41     const Vector<double>& s)
 
   44     unsigned n_node = this->nnode();
 
   56     for (
unsigned l = 0; l < n_node; l++)
 
   58       C += this->nodal_value(l, this->
C_index[l]) * psi(l);
 
   68     const unsigned& l)
 const 
   71     TimeStepper* time_stepper_pt = this->node_pt(l)->time_stepper_pt();
 
   76     if (time_stepper_pt->type() != 
"Steady")
 
   79       const unsigned n_time = time_stepper_pt->ntstorage();
 
   81       for (
unsigned t = 0; t < n_time; t++)
 
   83         dcdt += time_stepper_pt->weight(1, t) *
 
   84                 this->nodal_value(t, l, this->
C_index[l]);
 
   98     const unsigned n_node = this->nnode();
 
  105     for (
unsigned l = 0; l < n_node; l++)
 
  107       C += this->nodal_value(l, this->
C_index[l]) * psi(l);
 
  113     return (1.0 - Beta * (C - 1.0));
 
  122       Vector<double>& residuals,
 
  123       DenseMatrix<double>& jacobian,
 
  124       const unsigned& flag,
 
  126       const DShape& dpsifds,
 
  127       const DShape& dpsifdS,
 
  128       const DShape& dpsifdS_div,
 
  129       const Vector<double>& s,
 
  130       const Vector<double>& interpolated_x,
 
  131       const Vector<double>& interpolated_n,
 
  136     unsigned n_node = this->nnode();
 
  139     int local_eqn = 0, local_unknown = 0;
 
  147     const double Pe_s = this->
peclet_s();
 
  155     const unsigned n_dim = this->node_pt(0)->ndim();
 
  157     Vector<double> mesh_velocity(n_dim, 0.0);
 
  158     Vector<double> interpolated_grad_C(n_dim, 0.0);
 
  159     double interpolated_div_u = 0.0;
 
  162     for (
unsigned l = 0; l < n_node; l++)
 
  164       const double psi = psif(l);
 
  165       const double C_ = this->nodal_value(l, this->
C_index[l]);
 
  170       for (
unsigned j = 0; j < n_dim; j++)
 
  172         const double u_ = this->nodal_value(l, u_index[j]);
 
  174         mesh_velocity[j] += this->dnodal_position_dt(l, j) * psi;
 
  175         interpolated_grad_C[j] += C_ * dpsifdS(l, j);
 
  176         interpolated_div_u += u_ * dpsifdS_div(l, j);
 
  181     double interpolated_advection_term = 
interpolated_C * interpolated_div_u;
 
  182     for (
unsigned i = 0; i < n_dim; i++)
 
  184       interpolated_advection_term +=
 
  190     for (
unsigned l = 0; l < n_node; l++)
 
  193       local_eqn = this->nodal_local_eqn(l, this->
C_index[l]);
 
  199         residuals[local_eqn] += dCdt * psif(l) * W * J;
 
  202         residuals[local_eqn] += interpolated_advection_term * psif(l) * W * J;
 
  205         double diffusion_term = 0.0;
 
  206         for (
unsigned i = 0; i < n_dim; i++)
 
  208           diffusion_term += interpolated_grad_C[i] * dpsifdS(l, i);
 
  210         residuals[local_eqn] += (1.0 / Pe_s) * diffusion_term * W * J;
 
  216           for (
unsigned l2 = 0; l2 < n_node; l2++)
 
  219             TimeStepper* time_stepper_pt = this->node_pt(l2)->time_stepper_pt();
 
  222             local_unknown = this->nodal_local_eqn(l2, this->
C_index[l2]);
 
  224             if (local_unknown >= 0)
 
  226               jacobian(local_eqn, local_unknown) +=
 
  227                 time_stepper_pt->weight(1, 0) * psif(l2) * psif(l) * W * J;
 
  229               jacobian(local_eqn, local_unknown) +=
 
  230                 psif(l2) * interpolated_div_u * psif(l) * W * J;
 
  232               for (
unsigned i = 0; i < n_dim; i++)
 
  234                 jacobian(local_eqn, local_unknown) +=
 
  239               for (
unsigned i = 0; i < n_dim; i++)
 
  241                 jacobian(local_eqn, local_unknown) +=
 
  242                   (1.0 / Pe_s) * dpsifdS(l2, i) * dpsifdS(l, i) * W * J;
 
  248             for (
unsigned i2 = 0; i2 < n_dim; i2++)
 
  251               local_unknown = this->nodal_local_eqn(l2, u_index[i2]);
 
  255               if (local_unknown >= 0)
 
  258                 jacobian(local_eqn, local_unknown) +=
 
  260                    psif(l2) * interpolated_grad_C[i2]) *
 
  270         const double dsigma = this->
dsigma_dC(s);
 
  271         const double Ca = this->
ca();
 
  272         for (
unsigned l2 = 0; l2 < n_node; l2++)
 
  274           local_unknown = this->nodal_local_eqn(l2, this->
C_index[l2]);
 
  275           if (local_unknown >= 0)
 
  277             const double psi_ = psif(l2);
 
  278             for (
unsigned i = 0; i < n_dim; i++)
 
  281               local_eqn = this->nodal_local_eqn(l, u_index[i]);
 
