mesh_from_triangle_poisson.cc
Go to the documentation of this file.
1 //LIC// ====================================================================
2 //LIC// This file forms part of oomph-lib, the object-oriented,
3 //LIC// multi-physics finite-element library, available
4 //LIC// at http://www.oomph-lib.org.
5 //LIC//
6 //LIC// Copyright (C) 2006-2024 Matthias Heil and Andrew Hazel
7 //LIC//
8 //LIC// This library is free software; you can redistribute it and/or
9 //LIC// modify it under the terms of the GNU Lesser General Public
10 //LIC// License as published by the Free Software Foundation; either
11 //LIC// version 2.1 of the License, or (at your option) any later version.
12 //LIC//
13 //LIC// This library is distributed in the hope that it will be useful,
14 //LIC// but WITHOUT ANY WARRANTY; without even the implied warranty of
15 //LIC// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
16 //LIC// Lesser General Public License for more details.
17 //LIC//
18 //LIC// You should have received a copy of the GNU Lesser General Public
19 //LIC// License along with this library; if not, write to the Free Software
20 //LIC// Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
21 //LIC// 02110-1301 USA.
22 //LIC//
23 //LIC// The authors may be contacted at oomph-lib@maths.man.ac.uk.
24 //LIC//
25 //LIC//====================================================================
26 // Driver code for a simple test poisson problem using a mesh
27 // generated from an input file generated by the triangle mesh generator
28 // Triangle.
29 
30 //Generic routines
31 #include "generic.h"
32 
33 // Poisson equations
34 #include "poisson.h"
35 
36 // The mesh
37 #include "meshes/triangle_mesh.h"
38 
39 using namespace std;
40 
41 using namespace oomph;
42 
43 //====================================================================
44 /// Namespace for exact solution for Poisson equation with sharp step
45 //====================================================================
47 {
48 
49  /// Parameter for steepness of step
50  double Alpha;
51 
52  /// Parameter for angle of step
53  double Beta;
54 
55 
56  /// Exact solution as a Vector
57  void get_exact_u(const Vector<double>& x, Vector<double>& u)
58  {
59  u[0]=tanh(1.0-Alpha*(Beta*x[0]-x[1]));
60  }
61 
62 
63  /// Exact solution as a scalar
64  void get_exact_u(const Vector<double>& x, double& u)
65  {
66  u=tanh(1.0-Alpha*(Beta*x[0]-x[1]));
67  }
68 
69 
70  /// Source function to make it an exact solution
71  void get_source(const Vector<double>& x, double& source)
72  {
73  source = 2.0*tanh(-1.0+Alpha*(Beta*x[0]-x[1]))*
74  (1.0-pow(tanh(-1.0+Alpha*(Beta*x[0]-x[1])),2.0))*
75  Alpha*Alpha*Beta*Beta+2.0*tanh(-1.0+Alpha*(Beta*x[0]-x[1]))*
76  (1.0-pow(tanh(-1.0+Alpha*(Beta*x[0]-x[1])),2.0))*Alpha*Alpha;
77  }
78 
79 }
80 
81 
82 
83 
84 
85 
86 
87 //====================================================================
88 /// Micky mouse Poisson problem.
