
Chapter 1

Demo problem: Adaptive solution of Poisson's
equation in a fish-shaped domain.

In this document, we discuss the solution of a 2D Poisson problem using oomph-lib's powerful mesh adaptation
routines:

Two-dimensional model Poisson problem in a non-trivial domain

Solve
2∑

i=1

∂2u

∂x2
i

= −1, (1)

in the fish-shaped domain Dfish, with homogeneous Dirichlet boundary conditions

u|∂Dfish
= 0. (2)
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2 Demo problem: Adaptive solution of Poisson's equation in a fish-shaped domain.

Figure 1.1 Plot of the solution

The sharp corners in the domain create singularities in the solution (its derivatives are unbounded) and so accurate
results can only be obtained if we use a sufficiently fine discretisation. Implementing this by uniform mesh refinement
would create a huge number of elements in the interior of the domain where the fine discretisation is not required.

To avoid this problem, oomph-lib provides mesh adaptation routines that automatically adapt the mesh, based
on a posteriori error estimates. Regions in which an error estimator indicates that the solution is not resolved
to the required accuracy are refined; automatic unrefinement is performed in regions where the discretisation is
unnecessarily fine.

We provide a detailed discussion of the driver code fish_poisson.cc which illustrates a variety of mesh
refinement procedures. [The alternative driver code fish_poisson_no_adapt.cc solves the same problem
without mesh adaptation. Its structure is very similar to that in the 2D Poisson problem considered
earlier. It is provided mainly to illustrate how easy to it is incorporate adaptivity into a Problem.]

In the current example we demonstrate how to use existing refineable meshes and elements. Two further examples
will demonstrate how easy it is to create refineable meshes in domains with polygonal boundaries
and in domains with curvilinear boundaries.

1.1 Global parameters and functions

The namespace ConstSourceForPoisson only contains the constant source function f(x) = −1.
//============ start_of_namespace=====================================
/// Namespace for const source term in Poisson equation
//====================================================================
namespace ConstSourceForPoisson
{

/// Strength of source function: default value -1.0
double Strength=-1.0;

/// Const source function
void source_function(const Vector<double>& x, double& source)
{
source = Strength;

}
} // end of namespace
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1.2 The driver code 3

1.2 The driver code

The main code is very short and calls two functions that illustrate two different adaptation strategies:

• A black-box approach in which the adaptation cycle

1. solve the problem on the initial, coarse mesh

2. compute an error estimate

3. adapt the mesh

4. solve again

is performed automatically until the solution satisfies the required error bounds (or until the maximum permitted
number of adaptation steps has been reached).

• In the second approach we start by performing a number of uniform mesh refinement steps, and then use
incremental adaptations, allowing us to document how the refinement proceeds.

//=================start_of_main==========================================
/// Demonstrate how to solve 2D Poisson problem in
/// fish-shaped domain with mesh adaptation.
//========================================================================
int main()
{
// Solve with adaptation, docing the intermediate steps
solve_with_incremental_adaptation();
// Solve directly, with fully automatic adaptation
solve_with_fully_automatic_adaptation();
} // end of main

1.2.1 Black-box adaptation

We start by creating the Problem object, using the refineable equivalent of the QPoissonElement – the
RefineableQPoissonElement, which is templated by the dimension and the number of nodes along the
element's edges; the RefineableQPoissonElement<2,3> is a nine-node (bi-quadratic) quad element.
//================================start_black_box=========================
/// Demonstrate how to solve 2D Poisson problem in
/// fish-shaped domain with fully automatic mesh adaptation
//========================================================================
void solve_with_fully_automatic_adaptation()
{

//Set up the problem with nine-node refineable Poisson elements
RefineableFishPoissonProblem<RefineableQPoissonElement<2,3> > problem;

After creating the DocInfo object, we document the (default) adaptivity targets:
// Setup labels for output
//------------------------
DocInfo doc_info;

// Set output directory
doc_info.set_directory("RESLT_fully_automatic");

// Step number
doc_info.number()=0;
// Doc (default) refinement targets
//----------------------------------
problem.mesh_pt()->doc_adaptivity_targets(cout);

These include

• The target for the maximum error: Any elements whose error estimate exceed this value will be split into
four "sons".

• The target for the minimum error: Any elements whose error estimate lies below this value are deemed to
be unnecessarily small and are scheduled for (possible) unrefinement. [Elements can only be unrefined (i.e.
merged with their "brothers") if their "brothers" are also scheduled for unrefinement.]

• The minimum refinement level: In problems with curvilinear domain boundaries it is often necessary to
retain a reasonably accurate representation of the boundary (e.g. for postprocessing purposes), even if the
error estimate suggests that the mesh could be unrefined further.

