
Chapter 1

Existing (structured) meshes

This document provides a brief description of the various structured meshes that are distributed with the library. Most
of these meshes were developed for specific example codes but we expect them to be useful in other problems too.
Many of the meshes exist in many different variants, usually constructed by multiple inheritance. When meshes
are relatively trivial variations of each other, e.g. a basic mesh and its refineable equivalent, we only list the mesh
once. The detailed documentation for the mesh (obtained by following the link) contains the full inheritance diagram,
showing the mesh's own base classes and any meshes that are derived from it. For each mesh, we provide a link
to a fully-documented example problem that illustrates its use.

We stress that the key feature of any given mesh is its topology, rather than the specific shape for which it was
originally developed. For instance, oomph-lib does not provide a mesh for the discretisation of an annular domain
with quadrilateral elements. However, such a mesh is trivial to construct by deriving it from, e.g., the Simple←↩

RectangularQuadMesh (a mesh that discretises a rectangular domain), and then adjusting its nodal positions.
Consult the example in the (Not-So-)Quick-Guide for details.

1.1 Reminder: General conventions to facilitate the re-use of meshes

Since mesh generation tends to be most tedious part of any numerical simulation, oomph-lib's overall data
structure, described in detail elsewhere, aims to facilitate the re-use of meshes in many different applications.
For this purpose most specific FiniteElements in oomph-lib are derived by multiple inheritance, combining
a "geometric" FiniteElement (e.g. a line/quadrilateral/brick-shaped element from the QElement<DIM,←↩

NNODE_1D> family) with an equations class (such as PoissonEquations<DIM>) that implements the weak
form of a specific PDE. For instance, oomph-lib's quadrilateral nine-node Poisson element, QPoisson←↩

Element<2,3>, is derived from the PoissonEquations<2> equations class and the QElement<2,3>
geometric FiniteElement.
The mesh generation process is mainly concerned with the geometric properties of the mesh's constituent
FiniteElements (their topology, number of nodes, etc.) which are defined by the geometric Finite←↩

Element. This makes it possible to use a mesh that was originally developed for the solution of a Poisson
equation with a QPoissonElement<2,NNODE_1D>, say, for the solution of an advection-diffusion problem
with a QAdvctionDiffusionElement<2,NNODE_1D> since both elements are derived from the same
geometric FiniteElement. Only two aspects of the mesh generation process require information that is not
provided by the geometric FiniteElement:

• The number of values to be stored at the various nodes in the mesh: For instance, if a mesh that is
designed for quadrilateral elements from the QElement<2,NNODE_1D> family of geometric elements is
used to solve a (scalar) Poisson equation with nine-noded elements, each Node has to store a single value.
However, if the same mesh is used for the solution of the 2D Navier-Stokes equations with a nine-node
quadrilateral elements of type QTaylorHoodElement<2>, nodes located at the elements' four vertices
have to store three values (two velocity components and one pressure) whereas nodes located at the ele-
ments' interior and on their edges only have to store two values (the two velocity components).

Generated by Doxygen

../../../quick_guide/html/index.html#distorted_mesh
../../../the_data_structure/html/index.html


2 Existing (structured) meshes

• The number of "history values" required by the timestepping procedure (if any): For instance, if the
mesh is used for the solution of a Poisson problem, no "history" values are required. If the same mesh is
used for the solution of an unsteady heat problem, the number of history values required is determined by the
TimeStepper used to approximate the time-derivative of the nodal values.

The meshes used in our example codes (and all the meshes listed below) have a common structure that allows the
required information to be become available to the mesh constructor:

1. All meshes are templated by the element type, ELEMENT.

2. The final argument of all mesh constructors is a pointer to a TimeStepper. We provide a default for this
argument – a pointer to the Steady<0> timestepper, defined (as static member data) in the Mesh base
class.

The availability of the template parameter allows the mesh generator to build elements of the required type. Nodes
are generally built by the FiniteElement::construct_node(...) function whose arguments are the
Node's local node number within the current element, and a pointer to the timestepper. These arguments provide
all the information that is required to build Nodes with the right number of values (as required by the element)
and history values (as required by the TimeStepper). When the function FiniteElement::construct←↩

_node(...) is called, it creates the new Node, stores a pointer to the newly created Node in the Finite←↩

Element's own lookup scheme, and returns that pointer. This allows the pointer to the newly created Node to be
stored in the Mesh's own lookup scheme for its constituent Nodes. The (Not-So-)Quick-Guide contains
a section that explains how to write simple meshes.