89 //====================================================================
90 
91 // Poisson problem
92 template<class ELEMENT>
93 class PoissonProblem : public Problem
94 {
95 
96 public:
97 
98 
99  /// Constructor: Pass pointer to source function and names of
100  /// two triangle input files
101  PoissonProblem(PoissonEquations<2>::PoissonSourceFctPt source_fct_pt,
102  const string& node_file_name,
103  const string& element_file_name,
104  const string& poly_file_name);
105 
106  /// Destructor (empty)
108 
109  /// Update the problem specs before solve: (Re)set boundary conditions
111  {
112  //Loop over the boundaries
113  unsigned num_bound = mesh_pt()->nboundary();
114  for(unsigned ibound=0;ibound<num_bound;ibound++)
115  {
116  // Loop over the nodes on boundary
117  unsigned num_nod=mesh_pt()->nboundary_node(ibound);
118  for (unsigned inod=0;inod<num_nod;inod++)
119  {
120  Node* nod_pt=mesh_pt()->boundary_node_pt(ibound,inod);
121  double u;
122  Vector<double> x(2);
123  x[0]=nod_pt->x(0);
124  x[1]=nod_pt->x(1);
126  nod_pt->set_value(0,u);
127  }
128  }
129  }
130 
131  /// Update the problem specs before solve (empty)
133  {}
134 
135 #ifdef ADAPT
136  /// Actions performed after the adaptation steps
137  void actions_after_adapt();
138 #endif
139 
140 #ifdef ADAPT
141  /// Access function for the specific mesh
143  {
144  return dynamic_cast<RefineableTriangleMesh<ELEMENT>*>(Problem::mesh_pt());
145  }
146 #else
147  /// Access function for the specific mesh
149  {
150  return dynamic_cast<TriangleMesh<ELEMENT>*>(Problem::mesh_pt());
151  }
152 #endif
153 
154  /// Doc the solution
155  void doc_solution(DocInfo& doc_info);
156 
157 private:
158 
159  /// Pointer to source function
160  PoissonEquations<2>::PoissonSourceFctPt Source_fct_pt;
161 
162 #ifdef ADAPT
163  /// Pointer to the bulk mesh
165 
166  /// Error estimator
167  Z2ErrorEstimator* error_estimator_pt;
168 #endif
169 
170 };
171 
172 
173 
174 //========================================================================
175 /// Constructor for Poisson problem
176 //========================================================================
177 template<class ELEMENT>
179  PoissonProblem(PoissonEquations<2>::PoissonSourceFctPt source_fct_pt,
180  const string& node_file_name,
181  const string& element_file_name,
182  const string& poly_file_name)
183  : Source_fct_pt(source_fct_pt)
184 {
185 
186  // Setup parameters for exact tanh solution
187 
188  // Steepness of step
190 
191  // Orientation of step
193 
194 #ifdef ADAPT
195  //Create mesh
196  Bulk_mesh_pt = new RefineableTriangleMesh<ELEMENT>(node_file_name,
197  element_file_name,
198  poly_file_name);
199 
200  // Set error estimator for bulk mesh
201  Z2ErrorEstimator* error_estimator_pt=new Z2ErrorEstimator;
202  Bulk_mesh_pt->spatial_error_estimator_pt() = error_estimator_pt;
203 
204  // Set the problem mesh pointer to the bulk mesh
205  Problem::mesh_pt() = Bulk_mesh_pt;
206 
207 #else
208  //Create mesh
209  Problem::mesh_pt() = new TriangleMesh<ELEMENT>(node_file_name,
210  element_file_name,
211  poly_file_name);
212 #endif
213 
214  // Set the boundary conditions for this problem: All nodes are
215  // free by default -- just pin the ones that have Dirichlet conditions
216  // here.
217  unsigned num_bound = mesh_pt()->nboundary();
218  for(unsigned ibound=0;ibound<num_bound;ibound++)
219  {
220  unsigned num_nod= mesh_pt()->nboundary_node(ibound);
221  for (unsigned inod=0;inod<num_nod;inod++)
222  {
223  mesh_pt()->boundary_node_pt(ibound,inod)->pin(0);
224  }
225  }
226 
227  // Complete the build of all elements so they are fully functional
228 
229  //Find number of elements in mesh
230  unsigned n_element = mesh_pt()->nelement();
231 
232  // Loop over the elements to set up element-specific
233  // things that cannot be handled by constructor
234  for(unsigned i=0;i<n_element;i++)
235  {
236  // Upcast from GeneralElement to the present element
237  ELEMENT* el_pt = dynamic_cast<ELEMENT*>(mesh_pt()->element_pt(i));
238 
239  //Set the source function pointer
240  el_pt->source_fct_pt() = Source_fct_pt;
241  }
242 
243  // Setup equation numbering scheme
244  cout <<"Number of equations: " << assign_eqn_numbers() << std::endl;
245 
246 }
247 
248 #ifdef ADAPT
249 //========================================================================
250 /// Actions performed after the adaptation steps
251 //========================================================================
252 template<class ELEMENT>
254 {
255  // Since the mesh adaptation strategy is based on mesh re-generation
256  // we need to pin the nodes in the new regenerated mesh, and pass the
257  // source function to the elements
258 
259  // Set the boundary conditions for this problem: All nodes are free
260  // by default -- just pin the ones that have Dirichlet conditions
261  // here.