• The maximum refinement level: In problems where the solution has singularities, the refinement process
would continue indefinitely, therefore an upper bound on the refinement level must be imposed.
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4 Demo problem: Adaptive solution of Poisson's equation in a fish-shaped domain.

• Finally, because unrefinement is done purely to speed up the computation, it would not make sense to adapt
the mesh if this process would only remove a few elements, while forcing the re-computation of the solution
on an only slightly coarsened mesh. Therefore, no mesh adaptation is performed if

– the adaptation would only perform unrefinements

– and the number of elements scheduled for unrefinement is below a certain threshold.

These default parameters can be changed by the user; see Comments and Exercises.
The fully-adaptive solution of the problem is very simple. We simply pass the maximum number of adaptations to
the Newton solver and document the results. Done!

// Solve/doc the problem with fully automatic adaptation
//------------------------------------------------------
// Maximum number of adaptations:
unsigned max_adapt=5;
// Solve the problem; perform up to specified number of adaptations.
problem.newton_solve(max_adapt);

//Output solution
problem.doc_solution(doc_info);

} // end black box

1.2.2 Incremental adaptation

To allow the user more control over the mesh adaptation process, oomph-lib provides a number of functions that
perform individual adaptation steps without re-computing the solution immediately. This allows the user to

• perform uniform mesh refinement and unrefinement,

• impose a specific refinement pattern,

• monitor/document the progress of the automatic adaptation.

The second driver function illustrates some of these functions. We start by setting up the problem, create the
DocInfo object and document the adaptivity targets, exactly as before:
//=====================start_of_incremental===============================
/// Demonstrate how to solve 2D Poisson problem in
/// fish-shaped domain with mesh adaptation. First we solve on the original
/// coarse mesh. Next we do a few uniform refinement steps and re-solve.
/// Finally, we enter into an automatic adapation loop.
//========================================================================
void solve_with_incremental_adaptation()
{

//Set up the problem with nine-node refineable Poisson elements
RefineableFishPoissonProblem<RefineableQPoissonElement<2,3> > problem;

// Setup labels for output
//------------------------
DocInfo doc_info;

// Set output directory
doc_info.set_directory("RESLT_incremental");

// Step number
doc_info.number()=0;

// Doc (default) refinement targets
//----------------------------------
problem.mesh_pt()->doc_adaptivity_targets(cout);

Next, we solve the problem on the original, very coarse mesh and document the result:
// Solve/doc the problem on the initial, very coarse mesh
//-------------------------------------------------------

// Solve the problem
problem.newton_solve();

//Output solution
problem.doc_solution(doc_info);

//Increment counter for solutions
doc_info.number()++;

We know that the result is unlikely to be very accurate, so we apply three levels of uniform refinement, increasing
the number of elements from 4 to 256, and re-compute:
// Do three rounds of uniform mesh refinement and re-solve
//--------------------------------------------------------
problem.refine_uniformly();
problem.refine_uniformly();
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problem.refine_uniformly();

// Solve the problem
problem.newton_solve();

//Output solution
problem.doc_solution(doc_info);

//Increment counter for solutions
doc_info.number()++;

The solution looks much smoother but we suspect that the corner regions are still under-resolved. Therefore, we call
the Problem::adapt() function which computes an error estimate for all elements and automatically performs
a single mesh adaptation (refinement/unrefinement) step. If this adaptation changes the mesh, we recompute the
solution, using the "normal" Newton solver without automatic adaptation. We document the solution and continue
the adaptation cycle until Problem::adapt() ceases to change the mesh:
// Now do (up to) four rounds of fully automatic adapation in response to
//-----------------------------------------------------------------------
// error estimate
//---------------
unsigned max_solve=4;
for (unsigned isolve=0;isolve<max_solve;isolve++)
{
// Adapt problem/mesh
problem.adapt();

// Re-solve the problem if the adaptation has changed anything
if ((problem.mesh_pt()->nrefined() !=0)||

(problem.mesh_pt()->nunrefined()!=0))
{
problem.newton_solve();

}
else
{
cout « "Mesh wasn’t adapted --> we’ll stop here" « std::endl;
break;

}

//Output solution
problem.doc_solution(doc_info);

//Increment counter for solutions
doc_info.number()++;
}

} // end of incremental

The progress of the adaptation is illustrated in the animated gif at the beginning of this document. The first frame
displays the solution on the original four-element mesh; the next frame shows the solution on the uniformly refined
mesh; the final two frames show the progress of the subsequent, error-estimate-driven mesh adaptation.

