sphere_scattering.cc
Go to the documentation of this file.
1 //LIC// ====================================================================
2 //LIC// This file forms part of oomph-lib, the object-oriented,
3 //LIC// multi-physics finite-element library, available
4 //LIC// at http://www.oomph-lib.org.
5 //LIC//
6 //LIC// Copyright (C) 2006-2023 Matthias Heil and Andrew Hazel
7 //LIC//
8 //LIC// This library is free software; you can redistribute it and/or
9 //LIC// modify it under the terms of the GNU Lesser General Public
10 //LIC// License as published by the Free Software Foundation; either
11 //LIC// version 2.1 of the License, or (at your option) any later version.
12 //LIC//
13 //LIC// This library is distributed in the hope that it will be useful,
14 //LIC// but WITHOUT ANY WARRANTY; without even the implied warranty of
15 //LIC// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
16 //LIC// Lesser General Public License for more details.
17 //LIC//
18 //LIC// You should have received a copy of the GNU Lesser General Public
19 //LIC// License along with this library; if not, write to the Free Software
20 //LIC// Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
21 //LIC// 02110-1301 USA.
22 //LIC//
23 //LIC// The authors may be contacted at oomph-lib@maths.man.ac.uk.
24 //LIC//
25 //LIC//====================================================================
26 //Driver for Fourier-decomposed Helmholtz problem
27 
28 #include <complex>
29 #include <cmath>
30 
31 //Generic routines
32 #include "generic.h"
33 
34 // The Helmholtz equations
35 #include "fourier_decomposed_helmholtz.h"
36 
37 // The mesh
38 #include "meshes/simple_rectangular_quadmesh.h"
39 
40 // Get the Bessel functions
41 #include "oomph_crbond_bessel.h"
42 
43 using namespace oomph;
44 using namespace std;
45 
46 
47 /// //////////////////////////////////////////////////////////////////
48 /// //////////////////////////////////////////////////////////////////
49 /// //////////////////////////////////////////////////////////////////
50 
51 //========================================================================
52 // AnnularQuadMesh, derived from SimpleRectangularQuadMesh.
53 //========================================================================
54 template<class ELEMENT>
55 class AnnularQuadMesh : public SimpleRectangularQuadMesh<ELEMENT>
56 {
57 
58  public:
59 
60  // Constructor for angular mesh with n_r x n_phi
61  // 2D quad elements. Calls constructor for the underlying
62  // SimpleRectangularQuadMesh; then deforms the mesh so that it fits
63  // into the annular region bounded by the radii r_min and r_max
64  // and angles (in degree) of phi_min and phi_max.
65  AnnularQuadMesh(const unsigned& n_r, const unsigned& n_phi,
66  const double& r_min, const double& r_max,
67  const double& phi_min, const double& phi_max) :
68  SimpleRectangularQuadMesh<ELEMENT>(n_r,n_phi,1.0,1.0)
69  {
70 
71  // The constructor for the SimpleRectangularQuadMesh has
72  // built the mesh with n_x x n_y = n_r x n_phi elements in the unit
73  // square. Let's reposition the nodal points so that the mesh
74  // gets mapped into the required annular region:
75 
76  // Find out how many nodes there are
77  unsigned n_node=this->nnode();
78 
79  // Loop over all nodes
80  for (unsigned n=0;n<n_node;n++)
81  {
82  // Pointer to node:
83  Node* nod_pt=this->node_pt(n);
84 
85  // Get the x/y coordinates
86  double x_old=nod_pt->x(0);
87  double y_old=nod_pt->x(1);
88 
89  // Map from the old x/y to the new r/phi:
90  double r=r_min+(r_max-r_min)*x_old;
91  double phi=(phi_min+(phi_max-phi_min)*y_old)*