262  unsigned num_bound = mesh_pt()->nboundary();
263  for(unsigned ibound=0;ibound<num_bound;ibound++)
264  {
265  unsigned num_nod= mesh_pt()->nboundary_node(ibound);
266  for (unsigned inod=0;inod<num_nod;inod++)
267  {
268  mesh_pt()->boundary_node_pt(ibound,inod)->pin(0);
269  }
270  }
271 
272  // Complete the build of all elements so they are fully functional
273 
274  //Find number of elements in mesh
275  unsigned n_element = mesh_pt()->nelement();
276 
277  // Loop over the elements to set up element-specific
278  // things that cannot be handled by constructor
279  for(unsigned i=0;i<n_element;i++)
280  {
281  // Upcast from GeneralElement to the present element
282  ELEMENT* el_pt = dynamic_cast<ELEMENT*>(mesh_pt()->element_pt(i));
283 
284  //Set the source function pointer
285  el_pt->source_fct_pt() = Source_fct_pt;
286  }
287 
288  // Setup equation numbering scheme
289  cout <<"Number of equations: " << assign_eqn_numbers() << std::endl;
290 }
291 #endif
292 
293 
294 //========================================================================
295 /// Doc the solution
296 //========================================================================
297 template<class ELEMENT>
299 {
300 
301  ofstream some_file;
302  char filename[100];
303 
304  // Number of plot points
305  unsigned npts;
306  npts=5;
307 
308 
309 
310  // Output boundaries
311  //------------------
312  sprintf(filename,"%s/boundaries.dat",doc_info.directory().c_str());
313  some_file.open(filename);
314  mesh_pt()->output_boundaries(some_file);
315  some_file.close();
316 
317 
318  // Output solution
319  //----------------
320  sprintf(filename,"%s/soln%i.dat",doc_info.directory().c_str(),
321  doc_info.number());
322  some_file.open(filename);
323  mesh_pt()->output(some_file,npts);
324  some_file.close();
325 
326 
327  // Output exact solution
328  //----------------------
329  sprintf(filename,"%s/exact_soln%i.dat",doc_info.directory().c_str(),
330  doc_info.number());
331  some_file.open(filename);
332  mesh_pt()->output_fct(some_file,npts,TanhSolnForPoisson::get_exact_u);
333  some_file.close();
334 
335 
336  // Doc error
337  //----------
338  double error,norm;
339  sprintf(filename,"%s/error%i.dat",doc_info.directory().c_str(),
340  doc_info.number());
341  some_file.open(filename);
342  mesh_pt()->compute_error(some_file,TanhSolnForPoisson::get_exact_u,
343  error,norm);
344  some_file.close();
345  cout << "error: " << sqrt(error) << std::endl;
346  cout << "norm : " << sqrt(norm) << std::endl << std::endl;
347 
348 
349  // Get norm of solution
350  sprintf(filename,"%s/norm%i.dat",doc_info.directory().c_str(),
351  doc_info.number());
352  some_file.open(filename);
353  double norm_soln=0.0;
354  mesh_pt()->compute_norm(norm_soln);
355  some_file << sqrt(norm_soln) << std::endl;
356  cout << "Norm of computed solution: " << sqrt(norm_soln) << endl;
357  some_file.close();
358 
359 }
360 
361 
362 
363 
364 
365 //========================================================================
366 /// Demonstrate how to solve Poisson problem
367 //========================================================================
368 int main(int argc, char* argv[])
369 {
370  // Store command line arguments
371  CommandLineArgs::setup(argc,argv);
372 
373  // Check number of command line arguments: Need exactly two.