1.3 The problem class

The problem class is virtually identical to that used in the 2D Poisson problem without mesh
refinement. In the present problem, we leave the function Problem::actions_before_newton_←↩

solve() empty because the boundary conditions do not change. The function RefineableFishPoissonProblem::mesh_pt()
overloads the (virtual) function Problem::mesh_pt() since it returns a pointer to a generic Mesh object, rather
than a pointer to the specific mesh used in this problem. This avoids explicit re-casts in the rest of the code where
member functions of the specific mesh need to be accessed.
//======start_of_problem_class========================================
/// Refineable Poisson problem in fish-shaped domain.
/// Template parameter identifies the element type.
//====================================================================
template<class ELEMENT>
class RefineableFishPoissonProblem : public Problem
{
public:

/// Constructor
RefineableFishPoissonProblem();

/// Destructor: Empty
virtual ~RefineableFishPoissonProblem(){}

/// Update the problem specs after solve (empty)
void actions_after_newton_solve() {}

/// Update the problem specs before solve (empty)
void actions_before_newton_solve() {}
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6 Demo problem: Adaptive solution of Poisson's equation in a fish-shaped domain.

/// Overloaded version of the problem’s access function to
/// the mesh. Recasts the pointer to the base Mesh object to
/// the actual mesh type.
RefineableFishMesh<ELEMENT>* mesh_pt()
{
return dynamic_cast<RefineableFishMesh<ELEMENT>*>(Problem::mesh_pt());
}

/// Doc the solution. Output directory and labels are specified
/// by DocInfo object
void doc_solution(DocInfo& doc_info);
}; // end of problem class

1.4 The Problem constructor

We start by creating the mesh, using oomph-lib's RefineableFishMesh object:
//===========start_of_constructor=========================================
/// Constructor for adaptive Poisson problem in fish-shaped
/// domain.
//========================================================================
template<class ELEMENT>
RefineableFishPoissonProblem<ELEMENT>::RefineableFishPoissonProblem()
{

// Build fish mesh -- this is a coarse base mesh consisting
// of four elements. We’ll refine/adapt the mesh later.
Problem::mesh_pt()=new RefineableFishMesh<ELEMENT>;

Next, we create an error estimator for the problem. The Z2ErrorEstimator is based on Zhu and Zienkiewicz's
flux recovery technique and can be used with all elements that are derived from the ElementWithZ2Error←↩

Estimator base class (or with functions that implement the pure virtual functions that are defined in this class) –
the RefineableQPoissonElement is an element of this type.
// Create/set error estimator
mesh_pt()->spatial_error_estimator_pt()=new Z2ErrorEstimator;

Next we pin the nodal values on all boundaries, apply the homogeneous Dirichlet boundary conditions, pass the
pointer to the source function to the elements, and set up the equation numbering scheme.
// Set the boundary conditions for this problem: All nodes are
// free by default -- just pin the ones that have Dirichlet conditions
// here. Since the boundary values are never changed, we set
// them here rather than in actions_before_newton_solve().
unsigned n_bound = mesh_pt()->nboundary();
for(unsigned i=0;i<n_bound;i++)
{
unsigned n_node = mesh_pt()->nboundary_node(i);
for (unsigned n=0;n<n_node;n++)
{
// Pin the single scalar value at this node
mesh_pt()->boundary_node_pt(i,n)->pin(0);
// Assign the homogenous boundary condition for the one and only
// nodal value
mesh_pt()->boundary_node_pt(i,n)->set_value(0,0.0);

}
}

// Loop over elements and set pointers to source function
unsigned n_element = mesh_pt()->nelement();
for(unsigned e=0;e<n_element;e++)
{
// Upcast from FiniteElement to the present element
ELEMENT *el_pt = dynamic_cast<ELEMENT*>(mesh_pt()->element_pt(e));
//Set the source function pointer
el_pt->source_fct_pt() = &ConstSourceForPoisson::source_function;
}

// Setup the equation numbering scheme
cout «"Number of equations: " « assign_eqn_numbers() « std::endl;
} // end of constructor

1.5 Post-processing

The post-processing routine writes the computed result to an output file, labeled with the identifiers specified in the
DocInfo object.
//=======start_of_doc=====================================================
/// Doc the solution in tecplot format.
//========================================================================
template<class ELEMENT>
void RefineableFishPoissonProblem<ELEMENT>::doc_solution(DocInfo& doc_info)
{
ofstream some_file;
char filename[100];
// Number of plot points in each coordinate direction.
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unsigned npts;
npts=5;
// Output solution
sprintf(filename,"%s/soln%i.dat",doc_info.directory().c_str(),

doc_info.number());
some_file.open(filename);
mesh_pt()->output(some_file,npts);
some_file.close();

} // end of doc

1.6 Comments and Exercises

The purpose of this example was to provide a high-level overview of oomph-lib's mesh adaptation procedures.
We demonstrated that the implementation of full adaptivity only required us to

• replace the FishMesh and the QPoissonElement objects by their refineable equivalents,
RefineableFishMesh and RefineableQPoissonElement, respectively

• specify the error estimator, and

• specify the maximum number of adaptations for the black-box adaptive Newton solver.