92  MathematicalConstants::Pi/180.0;
93 
94  // Set new nodal coordinates
95  nod_pt->x(0)=r*cos(phi);
96  nod_pt->x(1)=r*sin(phi);
97  }
98  }
99 
100 };
101 
102 
103 
104 //===== start_of_namespace_planar_wave=================================
105 /// Namespace to test representation of planar wave in spherical
106 /// polars
107 //=====================================================================
108 namespace PlanarWave
109 {
110 
111  /// Number of terms in series
112  unsigned N_terms=100;
113 
114  /// Wave number
115  double K=3.0*MathematicalConstants::Pi;
116 
117  /// Imaginary unit
118  std::complex<double> I(0.0,1.0);
119 
120  /// Exact solution as a Vector of size 2, containing real and imag parts
121  void get_exact_u(const Vector<double>& x, Vector<double>& u)
122  {
123  // Switch to spherical coordinates
124  double R=sqrt(x[0]*x[0]+x[1]*x[1]);
125 
126  double theta;
127  theta=atan2(x[0],x[1]);
128 
129  // Argument for Bessel/Hankel functions
130  double kr = K*R;
131 
132  // Need half-order Bessel functions
133  double bessel_offset=0.5;
134 
135  // Evaluate Bessel/Hankel functions
136  Vector<double> jv(N_terms);
137  Vector<double> yv(N_terms);
138  Vector<double> djv(N_terms);
139  Vector<double> dyv(N_terms);
140  double order_max_in=double(N_terms-1)+bessel_offset;
141  double order_max_out=0;
142 
143  // This function returns vectors containing
144  // J_k(x), Y_k(x) and their derivatives
145  // up to k=order_max, with k increasing in
146  // integer increments starting with smallest
147  // positive value. So, e.g. for order_max=3.5
148  // jv[0] contains J_{1/2}(x),
149  // jv[1] contains J_{3/2}(x),
150  // jv[2] contains J_{5/2}(x),
151  // jv[3] contains J_{7/2}(x).
152  CRBond_Bessel::bessjyv(order_max_in,
153  kr,
154  order_max_out,
155  &jv[0],&yv[0],
156  &djv[0],&dyv[0]);
157 
158 
159  // Assemble exact solution (actually no need to add terms
160  // below i=N_fourier as Legendre polynomial would be zero anyway)
161  complex<double> u_ex(0.0,0.0);
162  for(unsigned i=0;i<N_terms;i++)
163  {
164  //Associated_legendre_functions
165  double p=Legendre_functions_helper::plgndr2(i,0,cos(theta));
166 
167  // Set exact solution
168  u_ex+=(2.0*i+1.0)*pow(I,i)*
169  sqrt(MathematicalConstants::Pi/(2.0*kr))*jv[i]*p;
170  }
171 
172  // Get the real & imaginary part of the result
173  u[0]=u_ex.real();
174  u[1]=u_ex.imag();
175 
176  }//end of get_exact_u
177 
178 
179  /// Plot
180  void plot()
181  {
182  unsigned nr=20;
183  unsigned nz=100;
184  unsigned nt=40;
185 
186  ofstream some_file("planar_wave.dat");
187 
188  for (unsigned i_t=0;i_t<nt;i_t++)
189  {
190  double t=2.0*MathematicalConstants::Pi*double(i_t)/double(nt-1);
191 
192  some_file << "ZONE I="<< nz << ", J="<< nr << std::endl;
193 
194  Vector<double> x(2);
195  Vector<double> u(2);
196  for (unsigned i=0;i<nr;i++)
197  {
198  x[0]=0.001+double(i)/double(nr-1);
199  for (unsigned j=0;j<nz;j++)
200  {
201  x[1]=double(j)/double(nz-1);
202  get_exact_u(x,u);
203  complex<double> uu=complex<double>(u[0],u[1])*exp(-I*t);
204  some_file << x[0] << " " << x[1] << " "
205  << uu.real() << " " << uu.imag() << "\n";
206  }
207  }
208  }
209  }
210 
211 }
212 
213 
214 /// //////////////////////////////////////////////////////////////////
215 /// //////////////////////////////////////////////////////////////////
216 /// //////////////////////////////////////////////////////////////////
217 
218 
219 //===== start_of_namespace=============================================
220 /// Namespace for the Fourier decomposed Helmholtz problem parameters