374  if (argc!=4)
375  {
376  std::string error_message =
377  "Wrong number of command line arguments.\n";
378  error_message +=
379  "Must specify the following file names \n";
380  error_message +=
381  "filename.node then filename.ele then filename.poly\n";
382 
383  throw OomphLibError(error_message,
384  OOMPH_CURRENT_FUNCTION,
385  OOMPH_EXCEPTION_LOCATION);
386  }
387 
388 #ifdef ADAPT
389  const unsigned max_adapt = 3;
390 #endif
391 
392  // Convert arguments to strings that specify the input file names
393  string node_file_name(argv[1]);
394  string element_file_name(argv[2]);
395  string poly_file_name(argv[3]);
396 
397  // Label for output
398  DocInfo doc_info;
399 
400  // Output directory
401  doc_info.set_directory("RESLT");
402 
403 #ifndef ADAPT
404  // Do the problem with cubic elements
405  //-----------------------------------
406  {
407  cout << std::endl << "Cubic elements" << std::endl;
408  cout << "==============" << std::endl << std::endl;
409 
410  //Set up the problem
412  problem(&TanhSolnForPoisson::get_source,node_file_name,
413  element_file_name,
414  poly_file_name);
415 
416  // Solve the problem
417  problem.newton_solve();
418 
419  //Output solution
420  problem.doc_solution(doc_info);
421 
422  //Increment counter for solutions
423  doc_info.number()++;
424  }
425 #endif
426 
427 
428  // Do the problem with quadratic elements
429  //---------------------------------------
430  {
431  cout << std::endl << "Quadratic elements" << std::endl;
432  cout << "===================" << std::endl << std::endl;
433 
434 #ifdef ADAPT
435  //Set up the problem
437  problem(&TanhSolnForPoisson::get_source,node_file_name,
438  element_file_name,
439  poly_file_name);
440 #else
441  //Set up the problem
443  problem(&TanhSolnForPoisson::get_source,node_file_name,
444  element_file_name,
445  poly_file_name);
446 #endif
447 
448 #ifdef ADAPT
449  // Solve the problem with adaptation
450  problem.newton_solve(max_adapt);
451 #else
452  // Solve the problem
453  problem.newton_solve();
454 #endif
455 
456  //Output solution
457  problem.doc_solution(doc_info);
458 
459  //Increment counter for solutions
460  doc_info.number()++;
461  }
462 
463 
464 
465  // Do the problem with linear elements
466  //------------------------------------
467  {
468  cout << std::endl << "Linear elements" << std::endl;
469  cout << "===============" << std::endl << std::endl;
470 
471 #ifdef ADAPT
472  //Set up the problem
474  problem(&TanhSolnForPoisson::get_source,node_file_name,
475  element_file_name,
476  poly_file_name);
477 #else
478  //Set up the problem
480  problem(&TanhSolnForPoisson::get_source,node_file_name,
481  element_file_name,
482  poly_file_name);
483 #endif
484 
485 #ifdef ADAPT
486  // Solve the problem with adaptation
487  problem.newton_solve(max_adapt);
488 #else
489  // Solve the problem
490  problem.newton_solve();
491 #endif
492 
493  //Output solution
494  problem.doc_solution(doc_info);
495 
496  //Increment counter for solutions
497  doc_info.number()++;
498  }
499 
500 }
501 
502 
503 
Micky mouse Poisson problem.
PoissonEquations< 2 >::PoissonSourceFctPt Source_fct_pt
Pointer to source function.
void actions_before_newton_solve()
Update the problem specs before solve: (Re)set boundary conditions.
RefineableTriangleMesh< ELEMENT > * Bulk_mesh_pt
Pointer to the bulk mesh.
Z2ErrorEstimator * error_estimator_pt
Error estimator.
void actions_after_newton_solve()
Update the problem specs before solve (empty)
PoissonProblem(PoissonEquations< 2 >::PoissonSourceFctPt source_fct_pt, const string &node_file_name, const string &element_file_name, const string &poly_file_name)
Constructor: Pass pointer to source function and names of two triangle input files.
void doc_solution(DocInfo &doc_info)
Doc the solution.
RefineableTriangleMesh< ELEMENT > * mesh_pt()
Access function for the specific mesh.
~PoissonProblem()
Destructor (empty)
TriangleMesh< ELEMENT > * mesh_pt()
Access function for the specific mesh.
void actions_after_adapt()
Actions performed after the adaptation steps.
/////////////////////////////////////////////////////////////////// /////////////////////////////////...
///////////////////////////////////////////////////////////////////// ///////////////////////////////...
int main(int argc, char *argv[])
Demonstrate how to solve Poisson problem.
Namespace for exact solution for Poisson equation with sharp step.
double Beta
Parameter for angle of step.
void get_source(const Vector< double > &x, double &source)
Source function to make it an exact solution.
double Alpha
Parameter for steepness of step.
void get_exact_u(const Vector< double > &x, double &u)
Exact solution as a scalar.
void get_exact_u(const Vector< double > &x, Vector< double > &u)
Exact solution as a Vector.
////////////////////////////////////////////////////////////////////// //////////////////////////////...