  284                 jacobian(local_eqn, local_unknown) -=
 
  285                   (dsigma / 
Ca) * psi_ * dpsifdS_div(l, i) * J * W;
 
  299                                                    const unsigned& n_plot)
 
  301     outfile.precision(16);
 
  303     const unsigned el_dim = this->dim();
 
  304     const unsigned n_dim = this->nodal_dimension();
 
  308     Vector<double> s(el_dim);
 
  309     Vector<double> n(n_dim);
 
  310     Vector<double> 
u(n_velocity);
 
  313     outfile << this->tecplot_zone_string(n_plot);
 
  316     unsigned num_plot_points = this->nplot_points(n_plot);
 
  317     for (
unsigned iplot = 0; iplot < num_plot_points; iplot++)
 
  320       this->get_s_plot(iplot, n_plot, s);
 
  322       this->outer_unit_normal(s, n);
 
  325       for (
unsigned i = 0; i < n_velocity; i++)
 
  331       for (
unsigned i = 0; i < n_dim; i++)
 
  337       for (
unsigned i = 0; i < n_dim; i++)
 
  338         outfile << this->interpolated_x(s, i) << 
" ";
 
  339       for (
unsigned i = 0; i < n_dim; i++) outfile << 
u[i] << 
" ";
 
  341       outfile << 0.0 << 
" ";
 
  345       outfile << 
sigma(s) << 
" ";
 
  346       for (
unsigned i = 0; i < n_dim; i++)
 
  348         outfile << 
u[i] - u_n * n[i] << 
" ";
 
  350       outfile << std::endl;
 
  352     outfile << std::endl;
 
  361     unsigned n_node = this->nnode();
 
  363     const unsigned el_dim = this->dim();
 
  364     const unsigned n_dim = this->nodal_dimension();
 
  368     DShape dpsifds(n_node, el_dim);
 
  369     DShape dpsifdS(n_node, n_dim);
 
  370     DShape dpsifdS_div(n_node, n_dim);
 
  373     unsigned n_intpt = this->integral_pt()->nweight();
 
  376     Vector<double> s(el_dim);
 
  382     for (
unsigned ipt = 0; ipt < n_intpt; ipt++)
 
  385       for (
unsigned i = 0; i < el_dim; i++)
 
  387         s[i] = this->integral_pt()->knot(ipt, i);
 
  391       double W = this->integral_pt()->weight(ipt);
 
  394       this->dshape_local_at_knot(ipt, psif, dpsifds);
 
  396       Vector<double> interpolated_x(n_dim, 0.0);
 
  397       DenseMatrix<double> interpolated_t(el_dim, n_dim, 0.0);
 
  398       double interpolated_c = 0.0;
 
  401       for (
unsigned l = 0; l < n_node; l++)
 
  403         const double psi_ = psif(l);
 
  404         interpolated_c += this->nodal_value(l, this->
C_index[l]) * psi_;
 
  406         for (
unsigned i = 0; i < n_dim; i++)
 
  409           interpolated_x[i] += this->nodal_position(l, i) * psi_;
 
  412           for (
unsigned j = 0; j < el_dim; j++)
 
  414             interpolated_t(j, i) += this->nodal_position(l, i) * dpsifds(l, j);
 
  421         psif, dpsifds, interpolated_t, interpolated_x, dpsifdS, dpsifdS_div);
 
  423       mass += interpolated_c * W * J;
 
virtual double compute_surface_derivatives(const Shape &psi, const DShape &dpsids, const DenseMatrix< double > &interpolated_t, const Vector< double > &interpolated_x, DShape &dpsidS, DShape &dpsidS_div)=0
Compute the surface gradient and surface divergence operators given the shape functions,...
 
double u(const unsigned &j, const unsigned &i)
Return the i-th velocity component at local node j.
 
Vector< unsigned > U_index_interface
Nodal index at which the i-th velocity component is stored.
 
double interpolated_u(const Vector< double > &s, const unsigned &i)
Calculate the i-th velocity component at the local coordinate s.
 
const double & ca() const
The value of the Capillary number.
 
double sigma(const Vector< double > &s)
The surface tension function is linear in the concentration with constant of proportionality equal to...
 
Vector< unsigned > C_index
Index at which the surfactant concentration is stored at the nodes.
 
void output(std::ostream &outfile)
Overload the output function.
 
virtual double dsigma_dC(const Vector< double > &s)
Return the derivative of sigma with respect to C For use in computing the Jacobian.
 
double integrate_c()
Compute the concentration intergated over the surface area.
 
double beta()
Return the Elasticity number.
 
double dcdt_surface(const unsigned &l) const
The time derivative of the surface concentration.
 
double interpolated_C(const Vector< double > &s)
Get the surfactant concentration.
 
double peclet_s()
Return the surface peclect number.
 
void add_additional_residual_contributions_interface(Vector< double > &residuals, DenseMatrix< double > &jacobian, const unsigned &flag, const Shape &psif, const DShape &dpsifds, const DShape &dpsifdS, const DShape &dpsifdS_div, const Vector< double > &s, const Vector< double > &interpolated_x, const Vector< double > &interpolated_n, const double &W, const double &J)
Overload the Helper function to calculate the residuals and jacobian entries. This particular functio...
 
static double Default_Physical_Constant_Value
Default value of the physical constants.
 
double Beta
Surface Elasticity number (weak case)
 
double Ca
Capillary number.