221 //=====================================================================
223 {
224  /// Square of the wavenumber
225  double K_squared=10.0;
226 
227  /// Fourier wave number
228  int N_fourier=3;
229 
230  /// Number of terms in computation of DtN boundary condition
231  unsigned Nterms_for_DtN=6;
232 
233  /// Number of terms in the exact solution
234  unsigned N_terms=6;
235 
236  /// Coefficients in the exact solution
237  Vector<double> Coeff(N_terms,1.0);
238 
239  /// Imaginary unit
240  std::complex<double> I(0.0,1.0);
241 
242  /// Exact solution as a Vector of size 2, containing real and imag parts
243  void get_exact_u(const Vector<double>& x, Vector<double>& u)
244  {
245  // Switch to spherical coordinates
246  double R=sqrt(x[0]*x[0]+x[1]*x[1]);
247 
248  double theta;
249  theta=atan2(x[0],x[1]);
250 
251  // Argument for Bessel/Hankel functions
252  double kr = sqrt(K_squared)*R;
253 
254  // Need half-order Bessel functions
255  double bessel_offset=0.5;
256 
257  // Evaluate Bessel/Hankel functions
258  Vector<double> jv(N_terms);
259  Vector<double> yv(N_terms);
260  Vector<double> djv(N_terms);
261  Vector<double> dyv(N_terms);
262  double order_max_in=double(N_terms-1)+bessel_offset;
263  double order_max_out=0;
264 
265  // This function returns vectors containing
266  // J_k(x), Y_k(x) and their derivatives
267  // up to k=order_max, with k increasing in
268  // integer increments starting with smallest
269  // positive value. So, e.g. for order_max=3.5
270  // jv[0] contains J_{1/2}(x),
271  // jv[1] contains J_{3/2}(x),
272  // jv[2] contains J_{5/2}(x),
273  // jv[3] contains J_{7/2}(x).
274  CRBond_Bessel::bessjyv(order_max_in,
275  kr,
276  order_max_out,
277  &jv[0],&yv[0],
278  &djv[0],&dyv[0]);
279 
280 
281  // Assemble exact solution (actually no need to add terms
282  // below i=N_fourier as Legendre polynomial would be zero anyway)
283  complex<double> u_ex(0.0,0.0);
284  for(unsigned i=N_fourier;i<N_terms;i++)
285  {
286  //Associated_legendre_functions
287  double p=Legendre_functions_helper::plgndr2(i,N_fourier,
288  cos(theta));
289  // Set exact solution
290  u_ex+=Coeff[i]*sqrt(MathematicalConstants::Pi/(2.0*kr))*(jv[i]+I*yv[i])*p;
291  }
292 
293  // Get the real & imaginary part of the result
294  u[0]=u_ex.real();
295  u[1]=u_ex.imag();
296 
297  }//end of get_exact_u
298 
299 
300  /// Get -du/dr (spherical r) for exact solution. Equal to prescribed
301  /// flux on inner boundary.
302  void exact_minus_dudr(const Vector<double>& x, std::complex<double>& flux)
303  {
304  // Initialise flux
305  flux=std::complex<double>(0.0,0.0);
306 
307  // Switch to spherical coordinates
308  double R=sqrt(x[0]*x[0]+x[1]*x[1]);
309 
310  double theta;
311  theta=atan2(x[0],x[1]);
312 
313  // Argument for Bessel/Hankel functions
314  double kr=sqrt(K_squared)*R;
315 
316  // Helmholtz wavenumber
317  double k=sqrt(K_squared);
318 
319  // Need half-order Bessel functions
320  double bessel_offset=0.5;
321 
322  // Evaluate Bessel/Hankel functions
323  Vector<double> jv(N_terms);
324  Vector<double> yv(N_terms);
325  Vector<double> djv(N_terms);
326  Vector<double> dyv(N_terms);
327  double order_max_in=double(N_terms-1)+bessel_offset;
328  double order_max_out=0;
329 
330  // This function returns vectors containing
331  // J_k(x), Y_k(x) and their derivatives
332  // up to k=order_max, with k increasing in
333  // integer increments starting with smallest
334  // positive value. So, e.g. for order_max=3.5
335  // jv[0] contains J_{1/2}(x),
336  // jv[1] contains J_{3/2}(x),
337  // jv[2] contains J_{5/2}(x),
338  // jv[3] contains J_{7/2}(x).