1.2 Mesh FAQ

When using a mesh that was originally developed for a different application, it is sometimes necessary establish
the node/element/boundary numbering scheme employed by the mesh writer. While we generally assume that the
mesh writer will have carefully documented his/her code, here is what to do if he/she hasn't:

• How do I find out how the elements are numbered?

The function Mesh::output(...) outputs the elements in the order in which they are stored inter-
nally. If you prefer a different element numbering scheme you can re-number the elements; see e.g. the
member function element_reorder() in the RectangularQuadMesh class.

• How do I find out how the nodes are numbered?

The function Mesh::node_pt(j) provides pointer-based access to the j - th Node in the mesh.
To plot a node's position, you can determine its coordinates from the Node::x(...) function.

• How do I find out how the mesh boundaries are numbered?

The function Mesh::output_boundaries(...) outputs the nodes located on the mesh bound-
aries in a tecplot-able format. Nodes that are located on separate mesh boundaries are contained in
separate tecplot zones.

With this information it should be straightforward to use any of the meshes listed below in one of your own problems.
The example code listed next to each mesh illustrates its use in an actual driver code. If you develop a new mesh,
let us know! If it is written according to oomph-lib's coding standards, we'll be delighted to include it
into the library.

Generated by Doxygen

../../../quick_guide/html/index.html#mesh
classoomph_1_1RectangularQuadMesh.html
http://www.tecplot.com
http://www.tecplot.com
../../../coding_conventions/html/index.html


1.3 Mesh list 3

1.3 Mesh list

Mesh Representative Mesh plot
OneDMesh<ELEMENT>

• This mesh can be used with all Finite←↩

Elements that are derived from the geometric
finite element QElement<1,NNODE_1D>.

• This mesh forms the basis for numerous derived
meshes.

• A refineable version of this mesh exists.

Example driver code:

• This mesh is used in the driver code for
the solution of the 1D Poisson
equation.

SimpleRectangularQuadMesh<←↩

ELEMENT>

• This mesh can be used with all Finite←↩

Elements that are derived from the geometric
finite element QElement<2,NNODE_1D>.

• This mesh forms the basis for numerous derived
meshes.

Example driver code:

• This mesh is used in the driver code for
the solution of the 2D Poisson
equation.

Generated by Doxygen

classoomph_1_1OneDMesh.html
../../../poisson/one_d_poisson/html/index.html
../../../poisson/one_d_poisson/html/index.html
../../../poisson/one_d_poisson/html/index.html
classoomph_1_1SimpleRectangularQuadMesh.html
classoomph_1_1SimpleRectangularQuadMesh.html
../../../poisson/two_d_poisson/html/index.html
../../../poisson/two_d_poisson/html/index.html
../../../poisson/two_d_poisson/html/index.html


4 Existing (structured) meshes

RectangularQuadMesh<ELEMENT>

• This is a slightly more sophisticated version of
the SimpleRectangularQuadMesh dis-
cussed above; it allows for non-uniform spac-
ing of the nodes, and periodicity in the x and
y-directions.

• This mesh can be used with all Finite←↩

Elements that are derived from the geometric
finite element QElement<2,NNODE_1D>.

• This mesh forms the basis for numerous derived
meshes.

• A refineable version of this mesh exists.

Example driver code:

• The refineable variant of this mesh is used
in the driver code for the solution
of the 2D Advection Diffusion
equation.

TwoDAnnularMesh<ELEMENT>

• This is a "wrapped around" version of
RectangularQuadMesh discussed above.
It can either be used as a complete annulus (in
which case periodicity is enforced) or a gap can
appear in the annulus.

• This mesh can be used with all Finite←↩

Elements that are derived from the geometric
finite element QElement<2,NNODE_1D>.

• A refineable version of this mesh exists.

Example driver code:

• This mesh is used in the driver code for
the 2D Helmholtz equationand the
time-harmonic linear elasticity
equations.

Generated by Doxygen

classoomph_1_1RectangularQuadMesh.html
../../../advection_diffusion/two_d_adv_diff_adapt/html/index.html
../../../advection_diffusion/two_d_adv_diff_adapt/html/index.html
../../../advection_diffusion/two_d_adv_diff_adapt/html/index.html
classoomph_1_1TwoDAnnularMesh.html
../../../helmholtz/scattering/html/index.html
../../../helmholtz/scattering/html/index.html
../../../time_harmonic_linear_elasticity/elastic_annulus/html/index.html
../../../time_harmonic_linear_elasticity/elastic_annulus/html/index.html
../../../time_harmonic_linear_elasticity/elastic_annulus/html/index.html


1.3 Mesh list 5

ChannelWithLeafletMesh<ELEMENT>

• Mesh for the simulation of flow in a 2D channel
that is partially occluded by a moving leaflet.