(Compare the Problem specification for the current problem to that of its non-refineable equivalent, contained in the
alternative driver code fish_poisson_no_adapt.cc.)
Since most of the "hard work" involved in the mesh adaptation is "hidden" from the user, we highlight some important
aspects of the procedure:

1.6.1 Automatic transfer of the solution/boundary conditions during the mesh
adaptation

The Problem::adapt() function automatically determines the correct boundary conditions for newly created
nodes on the Mesh boundary; it automatically updates the equation numbering scheme, and interpolates the so-
lution from the original mesh onto the adapted mesh. This is important in nonlinear problems where the provision
of a good initial guess for the Newton iteration is vital; and in time-dependent problems where the solution at one
timestep provides initial conditions for the next one. See the discussion of the adaptive solution of
the unsteady heat equation for more details. Furthermore, the source function pointers are automati-
cally passed to an element's four "son" elements when the element is subdivided. This allows the adaptation to
proceed completely automatically, without any intervention by the "user". On return from Problem::adapt()
the problem can immediately be re-solved.
In some special cases, certain actions may need to be performed before or after the mesh adaptation (e.g. if flux
boundary conditions are applied by FaceElements; this is explained in another example). To ensure
that these steps are performed when the adaptation is controlled by the "black-box" adaptive Newton solver, the
Problem class provides the two empty virtual functions
Problem::actions_before_adapt()

and
Problem::actions_after_adapt()

which are called automatically before and after the adaptation. The "user" can overload these in his/her specific
Problem class to implement such actions.

1.6.2 Automatic mesh adaptation in domains with curvilinear boundaries

The mesh adaptation not only increases the number of elements but also produces a more accurate representa-
tion of the curvilinear domain boundary – new boundary nodes are placed exactly onto the analytically-defined,
curvilinear boundary, rather than on the boundaries of the "father" element, which only provides an approximate
representation of the exact domain boundary. This is achieved by employing a MacroElement-based repre-
sentation of the Domain – we will discuss this in more detail in another example.

1.6.3 Problem adaptation vs. Mesh adaptation

Many adaptation routines in the Problem class have equivalents in the RefineableMesh class. It is important
to appreciate the important differences between them: If adaptation is performed at the Problem level, the adapted
Problem is fully functional, i.e. boundary conditions will have been assigned for newly created nodes on the mesh
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8 Demo problem: Adaptive solution of Poisson's equation in a fish-shaped domain.

boundary, the equation numbering scheme will have been updated, etc. The adapted Problem can therefore be
re-solved immediately. Conversely, if a mesh is refined directly, using the member functions of the Refineable←↩

Mesh class, many of these additional tasks need to be performed "by hand" before the adapted Problem can be
resolved.

1.6.4 Exercises

To familiarise yourself with oomph-lib's mesh adaptation procedures we suggest the following exercises:

1. When the Poisson problem is solved with the default refinement targets, no elements are unrefined. Increase
the minimum permitted error from its default value of 10−5 to 10−4 by adding the statement
problem.mesh_pt()->min_permitted_error()=1.0e-4;

before
problem.mesh_pt()->doc_adaptivity_targets(cout);

This value forces an unrefinement of several elements in the mesh:

Figure 1.2 Plot of the solutions obtained with the modified adaptivity targets.

2. Convince yourself that Problem::adapt() does indeed interpolate the solution from the coarse mesh to
the fine mesh – call Problem::doc_solution(...) before and after its execution.

3. The Problem::refine_uniformly() function has a counterpart Problem::unrefine_←↩

uniformly(). Why does this function not simply unrefine every single element in the mesh? Explore
the action of Problem::unrefine_uniformly() by plotting the solution before and after a few
executions of this function.
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Figure 1.3 Uniform unrefinement

4. Impose a "user-defined" refinement pattern by calling the function Problem::refine_selected_←↩

elements(...).

1.7 Source files for this tutorial

• The source files for this tutorial are located in the directory:

demo_drivers/poisson/fish_poisson/

• The driver code is:

demo_drivers/poisson/fish_poisson/fish_poisson.cc

1.8 PDF file

A pdf version of this document is available.
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