339  CRBond_Bessel::bessjyv(order_max_in,
340  kr,
341  order_max_out,
342  &jv[0],&yv[0],
343  &djv[0],&dyv[0]);
344 
345 
346  // Assemble exact solution (actually no need to add terms
347  // below i=N_fourier as Legendre polynomial would be zero anyway)
348  complex<double> u_ex(0.0,0.0);
349  for(unsigned i=N_fourier;i<N_terms;i++)
350  {
351  //Associated_legendre_functions
352  double p=Legendre_functions_helper::plgndr2(i,N_fourier,
353  cos(theta));
354  // Set flux of exact solution
355  flux-=Coeff[i]*sqrt(MathematicalConstants::Pi/(2.0*kr))*p*
356  ( k*(djv[i]+I*dyv[i]) - (0.5*(jv[i]+I*yv[i])/R) );
357  }
358 
359  }// end of exact_normal_derivative
360 
361 
362  /// Multiplier for number of elements
363  unsigned El_multiplier=1;
364 
365 
366 } // end of namespace
367 
368 
369 
370 /// //////////////////////////////////////////////////////////////////
371 /// //////////////////////////////////////////////////////////////////
372 /// //////////////////////////////////////////////////////////////////
373 
374 
375 //========= start_of_problem_class=====================================
376 /// Problem class
377 //=====================================================================
378 template<class ELEMENT>
379 class FourierDecomposedHelmholtzProblem : public Problem
380 {
381 
382 public:
383 
384  /// Constructor
386 
387  /// Destructor (empty)
389 
390  /// Update the problem specs before solve (empty)
392 
393  /// Update the problem after solve (empty)
395 
396  /// Doc the solution. DocInfo object stores flags/labels for where the
397  /// output gets written to
398  void doc_solution(DocInfo& doc_info);
399 
400  /// Recompute gamma integral before checking Newton residuals
402  {
403  Helmholtz_outer_boundary_mesh_pt->setup_gamma();
404  }
405 
406  /// Check gamma computation
407  void check_gamma(DocInfo& doc_info);
408 
409 private:
410 
411  /// Create BC elements on outer boundary
412  void create_outer_bc_elements();
413 
414  /// Create flux elements on inner boundary
415  void create_flux_elements_on_inner_boundary();
416 
417  /// Pointer to bulk mesh
419 
420  /// Pointer to mesh containing the DtN boundary
421  /// condition elements
422  FourierDecomposedHelmholtzDtNMesh<ELEMENT>* Helmholtz_outer_boundary_mesh_pt;
423 
424  /// Mesh of face elements that apply the prescribed flux
425  /// on the inner boundary
427 
428 }; // end of problem class
429 
430 
431 
432 //=======start_of_constructor=============================================
433 /// Constructor for Fourier-decomposed Helmholtz problem
434 //========================================================================
435 template<class ELEMENT>
438 {
439 
440 // Build annular mesh
441 
442 // # of elements in r-direction
443  unsigned n_r=10*ProblemParameters::El_multiplier;
444 
445  // # of elements in theta-direction
446  unsigned n_theta=10*ProblemParameters::El_multiplier;
447 
448  // Domain boundaries in theta-direction
449  double theta_min=-90.0;
450  double theta_max=90.0;
451 
452  // Domain boundaries in r-direction
453  double r_min=1.0;
454  double r_max=3.0;
455 
456  // Build and assign mesh
457  Bulk_mesh_pt =
458  new AnnularQuadMesh<ELEMENT>(n_r,n_theta,r_min,r_max,theta_min,theta_max);
459 
460  // Create mesh for DtN elements on outer boundary
461  Helmholtz_outer_boundary_mesh_pt=
462  new FourierDecomposedHelmholtzDtNMesh<ELEMENT>(
