x, double& source)
53  {
54  source = Strength;
55  }
56 
57 } // end of namespace
58 
59 
60 
61 
62 //======start_of_problem_class========================================
63 /// Poisson problem in fish-shaped domain.
64 /// Template parameter identifies the element type.
65 //====================================================================
66 template<class ELEMENT>
67 class FishPoissonProblem : public Problem
68 {
69 
70 public:
71 
72  /// Constructor
74 
75  /// Destructor: Empty
76  virtual ~FishPoissonProblem(){}
77 
78  /// Update the problem specs after solve (empty)
80 
81  /// Update the problem specs before solve (empty)
83 
84  /// Overloaded version of the problem's access function to
85  /// the mesh. Recasts the pointer to the base Mesh object to
86  /// the actual mesh type.
87  FishMesh<ELEMENT>* mesh_pt()
88  {
89  return dynamic_cast<FishMesh<ELEMENT>*>(Problem::mesh_pt());
90  }
91 
92  /// Doc the solution. Output directory and labels are specified
93  /// by DocInfo object
94  void doc_solution(DocInfo& doc_info);
95 
96 }; // end of problem class
97 
98 
99 
100 
101 
102 //===========start_of_constructor=========================================
103 /// Constructor for Poisson problem in fish-shaped
104 /// domain.
105 //========================================================================
106 template<class ELEMENT>
108 {
109 
110  // Build fish mesh -- this is a coarse base mesh consisting
111  // of four elements.
112  Problem::mesh_pt()=new FishMesh<ELEMENT>;
113 
114  // Set the boundary conditions for this problem: All nodes are
115  // free by default -- just pin the ones that have Dirichlet conditions
116  // here. Since the boundary values are never changed, we set
117  // them here rather than in actions_before_newton_solve().
118  unsigned n_bound = mesh_pt()->nboundary();
119  for(unsigned i=0;i<n_bound;i++)
120  {
121  unsigned n_node = mesh_pt()->nboundary_node(i);
122  for (unsigned n=0;n<n_node;n++)
123  {
124  // Pin the single scalar value at this node
125  mesh_pt()->boundary_node_pt(i,n)->pin(0);
126 
127  // Assign the homogenous boundary condition for the one and only
128  // nodal value
129  mesh_pt()->boundary_node_pt(i,n)->set_value(0,0.0);
130  }
131  }
132 
133  // Loop over elements and set pointers to source function
134  unsigned n_element = mesh_pt()->nelement();
135  for(unsigned e=0;e<n_element;e++)
136  {
137  // Upcast from FiniteElement to the present element
138  ELEMENT *el_pt = dynamic_cast<ELEMENT*>(mesh_pt()->element_pt(e));
139 
140  //Set the source function pointer
141  el_pt->source_fct_pt() = &ConstSourceForPoisson::source_function;
142  }
143 
144  // Setup the equation numbering scheme
145  cout <<"Number of equations: " << assign_eqn_numbers() << std::endl;
146 
147 } // end of constructor
148 
149 
150 
151 
152 //=======start_of_doc=====================================================
153 /// Doc the solution in tecplot format.
154 //========================================================================
155 template<class ELEMENT>
157 {
158 
159  ofstream some_file;
160  char filename[100];
161 
162  // Number of plot points in each coordinate direction.
163  unsigned npts;
164  npts=5;
165 
166 
167  // Output solution
168  sprintf(filename,"%s/soln%i.dat",doc_info.directory().c_str(),
169  doc_info.number());
170  some_file.open(filename);
171  mesh_pt()->output(some_file,npts);
172  some_file.close();
173 
174  // Output solution
175  sprintf(filename,"%s/soln_nodes%i.dat",doc_info.directory().c_str(),
176  doc_info.number());
177  some_file.open(filename);
178  mesh_pt()->output(some_file,4);
179  some_file.close();
180 
181  // Output solution
182  sprintf(filename,"%s/soln_fine%i.dat",doc_info.directory().c_str(),
183  doc_info.number());
184  some_file.open(filename);
185  mesh_pt()->output(some_file,20*npts);
186  some_file.close();
187 
188 
189  // Output boundaries
190  sprintf(filename,"%s/boundaries%i.dat",doc_info.directory().c_str(),
191  doc_info.number());
192  some_file.open(filename);
193  mesh_pt()->output_boundaries(some_file);
194  some_file.close();
195 
196 } // end of doc
197 
198 
199 
200 
201 
202 
203 
204 
205 //=================start_of_main==========================================
206 /// Demonstrate how to solve 2D Poisson problem in
207 /// fish-shaped domain.
208 //========================================================================
209 int main()
210 {
211 
212 
213  //Set up the problem with nine-node Poisson elements
215 
216  // Setup labels for output
217  //------------------------
218  DocInfo doc_info;
219 
220  // Set output directory
221  doc_info.set_directory("RESLT");
222 
223  // Step number
224  doc_info.number()=0;
225 
226 
227 
228  // Solve/doc the problem
229  //----------------------
230 
231  // Solve the problem
232  problem.newton_solve();
233 
234  //Output solution
235  problem.doc_solution(doc_info);
236 
237 } // end of main
238 
239 
Poisson problem in fish-shaped domain. Template parameter identifies the element type.
FishMesh< ELEMENT > * mesh_pt()
Overloaded version of the problem's access function to the mesh. Recasts the pointer to the base Mesh...
void actions_before_newton_solve()
Update the problem specs before solve (empty)
void doc_solution(DocInfo &doc_info)
Doc the solution. Output directory and labels are specified by DocInfo object.
void actions_after_newton_solve()
Update the problem specs after solve (empty)
FishPoissonProblem()
Constructor.
virtual ~FishPoissonProblem()
Destructor: Empty.
int main()
Demonstrate how to solve 2D Poisson problem in fish-shaped domain.
Namespace for const source term in Poisson equation.
Definition: fish_poisson.cc:48
double Strength
Strength of source function: default value -1.0.
Definition: fish_poisson.cc:51
void source_function(const Vector< double > &x, double &source)
Const source function.
Definition: fish_poisson.cc:54