• Leaflet must be represented by a Geom←↩

Object

• Nodes along the leaflet are duplicated to allow
for a pressure jump across the leaflet even for
discretisations that impose continuous pressure
distributions across element boundaries.

• This mesh can be used with all Finite←↩

Elements that are derived from the geometric
finite element QElement<2,NNODE_1D>.

• This mesh forms the basis for numerous derived
meshes.

• A refineable version of this mesh exists.

Example driver code:

• The refineable variant of this mesh with an
algebraic node update is used in the driver code
for the simulation of flow in
a 2D channel that is partially
occluded by a moving leaflet and
also in corresponding FSI problem.

SimpleRectangularTriMesh<ELEMENT>

• This is a simple structured mesh made of trian-
gular elements.

• This mesh can be used with all Finite←↩

Elements that are derived from the geometric
finite element TElement<2,NNODE_1D>.

Example driver code:

• This mesh is used in the self-test code t_←↩

convergence_2d.cc

Generated by Doxygen

classoomph_1_1ChannelWithLeafletMesh.html
../../../navier_stokes/channel_with_leaflet/html/index.html
../../../navier_stokes/channel_with_leaflet/html/index.html
../../../navier_stokes/channel_with_leaflet/html/index.html
../../../interaction/fsi_channel_with_leaflet/html/index.html
../../../interaction/fsi_channel_with_leaflet/html/index.html
classoomph_1_1SimpleRectangularTriMesh.html
classoomph_1_1SimpleRectangularTriMesh.html
../../../../self_test/poisson/convergence_tests/t_convergence_2d.cc
../../../../self_test/poisson/convergence_tests/t_convergence_2d.cc


6 Existing (structured) meshes

FishMesh<ELEMENT>

• This mesh can be used with all Finite←↩

Elements that are derived from the geometric
finite element QElement<2,NNODE_1D>.

• This mesh forms the basis for numerous derived
meshes.

• The curvilinear boundaries are represented by
a GeomObject and the mesh has a Domain
representation, allowing a MacroElement -
based node update.

• There is also a version of the mesh that performs
the node update in response to changes in the
domain boundary by an algebraic node update.

• A refineable version of this mesh exists.

Example driver code:

• The refineable variant of this mesh is used in the
driver code for the adaptive solution
of the 2D Poisson equation in a
fish-shaped domain.

CollapsibleChannelMesh<ELEMENT>

• This mesh can be used with all FiniteElements that are derived from the geometric finite element
QElement<2,NNODE_1D>.

• This mesh forms the basis for numerous derived meshes

• The curvilinear boundary is represented by a GeomObject and the mesh has a Domain representation,
allowing a MacroElement - based node update.

• There is also a version of the mesh that performs the node update in response to changes in the domain
boundary by an algebraic node update.

• A refineable version of this mesh exists.

Example driver code:

• This mesh is used in the driver code for the solution of the 2D unsteady Navier-Stokes
equations in 2D channel with an oscillating wall.

Generated by Doxygen

classoomph_1_1FishMesh.html
../../../poisson/fish_poisson/html/index.html
../../../poisson/fish_poisson/html/index.html
../../../poisson/fish_poisson/html/index.html
classoomph_1_1CollapsibleChannelMesh.html
../../../navier_stokes/collapsible_channel/html/index.html
../../../navier_stokes/collapsible_channel/html/index.html


1.3 Mesh list 7

CylinderWithFlagMesh<ELEMENT>

• This Mesh was mainly developed for the solution of Turek & Hron's FSI benchmark problems. The curvilinear
boundaries of the cylinder and the "flag" are represented by GeomObjects.

• A refineable version of the mesh exists.

• The node-update in response to changes in the shape of the "flag" can be performed by a version based on
an AlgebraicMesh or using a Domain/MacroElement - based node update.

• The bulk elements have to be derived from the geometric finite element QElement<2,NNODE_1D>.

Example driver code:

• This mesh is used in the driver code for Turek & Hron's FSI benchmark problems and their
non-FSI equivalents.

Generated by Doxygen

classoomph_1_1CylinderWithFlagMesh.html
../../../interaction/turek_flag/html/index.html
../../../navier_stokes/turek_flag_non_fsi/html/index.html


8 Existing (structured) meshes

BrethertonSpineMesh<ELEMENT>

• This SpineMesh was mainly developed for the simulation of the Bretherton problem but it can, of course,
also be used in other problems. The mesh topology would be suitable for the simulation of flows in a bifurcat-
ing channel, say.