464 
465  // Populate it with elements
466  create_outer_bc_elements();
467 
468  // Create flux elements on inner boundary
469  Helmholtz_inner_boundary_mesh_pt=new Mesh;
470  create_flux_elements_on_inner_boundary();
471 
472  // Add the several sub meshes to the problem
473  add_sub_mesh(Bulk_mesh_pt);
474  add_sub_mesh(Helmholtz_inner_boundary_mesh_pt);
475  add_sub_mesh(Helmholtz_outer_boundary_mesh_pt);
476 
477  // Build the Problem's global mesh from its various sub-meshes
478  build_global_mesh();
479 
480  // Complete the build of all elements so they are fully functional
481  unsigned n_element = Bulk_mesh_pt->nelement();
482  for(unsigned i=0;i<n_element;i++)
483  {
484  // Upcast from GeneralsedElement to the present element
485  ELEMENT *el_pt = dynamic_cast<ELEMENT*>(Bulk_mesh_pt->element_pt(i));
486 
487  //Set the k_squared pointer
488  el_pt->k_squared_pt()=&ProblemParameters::K_squared;
489 
490  // Set pointer to Fourier wave number
491  el_pt->fourier_wavenumber_pt()=&ProblemParameters::N_fourier;
492  }
493 
494  // Setup equation numbering scheme
495  cout <<"Number of equations: " << assign_eqn_numbers() << std::endl;
496 
497 } // end of constructor
498 
499 
500 
501 //=================================start_of_check_gamma===================
502 /// Check gamma computation: \f$ \gamma = -du/dn \f$
503 //========================================================================
504 template<class ELEMENT>
506 {
507 
508 
509  // Compute gamma stuff
510  Helmholtz_outer_boundary_mesh_pt->setup_gamma();
511 
512  ofstream some_file;
513  char filename[100];
514 
515  sprintf(filename,"%s/gamma_test%i.dat",doc_info.directory().c_str(),
516  doc_info.number());
517  some_file.open(filename);
518 
519  //first loop over elements e
520  unsigned nel=Helmholtz_outer_boundary_mesh_pt->nelement();
521  for (unsigned e=0;e<nel;e++)
522  {
523  // Get a pointer to element
524  FourierDecomposedHelmholtzDtNBoundaryElement<ELEMENT>* el_pt=
525  dynamic_cast<FourierDecomposedHelmholtzDtNBoundaryElement<ELEMENT>*>
526  (Helmholtz_outer_boundary_mesh_pt->element_pt(e));
527 
528  //Set the value of n_intpt
529  const unsigned n_intpt =el_pt->integral_pt()->nweight();
530 
531  // Get gamma at all gauss points in element
532  Vector<std::complex<double> > gamma(
533  Helmholtz_outer_boundary_mesh_pt->gamma_at_gauss_point(el_pt));
534 
535  //Loop over the integration points
536  for(unsigned ipt=0;ipt<n_intpt;ipt++)
537  {
538  //Allocate and initialise coordiante
539  Vector<double> x(el_pt->dim()+1,0.0);
540 
541  //Set the Vector to hold local coordinates
542  unsigned n=el_pt->dim();
543  Vector<double> s(n,0.0);
544  for(unsigned i=0;i<n;i++)
545  {
546  s[i]=el_pt->integral_pt()->knot(ipt,i);
547  }
548 
549  //Get the coordinates of the integration point
550  el_pt->interpolated_x(s,x);
551 
552  complex<double> flux;
554  some_file << atan2(x[0],x[1]) << " "
555  << gamma[ipt].real() << " "
556  << gamma[ipt].imag() << " "
557  << flux.real() << " "
558  << flux.imag() << " "
559  << std::endl;
560 
561  }// end of loop over integration points
562 
563  }// end of loop over elements
564 
565  some_file.close();
566 
567 }//end of output_gamma
568 
569 
570 //===============start_of_doc=============================================
571 /// Doc the solution: doc_info contains labels/output directory etc.
572 //========================================================================
573 template<class ELEMENT>
575 {
576 
577  ofstream some_file;
578  char filename[100];
579 
580  // Number of plot points: npts x npts
581  unsigned npts=5;
582 
583  // Output solution
584  //-----------------
585  sprintf(filename,"%s/soln%i.dat",doc_info.directory().c_str(),
586  doc_info.number());
587  some_file.open(filename);
588  Bulk_mesh_pt->output(some_file,npts);
589  some_file.close();
590 
591 
592  // Output exact solution
593  //----------------------
594  sprintf(filename,"%s/exact_soln%i.dat",doc_info.directory().c_str(),
595  doc_info.number());
596  some_file.open(filename);
597  Bulk_mesh_pt->output_fct(some_file,npts,ProblemParameters::get_exact_u);
598  some_file.close();
599 
600 
601  // Doc error and return of the square of the L2 error
602  //---------------------------------------------------
603  double error,norm;
604  sprintf(filename,"%s/error%i.dat",doc_info.directory().c_str(),
605  doc_info.number());
606  some_file.open(filename);
607  Bulk_mesh_pt->compute_error(some_file,ProblemParameters::get_exact_u,
608  error,norm);
609  some_file.close();
610 
611  // Doc L2 error and norm of solution
612  cout << "\nNorm of error : " << sqrt(error) << std::endl;
613  cout << "Norm of solution: " << sqrt(norm) << std::endl << std::endl;
614 
615  // Check gamma computation
616  check_gamma(doc_info);
617 
618 
619  // Compute/output the radiated power
620  //----------------------------------
621  sprintf(filename,"%s/power%i.dat",doc_info.directory().c_str(),
622  doc_info.number());
623  some_file.open(filename);
624  sprintf(filename,"%s/total_power%i.dat",doc_info.directory().c_str(),
625  doc_info.number());
626 
627  // Accumulate contribution from elements
628  double power=0.0;
629  unsigned nn_element=Helmholtz_outer_boundary_mesh_pt->nelement();
630  for(unsigned e=0;e<nn_element;e++)
631  {
632  FourierDecomposedHelmholtzBCElementBase<ELEMENT> *el_pt =
633  dynamic_cast<FourierDecomposedHelmholtzBCElementBase<ELEMENT>*>(
634  Helmholtz_outer_boundary_mesh_pt->element_pt(e));
635  power += el_pt->global_power_contribution(some_file);
636  }
637  some_file.close();
638 
639  // Output total power
640  oomph_info << "Radiated power: "
643  << power << std::endl;
644  some_file.open(filename);
645  some_file << ProblemParameters::N_fourier << " "
647  << power << std::endl;
648  some_file.close();
649 
650 } // end of doc
651 
652 
653 
654 //============start_of_create_outer_bc_elements==============================
655 /// Create BC elements on outer boundary
656 //========================================================================
657 template<class ELEMENT>
659 {
660  // Outer boundary is boundary 1:
661  unsigned b=1;
662 
663  // Loop over the bulk elements adjacent to boundary b?
664  unsigned n_element = Bulk_mesh_pt->nboundary_element(b);
665  for(unsigned e=0;e<n_element;e++)
666  {
667  // Get pointer to the bulk element that is adjacent to boundary b
668  ELEMENT* bulk_elem_pt = dynamic_cast<ELEMENT*>(
669  Bulk_mesh_pt->boundary_element_pt(b,e));
670 
671  //Find the index of the face of element e along boundary b
672  int face_index = Bulk_mesh_pt->face_index_at_boundary(b,e);
673 
674  // Build the corresponding DtN element
675  FourierDecomposedHelmholtzDtNBoundaryElement<ELEMENT>* flux_element_pt = new
676  FourierDecomposedHelmholtzDtNBoundaryElement<ELEMENT>(bulk_elem_pt,
677  face_index);
678 
679  //Add the flux boundary element to the helmholtz_outer_boundary_mesh
680  Helmholtz_outer_boundary_mesh_pt->add_element_pt(flux_element_pt);
681 
682  // Set pointer to the mesh that contains all the boundary condition
683  // elements on this boundary