• The bulk elements have to be derived from the geometric finite element QElement<2,NNODE_1D>.

Example driver code:

• This mesh is used in the driver code for the simulation of the Bretherton problem.

QuarterCircleSectorMesh<ELEMENT>

• This mesh can be used with all FiniteElements that are derived from the geometric finite element
QElement<2,NNODE_1D>.

• This mesh forms the basis for numerous derived meshes

• The curvilinear boundary is represented by a GeomObject and the mesh has a Domain representation,
allowing a MacroElement - based node update.

• There is also a version of the mesh that performs the node update in response to changes in the domain
boundary by an algebraic node update.

• A refineable version of this mesh exists.

Example driver code:

• The refineable version of this mesh is used in the driver code for the simulation of flow inside
a oscillating ellipse.

Generated by Doxygen

classoomph_1_1BrethertonSpineMesh.html
../../../navier_stokes/bretherton/html/index.html
classoomph_1_1QuarterCircleSectorMesh.html
../../../navier_stokes/osc_ellipse/html/index.html
../../../navier_stokes/osc_ellipse/html/index.html


1.3 Mesh list 9

SimpleCubicMesh<ELEMENT>

• This mesh can be used with all FiniteElements that are derived from the geometric finite element
QElement<3,NNODE_1D>.

• A refineable version of this mesh exists.

Example driver code:

• This mesh is used in the self-test code q_convergence_3d.cc

Generated by Doxygen

classoomph_1_1SimpleCubicMesh.html
../../../../self_test/poisson/convergence_tests/q_convergence_3d.cc


10 Existing (structured) meshes

SimpleCubicTetMesh<ELEMENT>

• This is a simple structured mesh for tet elements.

• This mesh can be used with all FiniteElements that are derived from the geometric finite element
TElement<3,NNODE_1D>.

Example driver code:

• This mesh is used in the self-test code t_convergence_3d.cc

Generated by Doxygen

classoomph_1_1SimpleCubicTetMesh.html
../../../../self_test/poisson/convergence_tests/t_convergence_3d.cc


1.3 Mesh list 11

QuarterTubeMesh<ELEMENT>

• This mesh can be used with all FiniteElements that are derived from the geometric finite element
QElement<3,NNODE_1D>.

• This mesh forms the basis for numerous derived meshes

• The curvilinear boundary is represented by a GeomObject and the mesh has a Domain representation,
allowing a MacroElement - based node update.

• There is also a version of the mesh that performs the node update in response to changes in the domain
boundary by an algebraic node update.

• A refineable version of this mesh exists.

Example driver code:

• The refineable version of this mesh is used in the driver code for the simulation of 3D entry
flow into a cylindrical tube.

TubeMesh<ELEMENT>

• This mesh can be used with all FiniteElements that are derived from the geometric finite element
QElement<3,NNODE_1D>.

• This mesh forms the basis for numerous derived meshes that describe topologically-tube-shaped domains.

• The entire domain is represented by a GeomObject and the mesh has a Domain representation, allowing
a MacroElement - based node update.

• A refineable version of this mesh exists.

Example driver code:

Generated by Doxygen

classoomph_1_1QuarterTubeMesh.html
../../../navier_stokes/three_d_entry_flow/html/index.html
../../../navier_stokes/three_d_entry_flow/html/index.html
classoomph_1_1TubeMesh.html


12 Existing (structured) meshes

• The refineable version of this mesh is used in the driver code for the simulation of 3D flow in
a curved cylindrical pipe.

EighthSphereMesh<ELEMENT>

• This mesh can be used with all FiniteElements that are derived from the geometric finite element
QElement<3,NNODE_1D>.

• A refineable version of this mesh exists.

Example driver code:

• The refineable version of this mesh is used in the driver code for the adaptive solution of the
3D Poisson equation.

Generated by Doxygen

../../../navier_stokes/curved_pipe/html/index.html
../../../navier_stokes/curved_pipe/html/index.html
classoomph_1_1EighthSphereMesh.html
../../../poisson/eighth_sphere_poisson/html/index.html
../../../poisson/eighth_sphere_poisson/html/index.html


1.4 PDF file 13

1.4 PDF file

A pdf version of this document is available.

Generated by Doxygen


	1 Existing (structured) meshes
	1.1 Reminder: General conventions to facilitate the re-use of meshes
	1.2 Mesh FAQ
	1.3 Mesh list
	1.4 PDF file