684  flux_element_pt->
685  set_outer_boundary_mesh_pt(Helmholtz_outer_boundary_mesh_pt);
686  }
687 
688 } // end of create_outer_bc_elements
689 
690 
691 
692 //============start_of_create_flux_elements=================
693 /// Create flux elements on inner boundary
694 //==========================================================
695 template<class ELEMENT>
698 {
699  // Apply flux bc on inner boundary (boundary 3)
700  unsigned b=3;
701 
702 // Loop over the bulk elements adjacent to boundary b
703  unsigned n_element = Bulk_mesh_pt->nboundary_element(b);
704  for(unsigned e=0;e<n_element;e++)
705  {
706  // Get pointer to the bulk element that is adjacent to boundary b
707  ELEMENT* bulk_elem_pt = dynamic_cast<ELEMENT*>(
708  Bulk_mesh_pt->boundary_element_pt(b,e));
709 
710  //Find the index of the face of element e along boundary b
711  int face_index = Bulk_mesh_pt->face_index_at_boundary(b,e);
712 
713  // Build the corresponding prescribed incoming-flux element
714  FourierDecomposedHelmholtzFluxElement<ELEMENT>* flux_element_pt = new
715  FourierDecomposedHelmholtzFluxElement<ELEMENT>(bulk_elem_pt,face_index);
716 
717  //Add the prescribed incoming-flux element to the surface mesh
718  Helmholtz_inner_boundary_mesh_pt->add_element_pt(flux_element_pt);
719 
720  // Set the pointer to the prescribed flux function
721  flux_element_pt->flux_fct_pt() = &ProblemParameters::exact_minus_dudr;
722 
723  } //end of loop over bulk elements adjacent to boundary b
724 
725 } // end of create flux elements on inner boundary
726 
727 
728 
729 //===== start_of_main=====================================================
730 /// Driver code for Fourier decomposed Helmholtz problem
731 //========================================================================
732 int main(int argc, char **argv)
733 {
734 
735  // Store command line arguments
736  CommandLineArgs::setup(argc,argv);
737 
738  // Define possible command line arguments and parse the ones that
739  // were actually specified
740 
741  // Multiplier for number of elements
742  CommandLineArgs::specify_command_line_flag("--el_multiplier",
744 
745  // Parse command line
746  CommandLineArgs::parse_and_assign();
747 
748  // Doc what has actually been specified on the command line
749  CommandLineArgs::doc_specified_flags();
750 
751 
752  // Check if the claimed representation of a planar wave in
753  // the tutorial is correct -- of course it is!
754  //PlanarWave::plot();
755 
756  // Test Bessel/Hankel functions
757  //-----------------------------
758  {
759  // Number of Bessel functions to be computed
760  unsigned n=3;
761 
762  // Offset of Bessel function order (less than 1!)
763  double bessel_offset=0.5;
764 
765  ofstream bessely_file("besselY.dat");
766  ofstream bessely_deriv_file("dbesselY.dat");
767 
768  ofstream besselj_file("besselJ.dat");
769  ofstream besselj_deriv_file("dbesselJ.dat");
770 
771  // Evaluate Bessel/Hankel functions
772  Vector<double> jv(n+1);
773  Vector<double> yv(n+1);
774  Vector<double> djv(n+1);
775  Vector<double> dyv(n+1);
776  double x_min=0.5;
777  double x_max=5.0;
778  unsigned nplot=100;
779  for (unsigned i=0;i<nplot;i++)
780  {
781  double x=x_min+(x_max-x_min)*double(i)/double(nplot-1);
782  double order_max_in=double(n)+bessel_offset;
783  double order_max_out=0;
784 
785  // This function returns vectors containing
786  // J_k(x), Y_k(x) and their derivatives
787  // up to k=order_max, with k increasing in
788  // integer increments starting with smallest
789  // positive value. So, e.g. for order_max=3.5
790  // jv[0] contains J_{1/2}(x),
791  // jv[1] contains J_{3/2}(x),
792  // jv[2] contains J_{5/2}(x),
793  // jv[3] contains J_{7/2}(x).
794  CRBond_Bessel::bessjyv(order_max_in,x,
795  order_max_out,
796  &jv[0],&yv[0],
797  &djv[0],&dyv[0]);
798  bessely_file << x << " ";
799  for (unsigned j=0;j<=n;j++)
800  {
801  bessely_file << yv[j] << " ";
802  }
803  bessely_file << std::endl;
804 
805  besselj_file << x << " ";
806  for (unsigned j=0;j<=n;j++)
807  {
808  besselj_file << jv[j] << " ";
809  }
810  besselj_file << std::endl;
811 
812  bessely_deriv_file << x << " ";
813  for (unsigned j=0;j<=n;j++)
814  {
815  bessely_deriv_file << dyv[j] << " ";
816  }
817  bessely_deriv_file << std::endl;
818 
819  besselj_deriv_file << x << " ";
820  for (unsigned j=0;j<=n;j++)
821  {
822  besselj_deriv_file << djv[j] << " ";
823  }
824  besselj_deriv_file << std::endl;
825 
826  }
827  bessely_file.close();
828  besselj_file.close();
829  bessely_deriv_file.close();
830  besselj_deriv_file.close();
831  }
832 
833 
834  // Test Legendre Polynomials
835  //--------------------------
836  {
837  // Fourier wavenumber
838  unsigned n=3;
839 
840  ofstream some_file("legendre3.dat");
841  unsigned nplot=100;
842  for (unsigned i=0;i<nplot;i++)
843  {
844  double x=double(i)/double(nplot-1)*2.0*MathematicalConstants::Pi;
845 
846  some_file << x << " ";
847  for (unsigned j=n;j<=5;j++)
848  {
849  some_file << Legendre_functions_helper::plgndr2(j,n,cos(x)) << " ";
850  }
851  some_file << std::endl;
852  }
853  some_file.close();
854  }
855 
856 
857  {
858  ofstream some_file("legendre.dat");
859  unsigned nplot=100;
860  for (unsigned i=0;i<nplot;i++)
861  {
862  double x=double(i)/double(nplot-1);
863 
864  some_file << x << " ";
865  for (unsigned j=0;j<=3;j++)
866  {
867  some_file << Legendre_functions_helper::plgndr2(j,0,x) << " ";
868  }
869  some_file << std::endl;
870  }
871  some_file.close();
872  }
873 
874 
875 
876  // Create the problem with 2D nine-node elements from the
877  // QFourierDecomposedHelmholtzElement family.
879  problem;
880 
881  // Create label for output
882  DocInfo doc_info;
883 
884  // Set output directory
885  doc_info.set_directory("RESLT");
886 
887  // Solve for a few Fourier wavenumbers
890  {
891  // Step number
892  doc_info.number()=ProblemParameters::N_fourier;
893 
894  // Solve the problem
895  problem.newton_solve();
896 
897  //Output the solution
898  problem.doc_solution(doc_info);
899  }
900 
901 } //end of main
902 
903 
904 
905 
906 
907 
908 
////////////////////////////////////////////////////////////////// //////////////////////////////////...
AnnularQuadMesh(const unsigned &n_r, const unsigned &n_phi, const double &r_min, const double &r_max, const double &phi_min, const double &phi_max)
////////////////////////////////////////////////////////////////// //////////////////////////////////...
~FourierDecomposedHelmholtzProblem()
Destructor (empty)
void create_outer_bc_elements()
Create BC elements on outer boundary.
Mesh * Helmholtz_inner_boundary_mesh_pt
Mesh of face elements that apply the prescribed flux on the inner boundary.
void actions_after_newton_solve()
Update the problem after solve (empty)
void create_flux_elements_on_inner_boundary()
Create flux elements on inner boundary.
void actions_before_newton_solve()
Update the problem specs before solve (empty)
void doc_solution(DocInfo &doc_info)
Doc the solution. DocInfo object stores flags/labels for where the output gets written to.
FourierDecomposedHelmholtzDtNMesh< ELEMENT > * Helmholtz_outer_boundary_mesh_pt
Pointer to mesh containing the DtN boundary condition elements.
void check_gamma(DocInfo &doc_info)
Check gamma computation.
AnnularQuadMesh< ELEMENT > * Bulk_mesh_pt
Pointer to bulk mesh.
void actions_before_newton_convergence_check()
Recompute gamma integral before checking Newton residuals.
Namespace to test representation of planar wave in spherical polars.
double K
Wave number.
void plot()
Plot.
////////////////////////////////////////////////////////////////// //////////////////////////////////...
unsigned El_multiplier
Multiplier for number of elements.
unsigned N_terms
Number of terms in the exact solution.
unsigned Nterms_for_DtN
Number of terms in computation of DtN boundary condition.
double K_squared
Square of the wavenumber.
void exact_minus_dudr(const Vector< double > &x, std::complex< double > &flux)
Get -du/dr (spherical r) for exact solution. Equal to prescribed flux on inner boundary.
int N_fourier
Fourier wave number.
Vector< double > Coeff(N_terms, 1.0)
Coefficients in the exact solution.
std::complex< double > I(0.0, 1.0)
Imaginary unit.
void get_exact_u(const Vector< double > &x, Vector< double > &u)
Exact solution as a Vector of size 2, containing real and imag parts.
int main(int argc, char **argv)
Driver code for Fourier decomposed Helmholtz problem.